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Abstract

In the theory of general relativity, the Penrose conjecture claims a lower bound for
the mass of a spacetime in terms of the area of an outermost horizon, if one exists.
In physical terms, this conjecture is a geometric formulation of the statement that
the total mass of a spacetime is at least the mass of any black holes that are present,
assuming non-negative energy density. For the geometry of light-rays emanating off
of a black hole horizon (called a nullcone), the Penrose conjecture can be reformulated
to the so-called Null Penrose Conjecture (NPC). In this thesis, we define an explicit
quasi-local mass functional that is non-decreasing along all foliations (satisfying a
convexity assumption) of nullcones. We use this new functional to prove the NPC

under fairly generic conditions.
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1

Introduction

In the framework of Albert Einstein’s theory of General Relativity, the presence
of matter induces curvature of the four dimensional fabric we inhabit called space-
time. Our perception of gravity is a direct consequence of this curvature and the
reaction of entities to its presence. Mathematically, we recognize a spacetime as a
semi-Riemannian manifold (M?*, g), where M is a four dimensional manifold with
metric g(+, ) of signature (—, 4+, +, +). Throughout this thesis, we will be setting the
universal gravitational constant and the speed of light to unity. The fundamental
bridge between our geometric and physical interpretations of the framework is given
by the Einstein equation,
G =8rT

where T represents the physical stress-energy tensor, and G = Ric, — %Rgg is the
FEinstein tensor. From a physical perspective, the tensor T'(-, ) signals the presence
of matter in space-time by the measurement of energy-momentum at any given point.
With regards to geometry, since the Einstein tensor G is constructed from the Ricci
curvature tensor Ric,(-,-) and scalar curvature R, (of the metric g), it measures ge-
ometric curvature. The Einstein equation therefore conflates both these interpretive
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lenses providing a theory whereby matter curves spacetime.
1.1 The Penrose conjecture

In 1973, Sir Roger Penrose (][23]) conjectured that the mass contributed by a collec-

tion of black holes should be no less than %, where |¥]| is the total combined area

of all black hole horizons ¥ in our spacetime. Alternatively,

p
M sy 12L (1.1)
167

where M is the total mass. One of the fundamental ingredients of Penrose’s heuris-
tic argument was the use of cosmic censorship. As a statement on the global future
evolution of a system, cosmic censorship is essential for an existence theorem in
general relativity. This hypothesis asserts that generically all spacetime singulari-
ties are hidden from the rest of the universe by black holes. Since singularities are
shown to exist for physically reasonable spacetimes (by the famous work of Hawking
and Penrose [13]), these semi-permeable information barriers serve to prevent their
chaotic physical implications from influencing our deterministic system. Finding a
counterexample to (1.1) would likely indicate a failure of cosmic censorship (in fact
this was Penrose’s original motivation for studying (1.1)), and, conversely, a proof of
(1.1) would provide indirect support to its validity. Another important ingredient in
Penrose’s argument was to assume the Dominant Energy Condition. This condition,
via the energy-momentum tensor 7', imposes local curvature constraints to model a
spacetime with non-negative energy density. From this perspective, (1.1) in essence
claims that this non-negative energy density must aggregate (in analogy to our clas-
sical understanding of mass) to at least the black hole contributions. This would
also refine the famous positive mass theorem of Schoen and Yau (]26],[27]) discussed

in Section 1.3.



Recognizing the implications of the Penrose conjecture on the immensely successful
framework laid out by Einstein, mathematicians and physicists have spent consider-
able effort in the last forty years towards a rigorous proof. Thus far, attempts have
centered on two main approaches. The traditional approach centers on analyzing ini-
tial data (N3, g, K) where (N, g) denotes a Riemannian slice of the spacetime M of
extrinsic curvature (or second fundamental form) K. We briefly discuss this setting
and the beautiful results that answer special cases in Section 1.3. The study of this
thesis however, involves an approach involving null slices of M. A null hypersurface
0 — M is represented by a three-dimensional manifold €2 on which the induced
metric v = g|q is degenerate. A major appeal of this setting is the existence of a null
tangent vector L € I'(T)) generating null geodesics that rule 2. For this very rea-
son, many approaches in the Riemannian setting involving difficult geometric partial
differential equations reduce in the null setting to an analysis of ordinary differential
equations. To enrich the discussion of these two approaches and to help build an
intuition for the fundamental ideas that underpin this thesis we spend some time in

the setting of Einstein’s theory of Special Relativity.
1.2 Minkowski spacetime

In a vacuum, namely G = 87T = 0, our simplest model is given by the flat Minkowski

space R{ := (R?, g) whereby g is given by the quadratic form
ds* = —dt* + dz* + dy* + d=?

in a global chart (¢,z,y, z). Although highly restrictive, Minkowski spacetime orig-
inally served as the springboard for the development of Albert Einstein’s general
theory as well as an initial gateway to some of the most fundamental discoveries
in twentieth century physics. In this section, we invest some time introducing key
aspects of the Minkowski spacetime that will serve as a backdrop throughout this
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thesis.
1.2.1 Particles and Observers

An immediate consequence of the vector space structure is the canonical isomorphism
between the spacetime and its tangent spaces, whereby R} =~ T;R} for any point
¢ € R}. This warrants our ability to unambiguously pull-back the quadratic form
associated to g = (-, ). Therefore, given a non-trivial vector v € R}, we immediately
notice its existence within one of three categories. If (v, v) < 0 we say v is timelike, if
{v,v) > 0 we say v is spacelike, and if (v, v) = 0 we say v is null. We define the length
of v € R} with |v] := 4/[{v,v)|. Tt will also be useful to distinguish spacelike vectors
from non-spacelike vectors by referring to the latter as causal vectors. Taking the
globally defined timelike vector ¢d; to define a pointwise ‘direction of time’, any causal
vector v can then be identified as either future pointing if (v, d;) < 0 or past pointing
if (v, d;y > 0. A material particle is then represented in R} by a curve a(7) : I — R}
which has a unit future-pointing timelike velocity o’ (i.e. such that (a/,a’) = —1).
Given the frame {0y, 0, 0y, 0.} = {0}, 0;} the energy-momentum for a particle of mass
M is given by
T :=Md = Eo, + P'0,.

For convenience we may denote 7 = (E, ﬁ), where F is the measured energy of the
particle and P its linear momentum. We see that M?2 = —(T,T)=E*- |15|2, which
is independent of our choice of frame (i.e. under an arbitrary isometry ¢ : R} — R}),
whereas E and P are not.

In General Relativity, ‘free-falling’” particles are characterized by the restriction that
a be geodesic i.e. o” = 0. In R} we conclude therefore that free falling particles have
constant energy-momentum.

Within the Lie group of isometries of R}, we will concentrate on the subgroup fixing
the origin called the Lorentz group. In particular, the connected component of the
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identity (or the restricted Lorentz group), is generated by pure rotations of space

(SO(3)) and the Lorentz boosts ¢z : R} — Ri:

(.75 (ol =795+ ok + T ) (1.2)
for some @€ B¥ = R® and p5' := /1 — [0]2. Tt’s easily seen that all future directed
unit timelike vectors are uniquely reached by a boost of ;. As a result, given any
free falling future directed trajectory o we are able to boost to a frame where it
remains at rest, i.e. o' = 0. Equivalently, we may identify these trajectories as
co-observers within Minkowski spacetime each with an associated boosted frame of
reference. A free falling particle is therefore viewed from an observer at rest (relative

to the motion of the particle) to have energy-momentum
T = (M,0)

giving Einstein’s famous identity that £ = M (or E = Mc? when the speed of light,

¢, is not set to unity).
1.2.2  Nullcones

Given a linear map ¢ : Rf — R} it’s an easy exercise to show (forgiving the abuse
of notation) that ¢ = d¢. Since the Lorentz group is induced by linear maps we
therefore observe for any w € R} = T )R} that {dgz(w), dpz(w)) = (w,w). As a

result, the hyperquadrics of R}
He = {veR}|{v,v) = C}

are fixed under the action of ¢z, which therefore restricts to a diffeomorphism of
submanifolds. Whenever C' # 0, ¢ furthermore restricts to an isometry of the
induced semi-Riemannian submanifold H¢.

Considering the hyperquadric given by C' = 0, we are finally led to one of the
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fundamental entities in this thesis and the notion of light in General Relativity. A
ray of light (similarly to a free falling particle) is identified by a geodesic trajectory.
While a particle is restricted to having a timelike velocity, a light ray 5()\) instead
must satisfy {(f’, ") = 0. As a result, for a ray of light emanating from the origin
in Rf we are handed some 3(\) = Av whereby {(v,v) = 0. The collection of all

past-pointing null geodesics form a null hypersurface Q — R}
Q= {veR}|wv)=0< v, o)}

called the past nullcone of o. Interestingly, given the characterization of particles
and light, we notice that the set {2 + «a(7) bounds the causal history of an observer
at «(7) since no matter or light to the future of this boundary can reach the event
a(7). Moreover, by time symmetry, no particle released to the future of a(7) will
be able to escape the future nullcone. The reader may recognize this as a geometric
realization of the fact that matter cannot travel faster than the speed of light (which
is fixed at ¢ = 1).

We conclude this section by showing a one-to-one correspondence between round
foliations of Q and the boosts ¢y. Since any slicing of R} by parallel spacelike hyper-
planes is uniquely identifiable by their common timelike future normal (and therefore
to a boost), they are given as level sets of a boosted ‘time function’ t. We start there-
fore with the trivial slicing associated to our coordinate function ¢ and observe that
it induces a foliation of Q) by round spheres (any two of which are homothetic under
a radius re-scaling). Since the diffeomorphism ¢z|q is induced by an isometry that
isometrically ‘tilts’ the trivial slicing, intersection with €2 leads to an isometric tilting
of the initial foliation. In fact, in spherical polar coordinates we see that the image

under ¢y of the unit sphere is given by ¥ := {t = r = w} for some function w € F(S?)

Only if the inverse map gives ¢—6(_w(197 (,0), (,U(’ﬁ, 90)7 197 QD) = (_17 17 f(197 QD)) 9(19, 90))



X, 2

F1GURE 1.1: Particle in R‘ll

From this, (1.2) gives

1
ps(1 — v 71(9, )

w(, @) = (1.3)

for 7i(¢J, ) the unit position vector in R®. From the quadratic form in spherical polar
coordinates

ds® = —dt* + dr* + r*(d¥* + (sinv)?dy?),
we conclude that ¥ has induced round metric ¢?5 (i.e. Gaussian curvature fCy25 = 1)
where 4 is the standard round metric of S?. Equivalently, for A the Laplacian

associated to 7,

1 0
1= F(l—AIogw). (1.4)

The converse, namely that any function solving (1.4) must be of the form (1.3) is



known ([18]) and follows from the following geometric result (the reader may wish

to skip the proof, which we include for completeness):

Lemma 1.2.1. ¥ — Q is a round sphere only if ¥ is the intersection of Q0 with a

spacelike hyperplane.

Proof. Utilizing the spherical polar form of the metric of Minkowski space we con-
clude as before that 3 must have induced metric v = w?¥ for some function w € F(S?).
The assumption that 3 be round also gives us that /C,2; = 1 (and that w solves (1.3)).
Our result therefore follows as soon as we show the existence of a constant unit time-
like vector N € T'(T+Y) for ¥. In the Minkowski spacetime we have the position
vector field P := td; + x'0; such that DxP = X for any X € I'(TR?), where D is
the Levi-Civita connection. From the associated second fundamental form and mean
curvature of ¥

I(V,W) = DyW

—

H =tryll

for VW e T'(T'Y), we conclude from metric compatibility that {II, P)|s, = —v implies
(H,P) = —2. From construction of Q it also follows that (P, P)|q = 0 so that
(V,P) = 3V(P,P) =0, for any V € I'(T'E). We conclude that  has trivial normal
bundle with basis {P, H } = T+3. Since 1T = aP + bH for two symmetric 2-tensors
a,b we have —2b = (II, P) = —v. So for the traceless part of II it follows that

A

II = aP. From the Gauss equation ([21], pg.100) for ¥ < R} we see
1, = 1~ =
K~ JCH )+ SALTD = 0,

so we immediately conclude that <FI H > = 4. We now show that N = P + %F[

suffices as our choice of timelike unit normal.



Since (DyH, Py = V(H,P) =0 and (DyH, H) = %VU-?, H) = 0, we conclude that

DEH = 0. From the Codazzi equation ([21],pg.115)
(Dy IN(W,U) = (Dy )(V, U)

the fact that DYH = 0 implies that (Vya)(W,U) = (Vwa)(V,U) for V the induced
connection on . As a result, taking a trace over V.U and using the fact that

contraction commutes with covariant differentiation, we have

It is a well known consequence of the Uniformization Theorem that the divergence
operator on a spacelike 2-sphere is injective when restricted to symmetric tracefree 2-
tensors (see for example, [25]), so we conclude that @ = 0 which implies II = 0. From
this it follows that (Dy H, W) = —(H TV, W)y = —L(H, HXV,W) = —2(V, W)

and therefore Dy H = —2V. Finally, this gives us that
1 —
DVN:DVP+§DVH=V—V=O,

as desired. O

From Lemma 1.1.1, the one-to-one correspondence between boosts ¢z and round

foliations of €2 is therefore evident via (1.3).
1.3 Formulations of the Penrose conjecture

An immediate difficulty we face when we delve into the general theory is to un-
derstand the nature and behavior of energy and momentum, and, by extension, a
meaningful measurement of mass. Fortunately, a means of measuring total energy
and momentum is afforded by certain spacetimes.

For matter that is isolated and locally concentrated within a spacetime (M, g),
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the ‘farther away’ one is from the matter content the more the geometry settles
towards ‘flatness’. With regards to the metric g, this translates into certain de-
cay conditions on the associated curvature tensors, and such spacetimes are called

asymptotically flat.
1.3.1 The spacelike setting

A hypersurface N2 « M with induced Riemannian metric g is said to be asymptot-
ically Buclidean if g decays sufficiently fast to the flat metric § on R?® and, up to a
compact region C (surrounding the matter content), the sub-structure of N'—C is also
in agreement with (possibly more than one copy of ) R3. Specifically, N —C = Ule N;
where each end N is diffeomorphic to R — B3, for B3 the unit ball. Moreover, in
the chart {z;} for R® (with radius r? := 3 | 2?) we have that §; = d;; + €, and
rlei| +r2(| 06| + | Kij|) +13(|00€i;] + |0Ky5]) < C, where K is the second fundamental
form of N. The pair N' = M therefore become asymptotically characteristic of a
Euclidean slice E = R{. Within these isolated systems, similarly to a particle in R,

we observe an abstract ADM energy-momentum (E, P) ([2]) that is given (assuming

summation over repeated indices) by

. 1 _ N
% : 1 3 i -
and P = 7411_% o (K — 05 Ky)iijdo (1.6)

T

where S, represents a coordinate sphere of radius r with unit normal 7. It can be
shown that £ and P do not depend on our choice of chart {x;} ([3]), and two distinct
asymptotically Euclidean slicings of M differ by a Minkowskian boost (1.2) in their
respective measurements of (E, P) (see [24]).

We are now in a position to state a beautiful result first proved by Schoen and

Yau using minimal surface techniques ([26],[27]) and then by Witten using spinors

10



([32])-

Theorem 1.3.1 (Positive Mass Theorem). Let (N, g) — (M, g) be an asymptoti-
cally Euclidean hypersurface, where the metric g satisfies the Dominant Energy Con-

dition. Then for each end N; we have that
E? > |P2.
Moreover, if E =0 for some i, then (N, g) = (R3,9).

It follows therefore that the mass of the spacetime satisfies

M =+/E?—|P]2>0

as expected. The Penrose conjecture further predicts a stricter lower bound for the
total mass M whenever spacetimes contain any black hole horizons, namely, the
inequality (1.1).

A natural special case to consider is when the slice (N, g) represents a rest-
frame P' = 0, E = M. We see from (1.6) that this holds in the event that A is
totally geodesic, i.e. K = (0. Since the tensor K is given by a normal variation of
g off of ' (by first variation of area) we would obtain this condition from a time-
symmetric slicing of the spacetime M. From the Gauss equation, it then follows that
the Dominant Energy Condition is equivalent to the statement that A have non-
negative scalar curvature R; > 0. It is also known in this setting that the black hole
horizon is represented by an ‘outermost’ minimal surface ¥y possibly with multiple
components; each component a sphere and no two spheres intersecting (see [20, 15]).
From this the Penrose conjecture completely reduces to a statement relating the total
mass of the time-symmetric three-dimensional Riemannian manifold A and the area
of Xg — N, called the Riemannian Penrose Inequality (or RPI). A fundamental
breakthrough came at the very end of the twentieth century with a complete proof of
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the RPI. Whenever X is a single connected component Huisken and Ilmanen proved
the RPI in 1997 ([15]) which was subsequently generalized to multiple components

by Bray in 1999 ([6]) using a completely new approach.

Theorem 1.3.2. (Bray) Suppose (N, g) is complete, has non-negative scalar curva-

ture and contains an outermost minimal surface Xo = |J;_, Si. Then

S;

AT
167

with equality only in the case that (N, g) is isometric to a time-symmetric slice of

the Schwarzschild spacetime (see Section 1.4.1 below) of mass M.

An interesting energy functional for any closed spacelike surface > introduced by

Hawking ([12]) is defined by

Ey(S) = \/E = J (H, H>dA

for H the mean curvature of . This H awking Energy was the definitive tool used by
Huisken and Ilmanen to prove the Riemannian Penrose Inequality. An observation
due to Geroch ([10]) shows that under inverse mean curvature flow, Ep is non-
decreasing within slices of non-negative scalar curvature. It also follows for coordinate

spheres S, of an asymptotically Euclidean slice that lim Ex(S,) = E. So if the

r—00

slice /' is time-symmetric, not only do we conclude that lim Fy(S,) = M but on
7—00

|20l

——. From
167

a minimal surface Xy (where H = 0) it also follows that Ex (%) =

Geroch’s observations, Jang and Wald ([16]) observed a potential application towards
the Riemannian Penrose Inequality given the existence of a smooth flow from the
vicinity of a horizon to round spheres at infinity. It was soon realized however that
this low would not remain smooth in general, which is where Huisken and Ilmanen’s
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work was needed to close the argument. They were able to show the existence
of a weakly defined inverse mean curvature flow to overcome possible singularities
and found that the leaves Y, approached round spheres asymptotically as needed.
Unfortunately, the monotonicity of the flow is dependent on the topology of the initial
surface, requiring that the flow begin on a connected component of ¥y = | J, S;. As

a result, they were able to show

Si
max 5] = Ey(0) < lim Eg(s) = M.
i 167 $—00

Rather than a flow of surfaces within the fixed geometry of the slice, Bray’s insight
was instead to construct a flow of metrics that vary the geometry of the slice via
a one-parameter family of conformal factors. Bray was able to construct this flow
so that the area of the outermost minimal surface was unchanging, the scalar cur-
vature remained non-negative (enforcing M (t) = 0 by the Positive Mass Theorem)
and the ADM mass was non-increasing. Moreover, the flow approaches spherical
symmetry, so combined with positive mass this ensures the limit is a time-symmetric
slice of the Schwarzschild spacetime. Since (1.1) achieves equality for these slices in

Schwarzschild we conclude that:

» by
M_ lim M: lim M (t) < M.

167t \ 1670 tow

Where Huisken and Ilmanen’s proof is strongly dependent on the dimension of the
slice, Bray’s argument was shown by Bray and Lee ([8]) to generalize to dimensions
less than eight. In either instance the case of equality for (1.1) enforces N to be the

time-symmetric slice of Schwarzschild.
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1.3.2  The null setting

In Minkowski spacetime, upon changing our coordinates to ‘ingoing null coordinates’

(t,r) — (v,r) where v =t + r, the associated quadratic form is given by
ds® = —dv? + 2dvdr + r*(d¥* + (sin)de?),

and we recognize the past null cones along the time-axis as the slices Q = {v = v,}.
We find that d, = ¢, and the gradient of v satisfies Dv = 0, € ['(TQ) n I'(T+Q),
which is a past-pointing null vector. From the identity Dp;Df = $D|Df[?, we
conclude that integral curves of 0, are geodesic, so 0, generates the light rays that
rule Q. In fact, any spherical cross-section ¥ < () is uniquely identified as a graph
over S? by specifying r|s. For a cross-section X := {r = w(1J, )}, we may then assign
a normal null basis {L, L} € T+ such that L = 0, and {J,, L) = 2, from which we
decompose the second fundamental form II of ¥ accordingly to x := —(II, d,) and
x := —(II,L). For ¥, as shown in Section 6.1 (with # = M = 0), denoting by ¥
the induced connection, ((V) := 1(Dyd,, L) the connection 1-form for the normal

bundle, and ¥ the standard round metric on S?, one has

1 1
;77 X = (1 + ‘Ww‘2)7 - 2Hw7

w

=<
[

v = w?4,

_ 2 2 R
¢ = —dlogw, try=—, try=—(1—Alogw).
w w

[

Therefore, for any geodesically induced foliation of Q along ds = 10, (for some
Y € F(S?)), dependence of the data on the affine parameter s is given via w(s, 9, @) =
s1(9, ). According to the null basis {1/0,, > L} we therefore get

Vs = 2%, X, =¥X =7 Ctry 2
(s = ¢ +dlogy =0,

For asymptotically flat spactimes, one obtains the notion of an asymptotically
flat nullcone Q) by specifying decay along a geodesic foliation that mirrors the above
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dependence on the affine parameter s to leading order (see Section 5.3 for precise

definitions). The work of Mars and Soria ([18]) then shows that lim Fy(X,,) < o

§x 00
for any asymptotically geodesic foliation {3, } satisfying s = s, +&, where £ decays
‘sufficiently fast’. As was the case for asymptotically Euclidean slices, we find that
Ey(3s,) approaches a measure of energy called the Bondi-energy Ep if the leaves of
our foliation {3, } approach asymptotically round spheres. This coupling between
energy measurements and asymptotically round foliations of §2 should be familiar
given our analysis of the Minkowski spacetime, where we showed a one-to-one cor-
respondence between the boosts (1.2) and round foliations of the past null cone of a
point. Heuristically, we imagine an asymptotically round foliation of 2 induced by
intersection with an asymptotically Euclidean slicing of M (see Figure 1.2 below). As
these intersections asymptotically coincide with coordinate spheres in the slicing (as
is the case in Minkowski spacetime) the Hawking energy becomes comparable to the
energy associated with the slicing. Minimizing over all possible energies, we there-
fore obtain the Bondi-mass mg. By taking a Riemannian hypersurface asymptotic
to 2, Schoen and Yau (see [28]) were able to construct an asymptotically Euclidean
manifold (not necessarily embeddable in M) whose ADM mass is no larger than mp.
From this the positivity of the Bondi-mass follows from the Positive Mass Theorem.

In order to formulate the Penrose conjecture in this setting, we need to first mo-
tivate a definition of a horizon »,. For any cross-section ¥ < €2, it follows that
we recover ) ‘outside >’ by emitting null geodesics along our past-pointing null
geodesic generator L € I'(TQ) n T'(T+Q). If Q is asymptotically flat, we also con-
clude that any foliation along L has expanding area (see Lemma 5.3.1), so L points
‘outwards and to the past’ of ¥. It follows, by rescaling L, that ¥ admits a null

basis {L~ = L* = trxL} such that (L7, L") = 2 (i.e. L™ is ‘outward and to

L
trx’

the future’ of ¥) and therefore —2H = L+ — (H,L*)L~. For an infinitesimal flow
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Lok
FIGURE 1.2: Isolated Black Hole

along L% off of our initial surface X, we have from a first variation of the area form
that dA = —(H,L*)dA = (H,HYdA. Thus, if we're able to locate a ¥ < Q for
which H is a timelike vector, then X is ‘trapped’ in the sense that light rays emitted
off of the surface of X yield a collapsing sphere. A horizon is therefore identified
by a marginally outer trapped surface g where the mean curvature H is null, i.e.

(H,H) = 0.
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We notice immediately for a horizon ¥y < €2 that Ey () = %. As was the case
for Huisken and Ilmanen’s proof of the RPI, we ask whether we’re able to interpolate
the Hawking energy along €2 from the horizon to null infinity. In his PhD thesis,
Johannes Sauter ([25]) showed that, for a shear free nullcone  (i.e. ¥ = 0) and M a
vacuum spacetime, one is able to solve a system of ODEs to yield explicitly the data
on €. This then enables a direct analysis of Ey at null infinity that allowed Sauter
to prove the Penrose conjecture in this setting. From an observation attributed to
Christodoulou (see [25]), monotonicity of Ey follows for foliations {¥;, } if either the
mass aspect function p = K — i<ﬁ, I:7> —~V-Cor tr X remain constant on each X, .
Interestingly, the latter flow is in fact a null ‘inverse mean curvature’ flow since the
flow vector L satisfies —(L, ﬁ> = tr x = const. on each ¥, . Sauter was able to show
that, for small pertubations of €2 off of the shear free condition, one obtains global
existence of either flow and that Ey converges. Unfortunately though, unlike the
Huisken and Ilmanen case, one is unable to conclude that the foliating 2-spheres be-
come round asymptotically. In fact, Bergqvist ([4]) noticed this exact difficulty had

been overlooked in an earlier work of Ludvigsen and Vickers ([17]) towards proving

: D
the weak null Penrose conjecture, namely |16—°7r| < Fp.

Alexakis ([1]) was able to prove the null Penrose conjecture for vacuum perturbations
of the black hole exterior in Schwarzschild spacetime by successfully using the mono-
tonicity of Fy along the null inverse mean curvature flow. Here the author was once
again aided by an explicit analysis of Ey at null infinity. Work by Mars and Soria
([18]) followed soon after that identified the necessary conditions on €2 (inside gen-

eral ambient spacetimes) needed to free up an explicit analysis of lim Ey(X;) along
S§—00

geodesic foliations. With their notion of an asymptotically flat null hypersurface €2,
the authors were able to show an explicit limit of Fy at null infinity along various

asymptotically geodesic foliations. In a later work ([19]), Mars and Soria constructed
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a new functional on 2-spheres and showed for a special foliation {¥,} off of the horizon

b
Yo called geodesic asymptotically Bondi (or GAB) that, % < )}im Ep(3)) < .
T Ao

Thus, for GAB foliations that approach round spheres, the authors reproduce the
weak null Penrose conjecture of Bergqvist ([4]), Ludvigsen and Vickers ([17]). Unfor-
tunately, as in the aforementioned work of Sauter, Bergqvist, Ludvigsen and Vickers

there is no guarantee of asymptotic roundness.
1.4 Schwarzschild Spacetime

Relaxing our restriction from flat to spherically symmetric solutions in vacuum
(G = 0 or, equivalently Ric = 0), we extend beyond Minkowski to the 1-parameter
family of Schwarzschild solutions. Modeling a static black hole of mass M, the
Schwarzschild spacetime is characterized in spherical polar coordinates by the quadratic

form

oM dr?
ds? = —(1— “Dyar 4 0
A

+ 7% (d¥? + (sin0)?dy?)

valid for 2M > r > 0, r > 2M. From this we confirm that M = 0 reproduces the
quadratic form of Minkowski spacetime. The maximal extension of this geometry is
called the Kruskal spacetime (P x,. S, gx) which is given by the warped product of
the Kruskal Plane P := {UV > —2Me '} and the standard round S? with warping
function r = g~ {(UV) for g(r) = (r — 2M)ez ', r > 0. Therefore, the associated

quadratic form that extends the Schwarzschild metric is given by:
ds® = 2F(r)dVdU + r*(dv? + (sin9)?dp?)

where F(r) = STMel_ﬁ. We recover the Schwarzschild spacetime on V' > 0, U # 0
with the coordinate change ¢ = 2M log || ([21]). Each round S* has area 47r? so
we interpret r as a ‘radius function’, the curvature singularity at r = 0 we trace back
to the function F'(r), known as the ‘black hole’ singularity.
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1.4.1 Time-symmetric slices of Schwarzschild

The time-symmetric slices of the Riemannian Penrose inequality are given by N :=
{V = e U } or t =ty in the Schwarzschild region. The fact that A is asymptot-
ically Euclidean is evident under a change to isotropic coordinates represented by
(t,r) — (t,R) for r = R(1 + 2%)%. The metric g is represented by:

dr?

_ 2M
T

M4
2 (d0? + (sin)2de?) = (1 4 ﬁ) (da? + dy? + dz?)
where R? = 2% + y? + 22. We see that the coordinate singularity at »r = 2M has been
removed in the change to isotropic coordinates. Moreover, for the diffeomorphism
¢ : (0,00) — (0,00) given by ¢(R) = (&)?% inspection of isotropic coordinates in
spherical polar form identifies an isometry of A/. One can also show that ¢ is the

restriction to A of the isometry given by U — —U,V — —V. From this we conclude

that NV has two asymptotically Euclidean ends joined at the minimal sphere R = %

P N

FIGURE 1.3: The time-symmetric slice N/

This minimal sphere corresponds to the black hole horizon at r = 2M. We also
show that the second fundamental form K vanishes. Since the components of the

Schwarzschild metric are independent of the coordinate ¢, we know ¢, is a Killing
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vector i.e. (Dx0:,Y) + (Dyd;, X) = 0 for all vector fields X,Y. So restricting to
X,Y € I'(TN) we conclude that

K(X,Y)ox — (&, DxY) = —% (<at, DxYS + {0y, Dy X5 + {0, [ X, Y]>)
_ %(<Dxat,Y> 4 <Dy&t,X>> —0

as expected.

In the Appendix, we further explicitly analyze the effect on Bartnik data for
coordinate spheres of a time-symmetric slice that undergoes a boost of its asymptotic
frame of reference (recall Figure 1.2). As a consequence, we expand calculations of
Wang and Yau ([31]) in obtaining the energy-momentum (according to Ey and (1.6)).

Specifically, we show, under a boost of isotropic coordinates

t R coshy  —sinh t
z —sinh¢y  coshv z
(here v represents a constant ‘rapidity’), that

(E, P) : (M,0,0,0) — (M cosh,0,0, M sinh)).
1.4.2  Standard Nullcones of Schwarzschild

The past nullcone of a point in Minkowski spacetime also has a counterpart in
Schwarzschild spacetime. In order to show this, we make yet another change of co-
ordinates to the so called ingoing Eddington-Finkelstein coordinates, (t,r) — (v,r)

whereby dv = dt + 1}@:

oM
ds® = —(1 — ==)dv® + 2dvdr + r*(d¥* + (sin0)?de?).

r

Once again, setting M = 0 the resemblance with Minkowski is apparent. The stan-
dard nullcone of Schwarzschild is therefore given by slices of the form Q := {v = vp}.
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Up to a positive constant multiple we find that V = e, so that the coordinates
(v,7,9,p) cover the whole Schwarzschild region V' > 0, including the horizon at
U = 0. Arguing identically as in the case of Minkowski, we find our null geodesic

generator to be 0, = %, and any cross section Y <— (2 is uniquely identified by

specifying r|s = w(¥, ).

\

FIGURE 1.4: Standard Nullcone of Schwarzschild €2

Endowed with a null normal basis {L = 0,, L} = T+ such that (0,, L) = 2, the

data on ¥ is found in Section 3.2 (or Section 6.1 with 5 = 0)
2M

1 1 w
e S St i Chruh L Rkl
_ 2 2 oM .
C dlogw7 ter—’ trX:—(l———AIOgW)
- W w W

It follows that trx trx = (H,H) = (-2 Alogw) and, by the Maximum

Principle, the cross-section of  given by 2o := {r = 2M} uniquely satisfies (H, H) =

0. So ¥y is a horizon, in fact, from either the ingoing Eddington-Finkelstein or
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Kruskal metric, we see that U = 0 if and only if r = 2M is a null hypersurface
with spherical cross-sections, all of area 167M?2. This hypersurface represents the
outermost boundary of the black hole singularity called the event horizon. Regarding
asymptotic flatness, from a geodesic foliation 3, := {r = s16(J, ¢)} of 2 we see that
the only distinction from the case in Minkowski spacetime is higher order decay in

the datum try, = %szﬁ — 5%21/)—]\24 In fact, for any cross-section ¥ we observe that

K- }1<ﬁ JH y = i—j\g Thus, from the Gauss-Bonnet Theorem followed by Jensen’s

inequality, we conclude, as did Sauter (see [25]), that,

2
En(Y) = «/S;“’Gda Jﬂda > M,
m w

where integration is over the standard round S?. We have equality only if w(¥, @) =

wo, which is given by intersections of the time-symmetric slices N' with Q (or a rest

frame measurement with respect to our black hole). Moreover, for round spheres
M

A/ 1-|712’

energies of a particle (here the black hole) in special relativity.

given by (1.3), we see Ey(Xsy) = in exact agreement with the boosted

1.5 Mass rather than Energy

Although the Hawking Energy enjoys monotonicity and convergence along certain
flows, difficulty remains in assigning physical significance to the convergence of Ey
due to the lack of control on the asymptotics of such flows. We expect these difficul-
ties may very well be symptomatic of the fact that an energy functional is particularly
susceptible to the plethora of ways boosts can develop along any given flow.
Analogous to the addition of 4-velocities in special relativity, P, + P, = P3 which
gives F3 = Fy + Fj (see Figure 1.5), we expect an infinitesimal null flow of ¥ within
a fixed reference frame to raise energy due to an influx of matter. However, with no
a priori knowledge of the flow, we have no way to fix or even identify a reference frame.
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FIGURE 1.5: Boosts

So it is likely that ‘phantom energy’ will accumulate from infinitesimal boosts along
the flow, in analogy with special relativistic boosts, P — P’ (i.e energy increases),
or P — P (i.e. energy decreases) as shown in Figure 1.5. Geometrically, we expect
this to manifest along the flow in a (local) ‘tilting’ of ¥. One may even expect a
net decrease in energy. For the standard nullcone €2 of Schwarzschild spacetime, if
we insist upon the use of Ey, we observe as in the previous section that our only
choice of foliation increasing to the mass M is to foliate () with time-symmetric slice
intersections (i.e. w = const.). Not only is this flow highly specialized, it dictates
strong restrictions on our initial choice of ¥ from which to begin the flow. This is
to be expected of a quasi-local energy due to its inherent sensitivity to boosts of our
abstract reference frame along the flow.

This is not a problem, however, if we appeal instead to mass rather than energy
since boosts leave mass invariant, M2 = E2—|P|2 = (E')>—|P'|> = (M’)2. Moreover,
by virtue of the Lorentzian triangle inequality (provided all vectors are timelike and
either all future or all past-pointing), along any given flow the mass should always

increase:
Mz = |(By + Ea, Py + Bo)| = |(By, B)| + |(Ba, )| = My + M.

We hope therefore that, by appealing instead to a quasi local mass functional, a
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larger class of valid flows and more generic monotonicity should arise. In this thesis,
we construct such a mass functional by first finding an optimal choice of flux function

for Ey.
1.5.1 Owerview of Thesis

In Chapter 2, we develop the necessary technical preliminaries in order to provide a
canonical choice of null frame {L~, L*} € T+ for 2-spheres ¥ in spacetime. From
this, we introduce a new flux function p and use it to construct a new quasi-local
mass m(X). We also state and provide short discussions of our two main results,
Theorem 2.1.1 and Theorem 2.1.2, motivating the notion of a (P) (or (SP))-foliation

of a nullcone.

In Chapter 3 we motivate our construction of p and m(X) from some of our simplest
example spacetimes. Specifically, in Section 3.1, we identify an interesting relation-
ship between the canonically defined connection 1-form 7 of 7+, the shear tensor
X, and the underlying null geometry of ¥ in a space form M. By way of the Gauss
equation, this yields a simple expression for our flux function p and mass m(X%).
Moreover, revisiting the standard nullcone of Schwarzschild, we show that m(X) is
chosen precisely to yield the mass M of the black hole irrespective of the choice of

cross-section ..

In Chapter 4 we expand to general spacetimes and calculate the propagation of
p along an arbitrary foliation of a nullcone 2. From this, we prove Theorem 2.1.1,
which indicates fairly generic monotonicity of our mass functional m (). Specifically,

we have monotonicity along any (P) (or (SP))-foliation.

In Chapter 5, we decompose the flux p of any cross-section ¥ < €2 in terms of
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the data for some background foliation of our nullcone €2. We then introduce the
necessary asymptotics to explicitly formulate the limit of our mass functional m(%).
We find a new notion of mass for Q, namely M := lim, . m(X;), which is com-
pletely independent of our choice of asymptotically geodesic foliation. This allows
us to prove Theorem 2.1.2; yielding the Null Penrose Inequality under fairly generic

conditions.

In Chapter 6, we investigate spherically symmetric spacetimes and identify a class
of perturbations of the black hole exterior admitting asymptotically flat nullcones of
strong flux decay with an (SP)-foliation. As a result, the existence of such pertur-

bations satisfying the dominant energy condition gives the Null Penrose Inequality

(1.1).
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2

Technical Background

2.1 Preliminaries and Main Results

A spacetime (M, g) is defined to be a four dimensional smooth manifold M equipped
with a metric g(-,-) (or {-,-)) of Lorentzian signature (—, +, +, +). We assume that
the spacetime is both orientable and time orientable, i.e. admits a nowhere vanishing
timelike vector field, defined to be future-pointing.

Throughout this paper, we will denote by ¥ a spacelike embedding of a sphere in
M with induced metric 7. It is well known that ¥ has trivial normal bundle 7+
with induced metric of signature (—, +). From any choice of null section L € I'(T+Y),
we have a unique null partner section L € I'(T+X) satisfying (L, L) = 2, providing
T+ with a null basis {L,L}. We also notice that any ‘boost” {L,L} — {L,, L4}

given by:
1
L,:=aL, L,:=-L
a
(for a € F(X) a non-vanishing smooth function on ) gives (L, Loy = (L, L) = 2 as

well.

Our convention for the second fundamental form II and mean curvature H of ¥
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are

I(V,W) = D{W, H = try 11

for V,W e I'(TY) and D the Levi-Civita connection of the spacetime.

E
Ty

=

V,W e I(TY)

|t~

FIGURE 2.1: About a 2-sphere in spacetime

Definition 2.1.1. Given a choice of null basis {L, L}, following the conventions of
Sauter [25], we define the associated symmetric 2-tensors X, X and torsion (connec-
tion 1-form) ¢ by

X(V.W) := Dy L, W) = —(L,II(V, W)

X(V7 W) = <DVL7 W> = _<L7H(‘/7 W)>

(V) = (DvL, L) = ~(DyL L)

where V,W e I'(T%).

Denoting the exterior derivative on ¥ by d, any boosted basis {L,, L,} produces

the associated tensors of Definition 2.1.1:

X, (VaW) i= (Dy(aL), W = ax(V, W)

XalV, ) i= Dy L), W) = =x(V, W)

GlV) 1= (Dvlal), 1y = (V) + Viogla] = (¢ + dlogla)) (V).
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For a symmetric 2-tensor 7" on X its trace-free (or trace-less) part is given by

~

1
T:=T-— §(tr7T)7

allowing us to decompose x into its shear and ezpansion components respectively:

+ —(tr x)7.

<>
N | —

X:

Definition 2.1.2. We say ¥ is expanding along L for some null section L € T'(T+X)

provided that,
(~=H,Ly=try >0 (t)

on all of .

Any infinitesimal flow of ¥ along L gives, by first variation of area,
dA = (~H,LydA = tr xdA.

So the flow is locally area expanding (dA > 0) only if ¥ “is expanding along L”:

FIGURE 2.2: An expanding nullcone

Remark 2.1.1. In Section 5.3 we will show (Lemma 5.3.1), whenever € is past

asymptotically flat inside a spacetime satisfying the dominant energy condition, a
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consequence of the famous Raychaudhuri equation ((4.4), Section 4.2) is that any
Y — Q is expanding along L € T(T+X) n T(TQ)|x the past pointing null section.
So inequality (1) holds for any foliation of Q along L, where a > 0 and we have an

expanding nullcone (as illustrated in the figure above).

For ¥ expanding along some L € I'(T+X) we are able to choose a canonical null
basis {L~, L*} by requiring that our flow along L~ = aL be uniformly area expanding

(dA = dA). From first variation of area, flowing along aL gives
dA = —(H,aL)dA = atr xdA.
. . . 1 . .
So we achieve a uniformly area expanding null flow when a = fwy 8iving:

Definition 2.1.3. For ¥ expanding along some L € T'(T+X) we call the associated

canonical uniformly area expanding null basis {L~, L*} given by

L™ = %, Lt = tr x L
the null inflation basis.
We also define x~ ) := —(I1, L=, It follows from the comments proceeding Defi-
nition 2.1.1 that

try” =1

trx " =trxtrxz<ﬁ,f-__i>

and for V e I(TY) the torsion associated to this basis is given by
1
7(V) = 5Dy L™, L) = (¢~ dlogr Y)(V),

We will denote the induced covariant derivative on X by Y.
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Definition 2.1.4. Assuming ¥ is expanding along L, for some L € T'(T+Y), we

define the geometric flux function
]_ — —
p:lC—Z<H,H>+W-T (2.1)

where KC represents the Gaussian curvature of X.

This allows us to define the associated quasi-local mass
® =35 f §dA>g (2.2)
m = - —_— . .
2\4r Js P

For the induced covariant derivative ¥ we denote the associated Laplacian on ¥

by A.

Remark 2.1.2. Whenever tr x* = <I:7, I:7> # 0, X has two null inflation bases given
by {L=,L"} and {

tf;,tr XxTL™}. As a result we typically have two distinct flux

functions

1 - =
p_ZIC—Z—l<H,H>+W'T

1 - - L
p-i—:IC_Z<H7H>_W'7—_Alog’<H7H>|

with associated mass functionals my. For the Bartnik datum oy (see Definition
3.1.1), we will see for a past pointing L that p_ — p, = 2Y¥ - ay (Lemma 3.1.3).
For (H,H) # 0, whenever % is ‘time-flat’ (i.e. ¥ -ag = 0) it follows that p_ = p,

implies m_ = m..

For a normal null flow off of some ¥ with null flow vector L, technically the flow
speed is zero since (L, L) = 0. In the case the ¥ expands along L we define the

expansion speed, o, according to L = oL~. We notice that o = tr x. We are now

ready to state our first result.
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Theorem 2.1.1. Let Q be a null hypersurface foliated by spacelike spheres {34}
expanding along the null flow direction L such that |p(s)| > 0 for each s. Then the

mass m(s) := m(Xs) has rate of change

dm_(Qm)% Tl - w8 TN S -
dm_ f (P40 )G, B Klog 4 gl 617, W) as

where

G s the Einstein tensor for the ambient metric g

e 0 = trx s the expansion speed

n = 2% - dlog|p|s — 7

N :=|dlog|pl3]°L™ + ¥ log|pls — {L*

If we assume therefore that our spacetime M satisfies the dominant energy con-
dition we can show our mass functional m(X;) is non-decreasing for foliations {¥,}

satisfying the following convexity condition:

Definition 2.1.5. Given a foliation of 2-spheres {¥}s=0 we say it is a (P)-foliation

provided:

p>0
1, - = 1
Z<HaH>> AlngS

is satisfied on each X5. We say {Es}ss0 is a strict (P)-foliation or (SP)-foliation if
additionally:

1 - -
Z<H7H>:A10gp%7f07ﬂ‘9:0
1, = = 1
Z<H,H>>A10gp3,fors>0.
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So for a (P)-foliation the dominant energy condition ensures the product of the
first two terms of the integrand in Theorem 2.1.1 be non-negative. The second is
non-negative since each > is spacelike and the last term is non-negative from the
dominant energy condition since (N, N) = 0 and (N,L™) = —1 < 0 (i.e. N is null
and at every point p € ¥ lies inside the same connected component of the nullcone
in T,M as L™).

We will assume in Chapters 5 and 6 that L is past pointing. Adopting the same

definitions as Mars and Soria [18] (see Section 5.3) we have our second main result:

Theorem 2.1.2. Let Q be a null hypersurface in a spacetime satisfying the dominant
energy condition that extends to past null infinity. Then given the existence of a (P)-
foliation {¥s} we have

m(0) < lim m(X;) =: M

§—00

(for M < o0). If, in addition, ) is past asymptotically flat with strong flux decay and

{2s} asymptotically geodesic (see Section 5.3) then
M < mp

where mp is the Bondi mass of ). Moreover, in the case that tr x|s, = 0 we have
the null Penrose inequality

6r = %

Furthermore, when equality holds for an (SP)-foliation we conclude that equality
holds for all foliations of Q and the data (v, x, trx and {) agree with some foliation

of the standard nullcone of the Schwarzschild spacetime.
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2.2 Final introductory remarks

Recalling the Hawking Energy for a closed spacelike surface X

Eu(s) \/1% (1- 16% L@?, ydA)

we notice by the Gauss-Bonnet and Divergence Theorems that

Ey(X)

f pdA — sr 21
) 1=

A7

motivating in part why we call p a flux function.
As mentioned previously, one such flux introduced by Christodoulou [9], is the

‘mass aspect function’
]_ — —
/L:K_ZL<H7H>_WC

associated to an arbitrary null basis {L, L} = T'(T+X). Using p in his Ph.D thesis [25],
Sauter showed the existence of flows on past nullcones that render Fy non-decreasing
making explicit use of the fact that under a boost this mass aspect function changes

via ¢ according to
]_ — —
= Co=CHdlogla] = p—pa=K—(H H)= V-~ Alogla|

From these observations, the divergence term in (2.1) (up to a sign) is somewhat
motivated by an attempt to find a flux function independent of boosts. In fact, it
follows in the case that 0 < <]:7, ﬁ> =: H? and L is past pointing, that p can be

given in terms of the Bartnik data of X as
1 - -
p=K—(H,H)+ Y ay—AlogH

(we refer the reader to Chapter 3 for definitions and proof). Moreover, in our two

simplest cases, namely spherical cross-sections of the nullcone of a point in a space
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form or the standard nullcone of Schwarzchild spacetime, the last two terms cancel
identically. Interestingly, work of Wang, Wang and Zhang [30] show deep connection
between the 1-form oy — dlog H and the underlying null geometry of a closed, co-
dimension 2 surface . For ¥ satisfying oy = dlog H they show for various ambient
structures that ¥ must be constrained to a shear-free (Y = 0) null-hypersurface of
spherical symmetry. In Chapter 3 (Proposition 3.1.1) we show for a connected ¥ of
arbitrary co-dimension inside a space form, if ¥ is expanding along some null section
Le F(TLE) such that D LocL, then it must be constrained to the nullcone of point
whenever ¥ = 0. Leaning on work by Bray, Jauregui and Mars ([7]) we also find
direct motivation for (2.1) showing that p arises naturally from variation of Fy along

null flows.
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3

Motivation

In this chapter we further develop our motivation for p based on an analysis of
nullcones within space forms. We then provide analysis of standard nullcones in
Kruskal spacetime to motivate m(%) and for comparison with (SP)-foliations satis-
fying C;—T = 0. We also show how an arbitrary variation of Ey building on work of
Bray, Jauregui and Mars [7], points toward p being the optimal choice of flux func-
tion in the case of null flows. In this thesis we will be using the following convention

to construct the Riemann curvature tensor:
nyz = D[X7y]Z — [Dx, Dy]Z
From this will have need of the following versions of the Gauss and Codazzi equations:

Proposition 3.0.1. Suppose X is a co-dimension 2 semi-Riemannian submanifold

of M™L that locally admits a normal null basis {L, L} such that (L,L) = 2. Then,

(n— 0K~ "Z2CH )+ g X = ~R—2G(L L)~ 5L, L) (3.)
Y 3(V) (V.0 + S (V) - Vi = GV, L)~ SR L L) (32)

for Ve I'(T%) and (n — 1)K the scalar curvature of 3.
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Proof. From the Gauss equation ([21],pg.100) we have,
(BywU, S) = (RywU, Sy + UV, U), TH(W, $)) — (AL(V, S), TH(W, U))

for R, R the Riemann tensors of 3, M respectively and V,W,U, S € T'(TY). Re-

stricted to X the ambient metric has inverse
1 1 1 1
g |2=§L®L+§L®L+7

so taking a trace over V, U then W,S in ¥ we have:

),

Bywl, Sy LD Rie(w, 8) 5 (0 — 1)k

1
(RywU.S) =2 Ric(W, §) = S((RywL, S) + (RuwL. S))

1
0, R—2Rie(L, L) = 5(RyiL, L),

n—1 n—1
111 = L % v Y <ﬁ’L> <ﬁ7L> ~ ~
ALID = S(X®@ X + X © X) 2(n—1)<x®7+7®x> 2(n*1)(X®7+7®X)
2 — —
+ (j) (H,H)y®~
so returning to our trace
ALV, 0), (W, 8)) S22 (A )
VU),W,S) . . 1 oo
ALV, 9), (W, U)) S22 5§+ ——(H H).

Equating terms according to the Gauss equation we have

(n—1)K = R —2Ric(L, L) — —<RLLL Ly—% %+ (1— )<H HY
- —R—-2G(L,L) — %<RLLL, Ly— % X+ Z — ?<ﬁ, )
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having used G(-,-) = Ric(-,-) — 1R(-,-), (3.1) follows.
From the Codazzi equation ([21],pg.115), for any V, W, U € I'(TY),

RywU = —(VyID)(W,U) + (YwIL)(V,U)

where
(VoI (W, U) = DLW, U)) — 1Yy W,U) — (W, Yy U).

So given our choice of null normal L we see that

DV, ), L) = =V (x(W, 1)) — LW, U), Dy L)
= —V((W,0)) = 3UW,0), LXL, Dy L)

= ~V(x(W,U)) + x(W,U)¢(V)

[

(T, 0), L) = =V (W, U) + (W, U)(V) + X(Fy W, U) + (W, V)
= (VIX(W,U) = (T ) (D).
Therefore,
(RywlU, L) = (T )W) ~ (T )(V,0) = (V)XW U) + (W) (V, V).
Taking a trace over V, U we conclude,
Ric(W, L) ~ S(RywL, I = ¥ - x(W) — Wery — x(W,0) + trx((W)

n—2 - n—2

n_1Wtrx—X(W,C)+n_1

=V-x(W) - trx¢(W)

and notice that G(W, L) = Ric(W, L) since (L, W) = 0.
3.1 Nullcone of a point in a Space Form

In this section we spend some time studying p and m(X) on cross-sections of the
nullcone of a point in a space form. We adopt the notation as in [21] where R
corresponds to the manifold R™ endowed with the standard inner product of index

V.
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Lemma 3.1.1. Suppose ¥ < R" (k > 2) is a connected semi-Riemannian sub-
manifold admitting a non-trivial section 7 € I'(T+X) such that D*ii = nii for some

1-form n. Then the following are equivalent
1. p — exp(—ii|,) is constant
2. =0 and {Il,—1) =~
3. AL, —m) =~
where v = (-, )|y, and exp : TR} — R is the exponential map.

Proof. Choosing an origin ¢ for R} with associated position vector field given by

P = 7'0; e T(TR?") it follows that
exp(—ilp) = (P = 1)y

where, by an abuse of notation, we have omitted the composition of canonical isome-

tries T;R? — T;R? — R? identifying p' with P|;. As a result, for any V e I'(TY):
d(exp(=n))(V) = Dy (P — 1)

=V — Dyii

Sy

= (V = Dyit) — n(V)

and we conclude that exp o(—) is locally constant (or constant when ¥ is connected)
if and only if both V' = Dg/ﬁ for any V e I'(TY) and n = 0. Since Dg,ﬁ =V for
any V e I'(TY) is equivalent to —(II(V, W), n)(= (W, Dyni)) = (V,W) for any
V,W e I'(TY) we have that 1. < 2.

2. = 3. is trivial. To show 3. = 2. we start by taking any U,V,W € I'(T%) so

that the Codazzi equation gives
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where
(Vv IN(W,U), ity := (Dy(I(W, U)) = I(Vy W, U) = T(W, Yy U), ity
= —(Vyy)(W,U) = (W, U), Dyiiy

= n(V)(W,U)

and therefore n(V){W,U) = n(W){V,U). Taking a trace over V, U we conclude that
n(W) = kn(W) so that k > 2 forces n = 0 as desired. O

The Hyperquadrics of R} correspond to the complete, totally umbilic hypersur-

faces He of constant curvature C' (provided C' # 0) given by
He = {# e RI(E,8) = C)

where C' runs through all values in R. When C' = 0, 2 = Hj is the collection of all
null geodesics emanating from the origin called the nullcone centered at the origin.
Consequently €2 + p’ corresponds to the nullcone at the point p. Similarly for a space
form M we will define the nullcone of a point p € M as the collection of all null

geodesics emanating from p.

Proposition 3.1.1. Suppose $¥ — M"1 (k = 2) is a connected semi-Riemannian
submanifold of a space form M. Suppose that 3 is expanding along some null section
L satisfying D*L = CL for some 1-form (or torsion) (. Then the following are

equivalent
1. p— exp(—%\p) is constant
2. T:z(—dlogtrxz() and x =0
3. x=0

where x := —(L,1I).
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Proof. If M has constant curvature C' # 0 we find a Hyperquadric He of R” (for
some v) of the same dimension and index as M. It’s a well known fact that M
and He have isometric semi-Riemannian coverings ([21],pg.224 Theorem 17) which
we identify and denote by O. As a result, for any ¢ € ¥ < M we find a § € H¢
with isometric neighborhoods. Moreover, we find an open set U, < ¥ of ¢ which is
isometric onto some V; = He. Without loss of generality we will also identify 7+ (U,)
and T+(V;). Denoting the ambient connection on R” by D and the unit normal of

H, g_l < R? by N we conclude, for the null section L~ = %{, with the decomposition

DEL~ = 7(V)L=+(N,NXDyL~,N)N. So given that all Hyperquadrics are totally
umbilic it follows that (Dy L™, NYoc{V, L~ = 0 and therefore DL~ = 7(V)L™.
We wish to show 3. = 1. From the hypothesis we have that y = %tr XY
so it follows that kx~ = —(kL™,II) = v and Lemma 3.1.1 applies for V; < R}.
We conclude that V is contained inside the nullcone of a point ¢ € R], where
0 = exp,,,(—kL7)|y,, and every p € Vj is connected to 0 by a null geodesic in R}

along kL~ |5 = % ; € T;V}; c TyzHe. Since He is complete and totally umbilic these
null geodesics must remain within H¢o. Up to a possible shrinkage of V; we may lift
a neighborhood of the geodesic ¢ — 0 to a neighborhood of some null geodesic ¢ — o
in O concluding that the isometric image Vj of Vz contracts to 0 along null geodesics.
Since M is complete the null geodesic § — 6 in turn gives rise to a null geodesic
g — o in M and up to an additional shrinkage we conclude that U, contracts along
null geodesics onto o:

In fact our argument shows that the union of all points in ¥ that get transported to
o must form an open subset of 3. Conversely, if any point in 3 gets transported to a
point other than o the same follows for a neighborhood around that point in 3. By

connectedness, all of ¥ must be transported to o along null geodesics as desired.

For 1. = 3. we take a null geodesic from ¢ € ¥ along kL~ = % to the focal
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FIGURE 3.1: Nullcones at 0 and o

point, at say, o € M. Similarly as before this gives rise to a tubular neighborhood
around some null geodesic ¢ — 0 in H¢ within which V7 is contracted along null
geodesics onto 0. Since H¢ is totally umbilic V is transported to o along null
geodesics in R} forming part of the nullcone at ¢ = exp,, ,(—kL7)|y,. Lemma 3.1.1
applies once again and we conclude that kx~ = 7 implies Y = 0 on V7 hence on U,
(since they have isometric neighborhoods). Since ¢ was arbitrary chosen the result
follows.

Once again 2. = 3. is trivial. To show 3. = 2. we have similarly as in Lemma

3.1.2 from the Codazzi equation for ¥ < M and M of constant curvature that:
(V)W U) = 7(W)V,U)
so that a trace over V, U yields again 7(W) = k7(W) and therefore 7 = 0. O

For any connected, co-dimension 2 surface admitting a null section L € ['(T+Y),
since (DyL,L) = %V<L, L) = 0, it necessarily follows that D+L = (L for some
associated 1-form (. In particular, ¥ will be contained inside the nullcone of a point
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inside a space form M if we’re able to find a null section L along which ¥ is expanding
and shear-free. Along such L it follows from Lemma 3.1.1 for C' = 0 and Proposition
3.1.1 for C' # 0 that 7 = 0. So for Lorentzian space forms of dimension-4 (i.e.
‘Minkowski spacetime’ for C' = 0, ‘de Sitter spacetime’ for C' > 0 and ‘anti-de Sitter
spacetime’ for C' < 0) it follows from (3.1) that 3 has flux p = K — }1<ﬁ, HY=C.
When ¥ is a 2-sphere, by the Gauss-Bonnet Theorem, we conclude that

m() = [Ea(o)] - L (E)7

The reader may be wondering why the need for the divergence term in (2.1) when it
vanishes altogether. We take as our first hint the fact that vanishing 7 = ¢ —dlog tr X
is characteristic of spherical cross-sections of €2 which subsequently may obscure it’s
contribution. In the paper by Wang, Wang and Zhang ([30] Theorem 3.13, Theorem
5.2) the authors prove 7 = 0 to be sufficient in spacetimes of constant curvature
to constrain a closed, co-dimension 2 surface > to a shear-free null hypersurface of
spherical symmetry. Proof follows from the following Lemma and Proposition 3.1.1

when . is a 2-sphere:

Lemma 3.1.2. Suppose ¥ is a spacelike 2-sphere expanding along some L inside a

space form M. Suppose also DL = (L for some 1-form  then

T C—dlogtrX:O = X =0.

Proof. As used in Proposition 3.1.1 to prove the implication in the opposite direction,
we start with the Codazzi equation. For L~ = % we recall that DY L™ = 7L~ =0
and tr Yy~ = 1 so we have:
(Vv I(W,U),L™) = (Dy(IL(W,U)) = I(Vy W, U) = I(W, YV U),L7)
= —(Yvx )W, U) = AW, U), Dy:L™)

== (WVXi) (W> U)
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= —(VvX")(W,U)
0= (RiyU, L) = {(~Vy II(W,U) + Vy I(V,U), L")
= (Vvx )W, U) = (Ywx (V. U).
Taking a trace over V, U this implies Y - Y~ = 0. Since X is a topological 2-sphere
it’s a well known consequence of the Uniformization Theorem (see for example [9])

that the divergence operator on symmetric trace-free 2-tensors is injective so that

X =trxx =0. =
Definition 3.1.1. We say a 2-sphere ¥ is admissible if
(H,HY = H?*> 0.

In the case that X is admissible we're able to construct the orthonormal frame

field

—

H

{er = —= e}

H

for e; future pointing. The associated connection 1-form is given by
ag(V) :={(Dye,,e).

From the following known Lemma ([30]), Proposition 3.1.1 and Lemma 3.1.2, a
necessary and sufficient condition for an admissible sphere ¥ to be constrained to

the past(future) light-cone of a point in a space form is given by ay = +dlog H:
Lemma 3.1.3. For X admissible

T =+4ay —dlog H
from which we conclude that

1 - -
pTr:K_Z<H7H>iW'OZH_AIOgH

where +/— indicates whether L~ is past/future pointing.
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Proof. Since —H = %(tr XL + trxL) we see H? = tr x tr x so that the inverse mean

curvature vector is given by

—

. H 1, L L
I := —<_ )

_ - 4+ —
H?*  2\trx try

As a result,

ag(V) ={Dye,, e

er
=<DVE,H€t>
1/ L L 1
— Dy (= + ), Fo(trxL — trxL
< V2<trx+trx>’+2(rx rxl))
1 L rxL L
=+ ((Dv= trx Ly — (Dy 5 H2 5
4<< Vtrx rxly =Dy H? trX>
1 L trxL
= +—({(Dyv— . trvL D H2; A )
_4(< Vtrx7 Ty + (D t _)’ H? )
1 L ,
- i1(2<DVt—,trXL> +2Vileg H )
r X

I
-+

(C(V) — Vlogtrx + VlogH)

]

Wang, Wang and Zhang ([30] Theorem B’) also extend their result to expand-
ing, co-dimension 2 surfaces ¥ in n-dimensional Schwarzschild spacetime (n > 4).
Namely, that any such ¥ satisfying ag = dlog H must be inside a shear-free null
hypersurfaces of symmetry, or the ‘standard nullcone’ in this geometry. So with the
hopes of further illuminating modification of Ey by way of the flux function p we

move on to this setting in dimension 4.
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3.2 Standard Nullcones of Schwarzschild Revisited

Recall the Kruskal spacetime P x, S? with associated quadratic form:
ds® = 2F (r)dvdu + r*(dv? + (sin9)*dp?).

A standard past nullcone of Schwarzchild spacetime 2 is the hypersurface given by
fixing the coordinate at v = vy > 0. Denoting the gradient of a function f by Df
we recognize the null vector field %’“ = Du restricts to € as both a tangent (since
du(v) = 0) and normal (since Dv L T) vector field. It follows that Dv € T+Q N TQ
and the induced metric on 2 degenerate, so €2 is an example of a null hypersurface.
From the identity DpyDf = $D|D f|* we see %“ is geodesic and 2 is realized as the
past light cone of a section of the event horizon at r = 2M (see Figure 1.4).

Setting L = D(4M logv) = % we see L(r) = M = %y(g)}? =4 — 1. We

conclude that r restricts to an affine parameter along the geodesics generating ) and
therefore any cross-section ¥ can be given as a graph over S? in 2 with graph function
w = r|g. We extend w to the rest of {2 by assigning L(w) = 0 and to a neighborhood
of Q by assigning d,w = 0. From the canonical, homothetic embedding onto the
leaves S? < P x, S? we obtain the lifted vector fields V € £(S?) < T'(T(P x, S$?))
such that {(3,(3,),V) = [0,(u),V] = 0. Tt follows that £(S?)|s, = [(T%,) (for
S, := {r = const.,v = vy}) and therefore V := V + VwL € I'(T'Y) since

Vir—w)=-Vw+VwL(r)=-Vw+Vw=0.

Since ¥ = {4Mlog > = 0,7 = w} we have L, D(r —w) € [(T+Y) are linearly
independent so that L = aL + bD(r — w) and we wish to solve for a,b. Also, we
have Dr = ru%“ + rv%” = ﬁ(@v +r,L) and Dw = Vw for V the induced covariant
derivative on X, giving

Vo b?)o
= o+ 2%
(@ +b )L+ oy
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For simplicity we set A = a + b7, and solve for A,bin L = AL + b({370,) — bVw:
Vo
Ly = W 1) = b
0=1{(L,L)=2Ab+ b*|Vuw|* = 4(A + |Yw|*)

having used Vw = Yw — |Yw|?L in the second equality. We conclude that

_ Yo o 27 _ 2
L= 00, ~ [Vwl'L ~ 2V ~ [V’L)

- ;_A(}av +|Vw]’L — 2V w.
Lemma 3.2.1. Given a cross-section ¥ := {r = w} of the standard nullcone €2,

given by Q := {v = vy} in Kruskal spacetime, we have for the generator L satisfying

L(r) =1 that

VW) =w?(V, W)

N 1 ~ -
w
2
try =—
= w
- 1 2M - -
X(V>W> = 5(1 - T + ‘Ww’2)<v7 W> - ZHM(Va W)
trx=g<1—%—w24ﬁlogw)
w w
(V) =—Vliogw
2M
P:F

where V,W € I(TX) and (-,-) the round metric on S?.

Proof. The first identity follows trivially from the metric gx upon restriction to .
From the Koszul formula and the fact that L is geodesic it is a straight for exercise

to show that Dy L = L(TT)V|E = %V. Denoting the Hessian of w on ¥ by HY we
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therefore have
K(Va W) = <D\7Lv W>
_ l<v W>
- =,
~ o~ v ~ ~
y(V, W) = ﬁw‘;@,, W + |Yw|) Dy L, W — 2Dy Vw, W)
- ;—]\04 <<DV&,, W + Ve Doy, W) + WDy dy, L) + VwWw(D oy, L>)
+ [YwPx(V, W) = 2H*(V, W)
VoTy

1 ) o
= 2Mw<v, W>+Z|Y7w\ (VWY —2H®(V, W)

where in the forth line we use the Koszul formula to evaluate the first term and

metric compatibility to show the last three terms vanish. We have

UTy voou 1 Fg 1 2M

= = = — 1—_
2Mr  2Mrg'(r) 2Mr4M r< T )

so the second and forth identities follow upon restriction to ¥. The third identity is
simply a trace over X of the second. Similarly the fifth follows our taking a trace of

the forth and employing the fact that

1
Aw — —|Vw|? = wAlogw.
w

For (:
1
(V) = 5(DpL L)

- 1 Vo 2
= 5o Vigg 0+ Yw|’L — 2Vw)

=~V %)
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= —Viogw.

From the first identity we conclude that ¥ has Gaussian curvature K = ﬁ — Alogw

and therefore

(H,H) =trxtrxz4(IC—F).

Since ¢ — dlogtrx = —dlogw — (—dlogw) = 0 on ¥ we have

2M
w3

1 - =
IOZIC_Z<H7H>:
[

It follows, in Schwarzschild spacetime, that all foliations to the past of a section of
the event horizon (r = 2M) inside the standard nullcone (v = vy) are (SP)-foliations
since 3 = {r = w} satisfies

1 2M
2

(1-—)>0 < w>2M.
w w

1 - - 1

-(H,H)— -Alogp =

1(H ) = S A logp
Moreover, equality is reached only at the horizon itself indicating physical significance
to our property (P). One of the motivating factors for our choice of mass functional

comes from our ability, in this special case, to extract the exact mass content within

any X < ()

m(s) = 1( ! L(QM)ﬁdA)g _ %(i L (QM)§w2d82>g _ M

2 \4r w3 47 w?

Lemma 3.2.2. Suppose ¥ is a compact Riemannian manifold, then for any f € F(X)
20\ 2oa [ 1f]
(] )’ - g (] o [ o
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Proof. by choosing ¢? = |f| + € for some € > 0 it’s a simple verification that

(J(|f| +e)§dA)3 > \/@J%M > ;E%WJ%M

so by the Dominated Convergence Theorem

(indA)g = lim (f(|f| + e)idA)g > inf ) /fzp?dAf%dA.

We show the inequality holds in the opposite direction from Holder’s inequality

indA _ f(i)izﬁcm < (4 /fwm)%f%m)g

where the result follows from raising both sides to the % power and taking an infimum

over all b > 0. O]

So given any 2-sphere with non-negative flux p > 0 in an arbitrary spacetime, defining

EY (%) = %q/si# § £dA, we conclude that

m(%) = inf EL(Y) < Eg(%)

as desired. Recalling our use of Holder’s inequality in the proof of Lemma 3.2.2, we
see that m(X) = Fg(X) if and only if p is constant on X. So for ¥ := {r = w} < Q,
where Q is the standard nullcone in Schwarzschild spacetime, we see that m(X)
underestimates the Hawking energy Ey (X)) with equality only if p hence w is constant.
Namely the round spheres within ‘time-symmetric’ slices given by ¢ = const > 0 or
equivalently 2 = const > 0 (so that v = vy implies r = const) as expected from

Sauters work ([25], Lemma 4.4).
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3.3 Variation of Eyg

In this section we spend some time studying arbitrary normal variations of Ey on
admissible spheres following work of Bray, Jauregui and Mars ([7]). The authors of
[7] consider ‘uniform area expanding flows’” according to the flow vector ds = I+ ﬁf L
so we first spend some time extending their Plane Theorem to incorporate arbitrary
normal flows &, = ol + BI*. Subsequently, we show that an arbitrary null flow is
obstructed from monotonicity by a term with direct dependence upon p in analogy
with the variation found by Christodoulou regarding the mass aspect function p (see,
for example, [25] Theorem 4.1). We hope that this points towards p being poten-
tially closer to an optimal choice of flux for the Hawking Energy Ey in capturing
the ambient spacetime.

The following proposition is known (see [5], Lemma 4), we provide proof to com-
plement the Plane Theorem of [7] and to establish the result in the notation intro-

duced in Definition 3.1.1.

Proposition 3.3.1 (Plane Derivation). Suppose Q =~ I x S%, for some interval
I c R, is a hypersurface of M and a # 0 is a smooth function on ). Assuming

the existence of a foliation of Q0 by admissible spheres {3} according to the level set

function s : Q@ — R whereby 0q|x, = ol = —aHi; then we have
1  dEy 1
S | @ ek - 2kl )
(167)3

+ foz(QG(et,et) + | IL? + |IL? + 2|ag)? + 2|V log H[*)dA

for I = <f[, err)) where e,y is given in Definition 2.1.5.

Before proving Proposition 3.3.1 we will first need to find the second variation of

area:
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Lemma 3.3.1.

(H,Ds HY = —a|IL|* — aRica(e,, e,) — HA(%)

Proof. In this lemma we temporarily denote the induced covariant derivative on €2 by
D noticing that <ﬁ , Do, H ) calculates the same quantity as if the ambient connection
was used. Taking a local basis {X7, X5} along the foliation we define ~;; := (X, X;)
giving rise to the inverse metric 4. For any V € I'(TQ)) parallel to the leaves of
the foliation (i.e. Vg, = I'(T'E;) we have [0s, V]s = 05(V(s)) — V(0s(s)) = 0 giving
[0s, V]|s. € T(TXs). As such

(H,Da,Hy = (H, D, (v7TL;))
= —*~ (D, Xy, X1) + (Do, X1, Xp)){T;, H)
+ 79Dy (Dx,X; — V. X;),
— — 2y ([0, X1), X)) — (M, 0))A1i5, HY

+97((~Ro,x,Xj + Dx, Do, X; + Dpo, x1Xj — Dy, x,0s. H)

where we used the fact that [0s, ¥, X;]

v, € TY, to get the last term. From the fact

that d, = ol it follows that
7% ([0, Xi], Xo) — (M, 0u))(Myj, HY = 2v*(Dya, x,9 Xy, H)
= 2= o T, F T, H)
= 29" Do, x1 X, H + 20|11, 2
¥9{Dx, Do, X; + Dja, x,X;, H) = ¥7(Dx,[0,, X;] + Dx,Dx,0, + Di, x,X;, H)
= '3[ X3, [0s, X;]] + Dja, x,;) X + Dja, x9X; + Dx,Dx,; 05, H)
= 299 Dja, x1 X, Hy + v7(Dx,Dx, 0, H)

having used the fact that [X;, [0s, X;]] € T'(T'3;) to get the final equality. This allows
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us to simplify to

(H,Dg,Hy = —20|11,|* + Ricq(0s, H) + v7{(Dx,Dx,0s — Dy x,0s), H).

Given also that d; = Fe, we see (Jy, Dxe,) = 557 X{er,e,) = 0 for any X e I'(T'%,)

so we simplify the last two terms

(Dx,Dx,0s, Hy = —HX;X;{05, €,y + HX{0s, Dx,e,y + H(Dx,0, Dx,e,
- —HXin(%) + a(Dx, ey, Dx.e,)
— —HXin(%) + aM( Dy ey, Xi)(Dx, e, X1)
— CHX,X;(%) + alIL, ]
H
Dy, x,05, Hy = =HY x,X;(0s, ) + H(2s, Dy x,€r)

o
=—-HYVx X,(=
WX’L J ( H>

and the result follows after we collect all the terms and take a trace over ¢, j. O]

Proof. (Proposition 3.3.1) The proof follows in parallel to the Plane Theorem of [7]

(Theorem 2.1). From the first variation of area formula:

dA, = —(H, 0,)dA, = adA,

— 3] = |Es]a(s).
So variation of the Hawking Energy gives:

5 = (| s (0m - [ 10.))

_ \/ﬂ <%a<167r . f HQdAS> . 2f<ﬁ, Do, HYdA, — f aHQdAS>

_ f (foz(2l€s - %H2)dAS + f2a|IIT|2 + 2aRica(e,, e,) + 2H4A(%)dA

—~
—_
D
|

N~—

w
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- f aHZdA>

where we used the Gauss-Bonnet Theorem and Proposition 3.3.1 respectively to get
the first and second integrands of the last line. As in [7] we now trace the Gauss

equation for X in ) twice over Y, to get
2Rico (e, e,) = S — 2K, + H? — |I1,.|?

for S the scalar curvature of 2. We then trace the Gauss equation for {2 in M twice
over ) to conclude

S = 2G (e, e;) + 2|lag|* + 1L

since ¢; € I(T+Q). Substitution into our variation of Ey therefore gives us after

some algebraic manipulation that

dsz - (1|§;|>3 (J(@ —a)(2K, — %H2)dAS

1
+ J2G(et, er) + (JIL]* — 5H?) + I * + 2|lag* + 2HA(%)<1AS>.

First performing an integration by parts on the last term
o o

HA(—=)dA = H)—dA
| HaGaa - [amy,

followed by the identity ATH = Alog H + |V log H|?* we obtain the first line of the

variation in Proposition 3.3.1. The second follows from the fact that
o 2, Lo
IIL.|* = |IL|* + §H

11, = I,

We refer the reader to [7] (Theorem 2.2) for proof of the Cylinder Theorem:
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Proposition 3.3.2. Under the same hypotheses as in Proposition 3.3.1 with 0, = B]_l

or some smooth function 8 # 0 on ) and It = & we have
f

H
1 dEH - 7
— = | 86 o) + 2L 1) + dan (Y log H) + 27 - au)dA,.
s Es
(167)3

The full variation of Ey is known from ([5], Lemma 3), we are now in a position

to show it within our context:

Corollary 3.3.2.1. Under the same hypotheses as Proposition 3.53.1 and 3.5.2 with
0y = ol + BI*

1 dEy [ 1,
ST ds —st(oz a) (2K, 2H 2Alog H)dA,

(16m)3

+ J a(2G ey, €) + |IL|* + |IL|* + 2|ag|? + 2|V log H|?)dA,

+ | BQ2G(ey, er) + 2L, IL) + 4oy (Vog H) + 2V - oy )d A,

s

Proof. As in [7] (Theorem 1.13) variation of Fy is achieved by summing the contri-
butions from Propositions 3.3.1 and 3.3.2 since the variation of the area form and
the mean curvature vector are known to be R-linear over the flow vector decompo-

sition. O

Subsequently, we achieve an arbitrary past(future) directed null flow by setting

a = FF > 0 in Corollary 3.3.2.1 giving ds = oz(f$ ) and

1 dE 1
— dSH = f (@ — a)(2K, — 5H2 +2V - ag — 2Alog H)dA,
(16m)3 °

+ J a(2G (e, e, T e,) + |, T IL|2 + 2y T Vlog H|?)dA,.
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It follows in an energy dominated spacetime that the only obstruction to a non-

decreasing Hawking energy is the integrand

(@ — ) (2K — %HQ +2V -ag —2Alog H) = 2(a — a)ps.

In particular df—SH > ( for any foliation where p is constant on each X4, moreover,
since m=(3;) = Ey(3;) in this case (provided also p+ = 0) we have monotonicity of
our quasi local mass as well. We extend beyond this case in the next section with

the proof of Theorem 2.1.1.
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4

Propagation of p

In this chapter we work towards proving Theorem 2.1.1 by finding the propagation

of our flux function p along an arbitrary null flow.
4.1 Setup

We adopt the same setup as in [18] which we summarize here in order to introduce
our notation:

Suppose 2 is a smooth connected, null hypersurface embedded in (M, {-,-)). Here
we let L be a smooth, non-vanishing, null vector field of 2, L € T'(TQ2). It’s a well
known fact (see, for example, [11]) that the integral curves of L are pre-geodesic so
we're able to find k € F(Q2) such that DL = kL.

We assume the existence of an embedded sphere ¥ in ) such that any integral
curve of L intersects ¥ precisely once. As previously used, we will refer to such X
as cross-sections of 2. This gives rise to a natural submersion 7 : 2 — 3 sending
p € Q to the intersection with X of the integral curve 7& of L for which 72(0) = p.
Given L and a constant s, we may construct a function s € F(Q) from L(s) = 1
and s|y = so. For ¢ € X, if (s_(q), s+ (q)) represents the range of s along 7% then
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FIGURE 4.1: Cross-sections: s3 < s9 < S_ < 59 < 54 < 81

letting S_ = supy s— and S, = infy s, we notice that the interval (S_, S, ) is non-
empty. Given that L(s) = 1 the Implicit Function Theorem gives for ¢ € (S_,S,)
that ¥; := {p € Q|s(p) = t} is diffeomorphic to S? through ¥. For s < S_ or s > S,
in the case that X is non-empty, although smooth it may no longer be connected.
We have that the collection {3} gives a foliation of .
We construct another null vector field L by assigning at every p € Q L|p € T, M be
the unique null vector satisfying (L, L) = 2 and (L,v) = 0 for any v € T,¥,). As
before each ¥ is endowed with an induced metric 7,, two null second fundamental
forms x = —(II, L) and y = —(II, L) as well as the connection 1-form (or torsion)
((V) = XDyL, L). We will need the following known result ([25]):
Lemma 4.1.1. Given V e I'(T%y),

e DyL =X(V)+ (V)L

¢ DyL=X(V) - (V)L

e DL =20 kL
where, giwven VW € T'(TY), the vector fields ¢ X(V) are uniquely determined by

V) =¢(V) and (X(V), W) = x(V, V).
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Proof. 1t suffices to check all identities agree by taking the metric inner product
with vectors L, L and an extension W satisfying Wy, € I'(T'%;) keeping in mind
that [L, W]|s, € ['(T'Z;). We leave this verification to the reader. O

For any cross-section X of {2 and v € T,(X) we may extend v along the generator

vE according to
V(s) = Dy(yL

V(0) = v.

Since x € T,Q) < (L|,,z) = 0 we see from the fact that
(V(3).L) = Dy Ly + KV (5).L) = V()LL) + wV(5).L = w(V(5). L.

and (V(0),L) = 0, that infact (V(s),L) = 0 for all s. As a result, any section
W e I'(TX) is extended to all of Q satisfying [L, W] = 0. We also notice along each
generator 0 = [L,W]s = L(Ws) = Ws such that Ws|y = 0 forces Ws = 0 on all
of Q. We conclude that Wy, € I'(T'E;) and denote by E(X) < I'(T2) the set of
such extensions off of > along L. We also note that linear independence is preserved

along generators by standard uniqueness theorems allowing us to extend basis fields

{X1, Xo} < T(T) off of ¥ as well.
4.2 The Structure Equations

We will need to propagate the Christoffel symbols with the known result ([25]):

Lemma 4.2.1. Given U, V,W € E(Y),
(L, YyW],U) = (Yvx)(W,U) + (Ywx)(V.U) = (Vox)(V, W)

where Y the induced covariant derivative on each Y.
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Proof. Starting from the Koszul formula
WAV W,U) = VIW,U)+ WV, U)=UV, W)=V, [W,UD+(W, [U V])+{U, [V.W])
we apply L to the left hand term to get

LYy W, U) = (DY yW,U) +{VyW, D U) = {[L, VyW],U) + 2x(Vy W, U)
and to the right keeping in mind that [V, W] e E(X)

L{VAW,U) + WV,U) = UV W) = (V. [W,UT) + W, [U V] + (U, [V, W)

+2x(W, [U, V]) + 2x(U, [V, W])
= 2(V(W,0) + Wx(V,U) = Ux(V, V) = x(V,[W, U])
£ X(W,[U,V]) + x(U, [V, W)

= 2((Vy)(W.0) + (V) (V.U) = (Vo) (V. W) + 2x(Vy W, U) ).

Equating terms according to the Koszul formula the result follows upon cancellation

of the term x(Vy,W,U). O

Lemma 4.2.2. For S,U,V,W € E(%),
L, Byw U], S) = (YwYvX)(U,S) = (Vv Ywx)(U,S) + (WWWUX)(Vv S)
- (WVWUX)(VV, S) + (WVWSX)(I/V’ U)— (WWWSX)(V> U)

where R the induced Riemann curvature tensor on Y.

Proof. We notice any f € F(X) can be extended to all of Q by imposing L(f) = 0

along generators. As such fV € E(X) and

(L, RpywU] = [L, Ry ywU] = [L, Ryw fU] = [L, f RywU] = f[L, RywU].
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Within E(X) we conclude that both ([L, Ry w U], S) and the right hand side of the
identity restricts to 4-tensors pointwise on each Y. It therefore suffices to prove
the identity pointwise. In particular, for any v, w € T,3; we extend to vector fields

V,W € E(X) such that ¥, W|, = 0. The Riemann tensor on ¥ reads
(RywU,S) = VU, S) = VvVYwU,S) +<{VwVvU,S)
= <W[V,W]Ua Sy = VYV wU,S) +{VwU,YVyS)+ W{(¥VyU,S)
—(VvU,YwS)
so applying L to the terms on the right assuming restriction to ¢ € 35 we have
L<<W[V,W]U> Sy = V{VwU,S) +{VwU, YvS) + W(V,U,S) —(VyU, WWS>>
=L, Y U], S) - VI(YwU,S) + WLV U,S)
= —W{[L, WWU]a Sy — QVX(WWUa S) + W{[L, WVUL Sy + 2WX(Y7VU7 S)
where the first term in the second line vanishes as a result of Lemma 4.2.1 since

[V,W]e E(X) and [V,W]|, = 0. Using Lemma 4.2.1 on the first and third terms of

the third line we get

= —V((Vwx)(U.9) + (Vo) (W, 5) = (Vs2)(W,U)) = 2V (Vi U.S)

+ W (v 20U, 8) + (Yo (V; 5) = (Vsx (V. 1))
+2Wx(VyU, S)

= ~(VvYwX)(U, 5) = (Vv Vo) (W, S) + (Vy V) (W, U) = 2V x(V U, 5)
+ (YwYvx) (U, S) + (YwYux)(V, S) = (YwVsx)(V,U)

+ QWX(WVU, S).
We also note that restriction to q € ¥ gives

0= (Yvx)(YwU,5S) =Vx(VwU,S) - x(VvYwU,S)
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allowing us to simplify the remaining terms above
—2Vx(YwU,S) + 2Wx (YU, S) = 2( — x(YvVwU,S) + x(YwVyU, S))
Since
L<RVWU7 S> = <[L7 RVWUL S> + 2X<HVWU7 S)

the result follows upon cancellation of 2x(RVWU, S) given that ¢ was arbitrarily

chosen. O

Now we're in a position to find the structure equations that we’ll need to propa-
gate p. Recalling that the tensors v, x, x and ( are restrictions of associated tensors
on {2 we measure their propagation with the Lie derivative along L. The following

proposition is known ([25],[11]), we provide proof for completeness:

Proposition 4.2.1 (Structure Equations).

1
LlCz—terC—ﬁﬁtrx—FYf(YfX) (4.1)
Loy =2y (4.2)
L2 . 2
Lix=—a+ 5@ v+ trxx + Z(UX) Y+ KX (4.3)
1
Ltry = —§(trz)2 — @2 —G(L, L)+ Kxtrx (4.4)
| 1 o1 ~
Lrx = (IC+X-X+§G(L,L)>7+§trxx+§tr>@ (4.5)

— G —28(Y¢) — 24 ®( — ky
Ltry =G(L, L)+ 2K -2V - ¢ —2|¢)* —(H,H) — ktry (4.6)
ﬁLC=GL—V-X—ter+%dtrx+dﬁ (4.7)

where « is the symmetric 2-tensor given by a(V, W) = (Rpy L, W), S(T) represents
5. and G=0a

s

the symmetric part of a 2-tensor T', Gy = G(L, ) s, — 3(try G)y.
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Proof. We prove each equation in turn, when used we will assume S, U, V, W € E(X):
1. Since X is of dimension two we have

Applying L to the left hand side of the equality we get
(LI, UXW,S) =V, SXW, UL+ 2K{LKW, SHx(V, U) + <V, Ux (W, S)

=W U)XV, 5) =V, Sx (W, U)}
so that a trace over V,U and then W, S gives
2LK + 4tr XK.
Applying L to the right hand side we have
L(RywU,S) = {[L, RywU], S) + 2x(RywU, 5)
allowing us to use Lemma 4.2.2. Taking a trace over V,U and W, S we get
2y - W'X_ 2Atrx+ 2tr x K

having used the fact that Ric = K+ in obtaining the last term. Equating terms

we conclude that
1
LKZW'V'X—Atrx—trxf(zv'v-z—§Atrx—ter

2. Coming from Lemma 4.1.1 we have already made extensive use of this identity:
(L) (VW) = LV, W) = DLV, W) + <V, DL, W)
= (DyL,W) +{V,DwL)

=2x(V, W)
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3. (Lox)(V,W) = Lx(V,W) = LDy L, W)
={(DLDyL,W)+{DyL,D W)
= (RyrL+ Dy DL, W)+ (X(V) + ((V)L, X(W) + ((W)L)
= ~(BevL, W) + sx(V.W) + (X(V), X(W))

(V) + %trxV

[=<>1

having used Lemma 4.1.1 to get the third line. Since Y(V') =

we see that
GEV), V) = GV), K0 + eV, W) + () 3V, )

1 . R 1
= §|X|2<V7 W) +trxx(V, W) + Z(trX)2<‘/a W)

using the fact that AB + BA = tr(AB)I for traceless symmetric 2 x 2 matrices

to get the second line. The result follows.

4. We will denote tensor contraction between the contravariant a-th and covariant
b-th slots by C}. Extending a local basis off of ¥ and applying Gram-Schmidt

we get an orthonormal frame field {E;, E»} allowing us to write
9 e=7"=E1QE + E2®E,

and v = FY® I} + E5® ES. It’s an easy exercise to show C3y7'®v = § — L®ds
whereby d(n, X) = n(X) for any 1-form 1 and vector field X. Since 6 and L&®ds

are Lie constant along L
0=LL0Py '@y =CiLy ' ®y+17' ®2)
giving
—201CH '@ x @y = —CHCTy T @2 @97
= CHCILy T @) @

= CiLy '@ (Coy@y )
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= CiLy ' @ (B) @ By + E3 @ Ey)

=Ly

As a result

Ltrx = L,CiC3y™ X x
=CIC3(Ly ' @x +7 '@ LLX)
= =2|x|* + tr Lo

= —2|x* — Ric(L, L) + rtrx + |x[?

1 1
=—(x+ 5“&7) (X + EU"XV) —G(L, L) + rtry

1
— —é(trx)2 — |X|2 —G(L L) + ktry

5. (Lx)(V.W) = LDy L, W) ={DpDyL,W)+(Dy L, DLW)
= (RyLL + Dy DL, W) + (X(V) = ((V)L, X(W) + ¢(W)L)
— (Ry, L, W) + V(=2 — kL, W) + (2 + kL, Dy W)
+(X(V), X(W)) = 2¢(V)C(W)
= Ry L, W) = 2(Vy (W) = sx(V.W) + (X(V), X(W))
= 2¢(V)¢(W).
Having used Lemma 4.1.1 to get the second and third lines.
Lemma 4.2.3. The first term satisfies the identity

(Ry W, L) = —(lc _ }L<ﬁ, i+ %X %+ =G(L, L))<v, WS+ GV, W)

1
2
— (curlQ)(V, W) + 3 (), XW)) — V), X))

Proof. From the first Bianchi identity followed by the Ricci equation ([21],

pg.125)
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(RyW, L)+{RywV, L) = (RywL, L)
= (RywL, Ly + (IL(V, L), T(W, L)) — (L(V, L), T(W, L))
where using Lemma 4.1.1
(RywL, L) = (DL — [D, D 1L, Ly = =2VyO)(W) + 2(Viw)(V)
= —2(curl()(V, W)

M(V,L) := DYL = (V)

M(V, L) := Dy L = X(V).
We conclude that the antisymmetric part satisfies

% <<RVLW, L) —(RwLV, L>) = —(curl¢)(V, W)
+ 5 (V)L X0V = V), X))

Next we find that

GV, W) = Ric(V, W) — %RG/, W
- §(<RLVL, W)+ By L W) + e, (Reyy (), W)

(G(L. L) + tr, G)V, W),

l\DI»—t

Since 3 is of dimension two we must have that tr (R (-), W)oc(V, W) with
factor of proportionality & — i<ﬁ H >+ %X - X coming from Proposition 3.0.1.

We conclude therefore that the symmetric part satisfies
1,2 - 1. .1
5 (R L)+ RV, 1)) = GOVLW) ~ (K (L By S35 GIL, L)V

and the result follows as soon as we sum up the antisymmetric and symmetric

contributions. O
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Combining the previous lemma with the propagation of y we have

~

(L) (VW) = (K = L Fy + 53+ 3G )V, W) = GV, W)

- (eurlg) (VW) = 2 (GHV). ZOV) = V). X00))
—2(Vv QW) = sx(V,W) + (X(V), X(W)) = 2¢(V)¢(W)
- (k- i@?, A+ %x e %G(L, L))V, — GV, W)

+ (W)X + GV), X)) — (T QW) ~ () (V)

= 20(V)C(W) = rx(V, W).

Using again the fact that AB + BA = tr(AB)I for symmetric, traceless 2 x 2

matrices it follows that
KXV),XW)) + X V), X(W)) = (X - X))V, W)+ trxx (V, W) + tr xx (V, W)

1, - =
+ §<H7 H><V> W>
giving the result.

6. Ltrx = LL(CIC37 ™ ®@x)
= —2x - x +tr(Lrx)
= =2 - x+2K+2x-x+G(L, L) -2V - ¢ —2|¢]* — ktry
— G(L,L)+2K =2V - ¢ —2/C)? —(H,H) — ktry

7. And finally,

(£LO)(V) = L(V) = SI(DyL, L)
= %(DLDVL, L)+ %<DVL, D,L)

= S(RviL+ DyDLL L)+ S(H(V) + (V)L -2~ vl

66



—

_ %<RVLL, Ly+ Vi + w((V) = x(V.{) = (V)

= -V -x(V)+ %Vtrx—trKC(V) +G(V,L)+ VK

having used Lemma 4.1.1 to obtain the third line and the Codazzi equation

(3.2) to get the fifth.

4.3 Propagation of p

From Proposition 4.2.1 we have the propagation of the first two terms of p for the

third and forth we’ll need
Corollary 4.3.0.1. Assuming {¥,} is expanding along L we have
L) = =29 (% Q) = 2trxV (-~ ¥ V- + g Aty —diry
+V- G+ Ak

3 1
Lﬁlogtrxz -2V - (X-dlogtrx) — Etrxﬁlogtrx— étrﬁdlogtrx\2

~12
x>+ G(L, L)
OGR!
trx

—I—Aka

Proof. When used we will assume V., W € E(X).

For any 1-form 7 on Q we have
LL(Yn)(V.W) = L(Yyn(W)) = VLy(W) — Ly(VyW)
= V(Ln)(W) = (L) (Vv W) = n([L, Vv W])
= Vv (Len)(W) —n([L, Vv W])

from which we find

L(Y-n) =CiC5(Ly " ®@Vn+v " ®LL(Yn))
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= —2x - Vi + tr(LL V)

1

= =2(X + 5 trxy) Vo + V- (L) — n(2y - %)

the last term coming from Lemma 4.2.1 after taking a trace over V, W. We conclude

that

L(Y-n)=—terxV-n—2V-(x -n)+VY-(LLn)

The first part of the corollary now straight forwardly follows from Proposition 4.2.1

for = ¢. For the second, since A log trx = Y - dlog tr x we have

Lﬁlogtrx = —trzAlogtrx— 2V - (X-dlogtrx) +V- (Eédlogtrx).

From the fact that

X|? + G(L, L
i+ D) ,

W-(ELdlogtrx)=W'(d£10gtl"ﬁ:A<_%trﬁ_ try

the result follows as soon as we make the substitution
Atry = trx(ﬁlogtrx + |dlogtrx|2>
]

Theorem 4.3.1 (Propagation of p). Assuming {¥s} is expanding along the flow

vector L = oL~ we conclude that

B~ O (Y iy (154 G L)) 4 = L o
pt 500 = 2 (GC (P + L™, L)) + [r = SG(L7, 1Y)

+ K0P+ GL7 L)) =2V - (0X ™ 7) + V- (0G1)

Proof. From Proposition 4.2.1 and Corollary 4.3.0.1 the proof reduces to an exercise

in algebraic manipulation

1 1
Lrp=LK— Ztrxﬁétrx— Ztrxﬁyﬁrx + LY -( — Lﬁlogtrx
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o1 1 1 R
= <Y7-Y7-K—§4Atrx—ter> —Ztrx<—§trgx— |K|Q—G(L,L)+/itrx>

trx<G(L,L) +2K -2V - ¢ —2[¢)? —<ﬁ,ﬁ>—/{trx>

N

—QW'(X'C)—2ter7'C—Y7-Y7‘X+%Atrx—dtrx-ngW-GL—l—A/{

3 1
+2V - (x - dlogtrx) + 5trx4&logtrx+ §trx|dlogtrx|2

Y2+ G(L, L
I RAT
trx
3 1 1. L RPrCM@ LN 1
— 2 tryK + =~ tr(H, H —H,H<— >——t L L
5 XK+ g trx(H, H) + 5CH, H) try 7 XG(L L)

3 1 R, . 3
— §U"XV'C+ Ztrz(H,H>—2W~(z- (¢ —dlogtry)) + Etrxﬁlogtrz

1 1
+ §ter2 —dtr&-(—l— étrx\dlogtrxﬁ

3 1, - = (IXP+G(L L)y 1 1
— 24 —H,H(— ) ~try|C — dlogtry|?2 — = tr YG(L, L
5 rxp+4< p Ty +5 rx|¢ — dlogtr x| X (L,L)

x> +G(L, L)
trx

+A

—2Y - (x - (¢ —dlogtry)) + V - GL.
The result therefore follows as soon as we express all terms according to the inflation
basis {L~, L™} where {¥,} is a flow along L = oL~ of speed o = tr x. O

Corollary 4.3.1.1. For {¥,} expanding along the flow vector L = oL~ and any
ue F(X)

LS e (/') + gap)dA = LS a@u<<|§<—|2 +G(L, L‘)) <}l<ﬁ’ H) + Au>
+ %|2f< du+7]*+ G(L,|Yul’ L™ — Vu — iL*))dA

Proof. We start by integrating by parts on the last three terms of Theorem 4.3.1
[ (80P + G L) =29 (0 1) + 7+ (06, ) ) a4
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r

— | oot (e (A (% + G(L™, L7)) + 28 (V. 7) = G(L™, V) ) dA

_ Pae“((ﬁu FIV)(E P+ GL™, L) + 287 (Vu, ) — G(L™, Yu) ) dA

r

_ oeu(um? + G(L, L) Au+ [ PIVul? + 2%(Yu, 7)

J

(L™, [VuPL™ — Vu))dA.
As a result
[ e Sow)aa = [ oer (U5 P+ G 1) (3¢ By + )
+ X PIVul® + 2% (Vu, 7) + %m? + G(L™,|YulP L™ = Yu — }ly))d/x.

Since Y~ is symmetric and trace-free it follows that [x~ - du* = 1|X~|*|Vu|? from

which the first three terms of the second line simplifies to give

- 1 1. -
XTPIVul® + 287 (Yo, 7) + 5l7l* = 5120 - du+ 7
O

Remark 4.3.1. An interesting consequence of the above corollary in spacetimes sat-

isfying the dominant energy condition is the fact that any u € F(X) gives
uf ; 3 ullo—|2 - 77— Ll = =
e (p+§0p>dA> oe(IX |+ G(L™, L ))(Z<H,H>+4&u)dz4

The proof of Theorem 2.1.1 is a simple consequence of the following corollary:

Corollary 4.3.1.2. Assuming {3} is expanding along the flow vector L = o L™ with
each ¥g of non-zero flux (|p(s)| > 0) then

4 pgdA = f (p%) + ap%dA
ds b R
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(1P + 607 1) (¢, ) - s 81og o))

I
Ll N
4 ’

2l

+ 515X - dlog|p| — 7*

[GVIN )

N | —

+

1 1 1
G(L™, 5V log |pl[*L™ + SV log |o| - ZLU)dA
Proof. From the first variation of Area formula

dA = —(H,LYdA = —o(H, L™ YdA = 0dA

wl—

we get the first equality. For the second we apply Corollary 4.3.1.1 with e* = %\ o~

canceling the sign in the case that p < 0. [
4.8.1 Case of Equality
Lemma 4.3.1. For {3} expanding along L = oL~ we have
Lym+0m+ Y (0x7) = oG- +d(o([X"[* + G(L™,L7)))
Proof. By combining (8) and (11):

Eﬂ(—dlogtrx) = GL—YWX—tngwL%dtrerd/{

1 X" + G(L, L)
—d<—§trx— trx +K>

= —tTX(C_dlogtrK)_W'X—'_GL_{—d

XI*+G(L, L)
try ‘

The result follows as soon as we switch to the inflation basis {L—, L*}. O

Theorem 4.3.2. Let Q) be a null hypersurface in a spacetime satisfying the dominant
energy condition with vector field L tangent to the null generators of Q. Suppose {¥4}
is an expanding (SP)-foliation defined as the level sets of a function s : Q@ — R satis-
fying L(s) = 1 and achieves the case of equality Cfi—’g = 0. Then all foliations achieve
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equality, moreover, we find an affine level set function r € F(§2) with ro := 7 S0y O

such that any surface ¥ := {r = worn}, forwe F(Xs,), has data:

7260270
X = W
2
try = —
= w
2
trxy = — (Ko — o — w?Alogw)
w
¢ = —dlogw
7o
i

where rivyq is the metric on 3y, and Ky the Gaussian curvature associated to 7.

In the case that tr x|s,, = 0 our data corresponds with the the standard nullcone in

Schwarzschild spacetime of mass M = 3.

Proof. Without loss of generality we assume sg = 0. Immediately from Corollary

4.3.1.2 we conclude for this particular foliation that

R+ G L) =0

2. _
54 - dlogp— 72 = 0

1 1 1
G(L_v §|W10gp|2[f + ngng — ZLLJF) = 0

So from the first equality we have both Y~ = 0 and G(L~, L~) = 0. Combined with
the second equality we conclude that 7 = 0 for this particular foliation and therefore
Lemma 4.3.1 ensures that G- = 0 as well. Finally we may therefore utilize the
final equality to conclude also that G(L*,L~) = 0 so that, for any p € Q and any
X € T,M, we have

G(L™,X)=0.
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From this and Lemma 4.3.1 we have for any foliation off of ¥ generated by some L,
(a > 0) that

Lp 7+ aoct® =0.
Given that 7|5, = T|x, = 0 this enforces 7% = 0 by standard uniqueness theorems.
We recognise this implies the case of equality for all foliations so without loss of
generality we assume that L is geodesic. We are now in a position to show that
the flux p € F(£) is independent of the foliation from which it is constructed. In
particular, for any a > 0, foliating off of ¥, along the generator L, will construct a
pa which we would like to show agrees pointwise on €2 with p.

From Theorem 4.3.1 we have

3
Lp = —3 tr xp = 3pLlogtr x

so for any p € 2 solving this ODE along the geodesic yﬁp)(s) gives

o s(p) trx(p)\3
pp(O)p :< XP)'

For the generator L, Theorem 4.3.1 gives
L,pa = —; tr X _pa = 3pa(Lylogtr X — Ka)
= 3paL,(logtrx —loga)
— 3p,.L,(log tr )
where the penultimate line comes from the fact that
buLy = Dy, L, = aL(a)L = L,(loga)L,
and the final line from the fact that try = atry. Solving this ODE along the

- L
pregeodesic 7. o

)(t) we have

paot(p) trx(p)\3 pos(p)
Pa(0) ( ) |



Since we're foliating off of ¥y in both cases and p|y, is independent of our choice of
null basis we have p(p) = p,(p) as desired.

We therefore define the functions rq and r according to

ToOT
2507 T3 :p

=0

-
owl =

(i.e. r|g, = 10) so that Theorem 4.3.1 gives

3 3 To

To
=33La(r) = La(p) = —5trx p = —5trx, 5

and therefore L (r) = %tr&ar. It follows that if we scale L such that trx|s, = %
then L(tr xr) = —4(tr x)*r + trx(5 tr xr) = 0 implies that trx = 2 and L(r) = 1.
So r is in fact our level set function. For 72+, the metric on ¥y, by Lie dragging 7o

along L to all of 2 we have
2 2 9 2
Lr(r°v) = 2ry = ;(7’ Y0) = tr X (r"70)-

So from (6), L(r*v0—7) = tr x(r*y0—7) and r§yo —(re) = 0 giving y(r) = 7%y by
uniqueness. We conclude that for any 0 < w € F (%) the cross-section 3 := {r = wo w}
has metric 7, = (r)|s = w?yo with Gaussian curvature K,, = &Ko — Alogw. More-

over,

1 1
= —QICO—Alogw— — T X4
w 2w

having used the fact that p, = p|y (from independence of foliation) in the first line

and try =tr X|x in the second. We conclude that,

2
try, = — (Ko — o _ w?Alogw).
w w

74



In the case that tr x|z, = 0 property (SP) forces - = p|s, to be constant by way of
0

the maximum principle. From our expression for tr y,, we conclude that Ky = 1 and

therefore vy is a round metric on S2. m

Remark 4.3.2. We bring to the attention of the reader that due the lack of infor-
mation regarding the term G in (4.5) we are unable to conclude with any knowledge

of the datum x on 3. In the case of vacuum this no longer poses a problem and one

is able to correlate x|z with x|s,, as shown by Sauter ([25], Lemma 4.5).

75



5

Foliation Comparison

In this chapter we show how the flux function p of an arbitrary cross-section of (2
decomposes in terms of the flux of the background foliation. With the appropriate

asymptotic decay on 2 this allows us to prove Theorem 2.1.2.
5.1 Additional Setup

We follow once again the construction of [18] starting with a background foliation
as constructed in Section 4.1 off of an initial cross-section ¥,,. As before, each ¥
allows a null basis {L,{} such that (L,l) = 2. Also from Section 4.1 we have the
diffeomorphism p — (7(p), s(p)) of © onto its image. Therefore any cross-section with
associated embedding @ : S — Q is equivalently realized with the map ® = (r, s)o®.
Expressing the component functions ¥ := 70 ® and w := s o ® we recognize that
U : S? — 3, is a diffeomorphism and therefore the embedding @ : S? —  is uniquely
characterized as a graph over Y., with graph function w o 1. Without confusion
we will simply denote the graph function by w and it’s associated cross-section by
Y- We wish to compare both the intrinsic and extrinsic geometry of 3, at a point ¢

with the geometry of the surface ¥,,). We extend w to all of {2 in the usual way by
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FIGURE 5.1: X, as a graph over Y,

imposing it be constant along generators of L, in other words, w(p) := (wom)(p). For
the extrinsic geometry of ¥, we have the null-normal basis {L, L} whereby L is given
by the conditions (L, L) = 2 and (V, L) = 0 for any V € I'(T'Y,). As before ¥, has
second fundamental form decomposing into the null components y (associated to L)
and y (associated to L) with torsion (. For each ¥, we equivalently decompose the
second fundamental form into the components K (associated to L) and @) (associated
to l) with torsion ¢. We will denote the induced covariant derivative on ¥4 by V and

on ¥, by V. The following lemma is known ([18],[25]):

Lemma 5.1.1. Given q € X, N Xy the map given by
T, Ty — Ty

v—0:=v+vwlL
is a well defined isomorphism with natural extension E(3,,) — FE(X,). Moreover,
o (V. W) =%(V.W)
o x(V.W)=K(V,W)
o ((V)=1t(V)— K(V,Vw) + iV, Vw)
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o \(V, W) =Q(V,W)—=2t(V){W,Vw) — 2(W)V, Vw) — |[Vw|* K (V, W)
—2H*(V,W) + 2K(V,Vw)(W,Vw) + 2K (W, Vw){V, Vw)

— 2V, Vw)(W, Vw)
o try = trQ — 4t(Vw) — 2(Aw — 2K (Vw, Vw)) + tr K|Vw|? — 2k|Vw]|?
for H* the Hessian of w on .

Proof. For completeness we include a similar proof as in [18] (Proposition 1). Since
T, : TyXeq) — TyX, is clearly injective it suffices to show v € T;X,,. This follows
from the fact that 9(s — w) = v(s — w) + VwWL(s — w) = —vw + vw = 0 since
Y., is locally characterised by s|s, = w. For the extension V =V + VwL we
note that [L,V] = 0 — [L,V] = 0 and it follows that V € E(X,) (infact
E(Z,,) = E(2,)). From this and the fact that DyL = &L the first two identities
follow straight forwardly. For the third identity we find that L = [ — |Vw|*L — 2Vw

since
(L, Ly ={1,L) =2

(L, VY=, VwL) — 2Vw,V) = 2Vw — 2Vw = 0
giving
(V) = 5Dy v Lol ~ |VwPL ~ 2V)
= %<DVL + kVwL,l — |Vw|’L — 2Vw)
= (V) ~ {IVePV(L L)~ (Dy L, Vo) + (Y, V)
=t(V) — K(V,Vw) + k(V,Vw).
For comparison between y and () we calculate

x(V, W) =Dy vur(l — |Vw>’L — 2Vw), W + WwL)
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in three parts:
Dy iy, W +WwL) = Q(V,W) + Vw(Dpl,W) + Ww({Dyl, L)
+ VwWw(Dgl, L)
— QUV, W) — Vel DyW — Wal, Dy Ly
— VwWwll,DyL)
=Q(V,W) =2Vwt(W) = 2Wwt(V) — 2,sVwiWw

—|Vw|* Dy yvurL, W + WwL) = —|Vw|*(Dy L, W + WwL)
1
= —|Vw|*’K(V,W) — §|Vw|2WwV<L, L)

= —[VwPK(V, W)
—2{Dy vV, W + WwL) = —=2(DyVw, W) — 2Ww(DyVw, L)
—2Vw(DVw, W) = 2VwWw(DVw, L)
= 2HY(V,W) 4+ 2WwK(Vw,V) = 2VwLWw
+ 2VwK (Vw, W) + 2VwWw(Vw, Dy L)

= 2H*(V,W) + 2WwK (Vw,V) + 2VwK (Vw, W)
the third to last line coming from
(D Nw, W) = L(Vw, W) —(NVw, DW) = LWw — K(W,Vw)

Collecting all the terms the result follows. The final identity follows upon taking a

trace. O
5.2 Flux Comparison

We are now ready to prove our first main result of this section. On X, we will
denote the flux function (2.1) by g and on X, by p the following theorem provides

comparison between the two
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Theorem 5.2.1 (Flux Comparison Theorem). At any q € 3, N s we have

e (BLOLDg.) (i cuso)var

|Ky2 + G(L, L)

— + G(L,Vw) — 2K(t — Vlogtr K, Vw)

Remark 5.2.1. Revisiting Theorem 4.5.2 and the case that X = G(L,-) = 0, Theo-

rem 5.2.1 provides an alternative proof that p agrees with p point wise.

Proof. When used, we assume V,W,U € E(3,,)( = V,W,U € E(%,)). We will
need to know how to relate the covariant derivatives between the two surfaces so first

a lemma

Lemma 5.2.1. T, <VVW L VOR(W) + WwE (V) — K(V, W)Vw) — VoW

Proof. Since VW |, = (S + SwL)|, = T,,(S|,) for some S € T(T%,) it follows that
(YW, Uy ={(S,U) for any U € E(%,,). We find

(YW, Uy ={(DyW + X(f/ W)L + 1X(f/ W)L,U)
=(DyW,U) + %K(V, W)}L,U)
= VAW,0) — (7, Dyl + S K (VWK ~ |Vw’ L~ 2V, U)
= (V 4+ VWLYW.U) — W + WeL, Dy Uy — K(V. W)U
= VAW, U) + VWK (W,U) = (W, VyU) + VWK (W,U) = WK (V, 1))
— K(V,W)Uw
- <V<W, Uy — (W, VVU>> + K(W,U)Vw+ K(V,U)Ww — K(V,W)Uw
= (VyW + VwK(W) + WwK (V) = K(V,W)Vw,U)

50 S = VyW + VwK (W) + WwK (V) — K(V, W)Vw since E(Z,,)

Sug) = [(TYq)).

[l
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Now we proceed with the proof of Theorem 5.2.1 in 3 parts:
Step 1 Comparison between ¥ - ¢ and V - t:

From Lemmas 5.1.1 and 5.2.1 we have

(Ve Q)W) = V(W) = (VW)
— (V + VwL) (t(W) ~ K (W, Vw) + &(W, w>)
- t(VVW FVOR(W) + WwR(V) — K(V, W)Vw)
4 K(VVW FVORW) + WoR(V) — K(V, W)V, w)
— VYW + VWK (W) + WwEK (V) — K(V, W)Vw, Vw).

Isolating the terms of the second line we get

(V+VwL)t(W) — K(W,Vw) + kWw)
=Vt(W) + Vw(GL(W) — V- -K(W)—tr Kt(W) + %WtrK + Wm)

— VKW, Vw) = Vw(LLK)(W,Vw) = VwK(W,[L, Vw])

+ ViWw+ kVWw + VwLEWw

where (4.7) was used to give the first line. To continue we’ll need an expression for

[L, Vw] and use (4.2) to get it:
2K(Vw,V) = (Lp7:)(Vw, V) = L{Vw, V) = {|L, Vw], V)

= LVw —([L, VW], V)

= (L, Vw], V)

since [L, Vw] € T(TS,) we conclude that [L, Vw] = —2K (Vw). Substitution back
into our calculation and using (4.3) in the form
LLE(V,W) = —a(V,W) + (R(V), K(W)) + 5 (V, W)
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gives

(V + VwL)(t(W) — K(W, Vw) + kWw) = VEW) — VK (W, V)

R 1 . .
+Vw (GL(W) =V R(W) = tr KH(W) + 5W tr K +a(W, V) + (K (W), K(Vw)>)
+ VwuWk — kVwK(W,Vw) + VEWw + kVWw 4+ LkVwWw.

Collecting terms we get

(YiO)(W) = V(W) — t(Vy W) + K(Vy W, Vw) — VE(W, Vw)
+Vw <GL(W) VRK(W) —tr Kt(W) + %W tr K + a(W, Vw) + (B (W), z?(w»)
—VwK(W,t) — WwK(V,t) + K(V,W)t(Vw)
+ VlKE(W), K (Vw)) + WK (V), K (Vw)) — K(V,W)K (Vw, Vw)
+ VuWk — kVWK (W, Vw) + ViWw + kVIWw + LeVwWa

— kVyWw — kVwK (W, Vw) — sWwK (V, Vw) + kK (V, W)|Vw|?.

So taking a trace over V and W
Y (=V t-V-(K(Vw))

+ <GL(Vw) — (V- K)(Vw) — tr Kt(Vw) + %Vw tr K + a(Vw, Vw) + \[?(Vw)P)

— 2K (Vw, 1) + tr Kt(Vw) + 2| K (Vw)|* — tr KK (Vw, Vw)

+ 2Vwk — 3k K (Vw, Vw) + kAw + Lk|Vw|? + ktr K|Vwl|?
- . 1 1
—Vt- (v (B (VW) + (V- K)(Vw) = S Vwts K) . 2<K(Vw,f§ —5t Kt(Vw))
+3|K(Vw))? — tr KK (Vw, Vw) 4+ GL(Vw) — tr Kt(Vw) + o(Vw, Vw)
+ 2Vwk — 36K (Vw, Vw) + kAw + Lk|Vw|* — %ratr K|Vw|?
V.t (2(v K (Vw) + H® - K) 2K (Vw, ) + 3K (Vw)? — tr KK (Vw, Vw)

+ Gp(Vw) — tr Kt(Vw) + a(Vw, Vw)
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N 1
+ 2Vwk — 3k K (Vw, Vw) + kAw + Lk|Vw|?* — §I{tr K|Vwl|?
> . > 3 22 2
=Vt =2V K)(Vw) = H - K = S tr KAw - 2K (Vw,t) + S KVl
- 1
+ 2tr KK (Vw, Vw) + Z(tr K)?|[Vw]* + GL(Vw) — tr Kt(Vw) + a(Vw, Vw)
N 1
+ 2Vwk — 3k K (Vw, Vw) + kAw + Lk|Vw|?* — §/<¢tr K|Vl

Step 2 Comparison between ¥ - ¢ — Alog trx and V-t — Alogtr K:

Since tr xy = tr K|z, we start by comparing Alogtr K with Alogtr K
Hs"X(V W) = (Ve Vlogtr K, W) = VIWlogtr K — VW logtr K

So isolating the first term we get
VWlogtr K = (V + VwL)(W + WwL) log tr K
=VWlogtr K + (VWw + VoW + WwV)Llogtr K + VwWwLL log tr K
and then the second
VoWlogtr K = (Vi W + VwK (W) + WwK (V) — K(V, W)Vw)log tr K
+ (VyW 4+ VwK (W) + WwK (V) — K(V,W)Vw)wLlog tr K
having used Lemma 5.2.1. Collecting terms
HYs KV W) = ViVlogtr K — Vy W log tr K

+ (VWw — VyWw)Llogtr K + VwWwLLlog tr K
- <VwK(W, Viegtr K) + WwK(V,Vlegtr K) — K(V,W){Vw, V log tr K>)
+ <K(V, W) Vw|? — VWK (W, Vo) — WwK (V, V) + VoW + WwV)Llog r K.

So that a trace over V and W yields
Alogtr K = Alogtr K + AwLlogtr K + |Vw|*LLlog tr K — 2K (Vw, V log tr K)
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— 2K (Vw, Vw)Llogtr K + 2VwLlogtr K.

We take the opportunity at this point of the calculation to bring to the attention
of the reader that we have not yet used any distinguishing characteristics of the
function log tr K in comparison to an arbitrary f € F(€2). In particular, we notice if

f e F(Q) satisties Lf = 0, switching with log tr K" above, yields
Af = Af —2K(Vw,V§).
As a result,
Lemma 5.2.2.
Ag=2Ag+V - (LgVw) + Vwlg — 2K (Vw, Vg)
for any g € F(Q).
Proof. We have
Ag = Ag + AwLg + |Vw|>LLg — 2K (Vw, Vg) — 2K (Vw, Vw)Lg + 2VwLg
= Ag + (Aw — 2K (Vw, Vw))Lg + (Vw + |Vw|*L)Lg + VwLg — 2K (Vw, Vg)
— Ag + AwLg + YwLg + VwLg — 2K (Vw, Vg)
= Ag+ Y - (LgVw) + VwLg — 2K (Vw, Vg)

having used the fact that Lw = 0 and the comment immediately preceding the

statement of Lemma 5.2.2 to get the third equality. O

Finishing up Step 2 we have
Y-(— Alogtrz =V -t—Alogtr K

—2(V-K)(Vw) — H* - K — 2K(Vw,t— Vlogtr K)
3 .
—tr Kt(Vw) + Vwtr K + §|K|2|Vw\2 + Gp(Vw) + a(Vw, Vw)
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1 1
— (5 tr KAw + AleogtrK) + (Z(trK)2 —QlogtrK>|Vw|2
- (thrK+ QVWLlogtrK) + 2f((Vw,Vw)<trK+LlogtrK>

+ 2Vwk — 38K (Vw, Vw) + kAw + Lk|Vw|? — %mtr K|Vwl|?
=V-t—Alogtr K

—2(V-K)(Vw) — H* - K — 2K (Vw,t — Vlog tr K)

—tr Kt(Vw) + Vwtr K + |K*|Vw|? + GL(Vw) + &(Vw, Vw)

|K?+G(L,L)
tr K

+ %(\fq? +G(L, L)) Vel + (Aw - 2K (Vw, Vw))

|K?+G(L,L)
tr K

1 -
(= SURP +GL L) — ktr K) + L )IVel?

K>+ G(L, L A . 1
+ 2Vw| | ;C;((_’_) +tr KK(Vw,Vw) — kK (Vw, Vw) — §/<atr K|Vwl|?

=V-t—Alogtr K
—2(V-K)(Vw) — H* - K — 2K(Vw,t — Vlogtr K)
—tr Kt(Vw) + Vwtr K + |K)?|Vwl? + GL(Vw) + a(Vw, Vw)

KP+GLL) , | |K]P+G(L L)
tr K - tr K

K|+ G(L,L)
tr K

+ Aw |Vw|® + 2Vw

+ tr KK (Vw, Vw) — kK (Vw, Vw)

having used (8) to get the last two lines in the second equality, Lemma 5.2.2 to get

Aw—2K (Vw, Vw) = Aw in the second equality followed by cancellation of the terms

%(\KP + G(L,L))\VwP and 1r tr K|Vew|2.

Step 3 Comparison between p and p:

Denoting the Gauss curvature on ¥, by C and the mean curvature vector h we have
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from the Gauss equation (3.1)

1 - = 1 1 1
K—Z<H,H>+§X'>€= —§R—G(L,L)—Z<RLLL,L>

1 1
= _ER - G(L,1 - |VW‘2L —2Vw) — Z<RLl—|Vw\2L—2VwL7 [ — ’VW|2L —2Vw)

12w 1o 4
=C— 3l + 5K -Q+ [V G(L, L) + 2G(L, Vw) = (Ryvul, L)
- <RLVUJL7 VU.)>
| U
= C— Ry + 5K - Q+ 3IVulPG(L L) + (26(L V) — (Rpvul, L)
- Q(Vw, Vw)
from this we conclude
1, o = 1~ -
(/C— L )+ ¥ -Q—Alogt%) - (c - Z<h,h>+v-t—mogtrK)

- 5(K-@-x%)

+ %|Vw‘2G(L, L)+ (20(;, V) — <RLWZ,L>) — &(Vw, Vw)
—2(V-K)(Vw) — H* - K — 2K(Vw,t — Vlogtr K)

— tr Kt(Vw) + Vwtr K + |K)?|Vwl® + GL(Vw) + &(Vw, Vw)

K +G(L, L)

|K|? +G(L,L) K[+ G(L, L)
+ L
tr K

+ Aw tr K - tr K

|Vw|? + 2Vw

+tr KK (Vw, Vw) — kK (Vw, Vw)

Isolating the first two terms and using Lemma 5.1.1 we get

~
~

K- Q —XX
— K-Q— (K- Q= VWK — 4K (Vw, 1) + 2 K| Vel

4 2tr KK (Vow, Vw) — 2K - HY — 2kK (Va, vm)
— —|KP|[Vw]? = 2tr KK (Vw, Vw) + 2K - H* + 4K (Vw, 1) + 25K (Vw, Vw)
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and finally we have
]_ - 1 - =
(/c - J(H )+ Y (- Alogtrx) . (c — BB+ V-t - AlogtrK)
1 . N
::?VMFOKF+GQ@Q>+Gﬂwa—ﬂﬂVMt—nguK)
+ <2GL(Vw) (Rpwol, L) —2(V - K)(Vw) + 2K (Vw, ) — tr Kt(Vw) + Vwtr K)

|K[?+G(L,L)  |K]?+G(L, L)
v tr K +L tr K

K +G(L. L)

+A tr K

IVw|? + 2Vw

Amagzingly the third line vanishes by the Codazzi equation (3.2) as well as all terms

with a factor k giving
Ly - - S
p—p= §<]K|2 + G(L,L)) IVw|* + G(Vw) — 2K(Vw,t — Viogtr K)

|K]? +G(L,L)
tr K

K|? L. L K|? L. L
w\ | +G(_,_)+L| >+ G(L, L)

+A tr K - tr K

|Vw|? + 2Vw

and the result then follows from the fact that Yw = Vw + |Vw|?L as well as

K +G(L L)

12 |2
JEPHGLL) | o IKP+G(L L)
tr K

tr K tr K

v ( Vo) = 4

5.3 Asymptotic flatness

In this section we wish to study the limiting behaviour of our mass functional in
the setting of asymptotic flatness constructed by Mars and Soria [18]. Beyond the
assumption that we have a cross-section X, of © we also assume for some (hence
any) choice of past-directed geodesic null generator L (i.e. DL = 0) that S, = co.
So all geodesics ’qu are ‘past complete’ with domain (s_(g), ). We now take sy =0
ignoring all points p satisfying s(p) < S_ and conclude that Q =~ S? x (S_,00). Al-
though the value of S_ will depend on our choice of geodesic generator L our interest
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lies only on the past of X (i.e. S? x (0,0)) so we ignore this subtlety. A null hyper-
surface €2 with all the above properties is called extending to past null infinity.

In order to impose decay conditions of various transversal tensors (i.e. tensors sat-
isfying T'(L,---) =---=T(---,L) = 0) we choose a local basis on ¥, and extend it

to a basis field {X;} < E(3y). Given a transversal k-tensor T'(s) we say,

o I'=001)ift T3, ; =T(Xi,...,X;,) is uniformly bounded and 7' = O,,(s™™)

1.0k 119
iff
s"H(LLYT(s) =0(1) (0<j<n)

o T'=o(s™™) iff lim s"T(s)s,.i, =0 and T = o0,(s™™) iff

§—00

L) = oft) (055 < n)

s"Lx,, ...ﬁXijT(s) =o(1) (0<j<n).

Now we're ready to define asymptotic flatness for €2 as given by the authors of

[18]:

Definition 5.3.1. We say () is past asymptotically flat if it extends to past null in-

finity and there exists a choice of cross-section ¥y and null geodesic generator L with

corresponding level set function s satisfying the following:

1. There exists two symmetric 2-covariant transversal and L Lie constant tensor

fields v and v; such that

Y=y — ™ — sy = 01(s) N 03 (s)
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2. There exists a tansversal and L Lie constant one-form t, such that

3. There exist L Lie constant functions 60y and 0 such that

~ O 0 9
0 :=tr —;—;zo(s )

1
4. The scalar <RXZ.1X1.2 X, Xy along Q is such that lim —2<in X;, Xis X, ) exists
50 8§ 1
while its double trace satisfies —2R — G(L,1) — 1(RuL,1) = o(s™?).
We will have the need to supplement the notion of asymptotic flatness of {2 with a

stronger version of the energy flur decay condition (G = o(s72), L7 = o(1) as

given in [18]) with the following:

Definition 5.3.2. Suppose €2 is past asymptotically flat. We say €2 has strong flux decay
of

Gp =o(s72), t = o) (s7") and Eiﬁ = og(_j(sl_j) for1<j<3

and strong decay if the condition on Gy, is dropped.

We will also need some results from [18] (Proposition 3, Lemma 2, Section 4)
resulting directly from the asymptotically flat restriction on 2. One particularly
valuable consequence is the ability to choose our geodesic generator L to give any
conformal change on the ‘metric at null infinity’, which turns out to be given by the
2-tensor, . By the Uniformization Theorem we conclude that this covers all possible
metrics on a Riemannian 2-sphere. We will denote the covariant derivative coming

from v by V.
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Proposition 5.3.1. Suppose €2 is past asymptotically flat with a choice of affinely
parametrized null generator L and corresponding level set function s. Letting v(s)%
denote the inverse of y(s):;,

1 1

7(s)¥ = S—ﬂij - ;70117 +o(s7%) (5.1)
. 1
Kij = %5 + 5 Vij T o(1) (5.2)
K .
]C,y(s) = 8_2 + O(S 2) (5.3)
2K 0 L
tI‘KZE—F?-FO(S ) (55)

where 49 is the inverse of ¥, tensors with ring highlight the fact that indices have
been raised with v and 6 = —%tor%.

It follows in case L7 = 03 (1) that
1. »
b= SV e = Gy ofs™)

Proof. We refer the reader to [18] (Proposition 3) for proof. O

As promised in Remark 2.1.1 we are now able to prove the following well known

result:

Lemma 5.3.1. Suppose ) extends to past null infinity with null geodesic generator
L. Then any cross-section 3 — ) satisfies tr K = 0. If Q is past asymptotically flat

then X is expanding along L.

Proof. For w € F(Q) constructed by Lie dragging s|s along L we have 3 = ¥; for

the geodesic foliation {¥,} given by s = wA. So it suffices to prove the result along
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an arbitrary geodesic foliation for 2. From (8) we have, whenever tr K(s¢) < 0 for

some g, that

1 1, o
B >
L(trK> 2+|>< "+ G(L™,L7)

N | —

wherever it be defined as well as

1 1 s — Sg
=
trK(s) trK(so) * 2

s—sy

for any such s = sg. So we can find an s; > sy such that tr K(s) —— —oo. Since
this contradicts smoothness we must have that tr K > 0 on all of Q. If Q is past
asymptotically flat it follows from Proposition 5.3.1 that tr K (s) > 0 for sufficiently

large s. Since (4.4) gives
1 ~
L(tr ) = — L K)? — K - G(L.L) <0

we have tr K (sg) = tr K(s;) for all sp < s1. So we must have that tr K > 0 on all of

Q. ]

Lemma 5.3.2. On each X, the difference tensor
D(V,W) := VyW — Vy W

admits the decomposition

1 o . o . 1 -
ij = §(Vﬂ’1kj + Vﬂlki — Vk%ij)g +0(s72).

Moreover, if f € F(Q) is Lie constant along L then
I 0T o > oij =i 1 -3
Af = AL+ (APVIVLE = (VAL +(V0) f)— + o(s70)
Proof. The result follows from the well known fact (see, for example, [29]) that

(DV,IV),0) = S (T2 (W,U) + Ty (V,U) — VoV, )

91



= S (Vv (W,U) + Vn (V.U) = Vo (V. W)

(Vi3(W,U) + Vi A(V,U) — Vi (V, W)).

DN | —

_|_

The second is a simple consequence of the first, we refer the reader to [18] (Lemma

2) for proof. O

In the next Proposition we show that the decomposition of the metric given in

Definition 5.3.1 part 1 allows us to find K, up to O(s™%):

Proposition 5.3.2. For a decomposition of the metric y(s) = s*Y+ sy, +7 for some

fixed s we have:

£ 1 . 1. o .
Kysy =3+ g(KQ + §V Vy 4+ A0) +O0(s™) (5.6)

Proof. First we take the opportunity to show that V.W € E(X,) gives VyW e

E(%0). Starting with the Koszul formula
2V W,U) = VA(W,U) + WH(U,V) = US(V, W)

- ﬁ/(‘/u [Wv U]) + &<W7 [U> V]) + ’?(Uv [V> W])

and the fact that 4 is Lie constant along L we conclude that L’?(%VW, U) =
Y([L, %VW], U) on the left, applying L on the right we find everything vanishes
since V,W € E(%y) — [V,W] e E(Z). Therefore 5([L, VyW],U) = 0. Since
[L,VyW] € T(TS,) and 4 is positive definite it follows that [L, VyW] = 0 and
therefore 6VW € E(Xy). To show the decomposition of K,y we start by finding the
decomposition of the Riemann curvature tensor on >:

+ Xi(Vx, X, Xom) — (Vx, Xk, Vix; Xin)

= (Vi x;1 X0 Xom) — XilVx, Xipy X + (Vx, X3, Vi, Xon)
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+ XV, Xiy Xon) — (Vx, X, Vi, Xon)

+(D([X5, X;1, Xi), Xon) — X D(X;, Xi), Xy + (D(X;, Xi), Vi, Xom)
+ (Vx, X, D(Xi, X)) + X(D(Xi, X3), Xpn) — (D(Xi, X3), Vi, X
— (Vx, X1, D(X;, X;n))

+ (D(X;, Xk), D(Xi, Xin)) — (D(X;, Xi,), D(X;, X))

Using the decomposition 7, = s*§ 4+ O(s) we recognize the leading order term, com-

bining lines 3 and 4, is 82%(}?)(1.)(3. Xk, X;n). In order to find the next to leading order

term the fact that <R_SXZ,XJ,X;€, Xm)— S%(éXinXk, X ) defines a 4-tensor on each >,
allows us to search independently of our choice of basis {X7, X5}. In particular we
may assume that @Xin = 0 at ¢ € 3, (hence on all of £, since %Xin e E(X)).

So assuming restriction to the generator through ¢ and using Lemma 5.3.2 we have
(R, X0 Xm) — 8*9(Rox, x, X, Xin)
= —s X1 (Vx, Xi, Xon) + sX;m (V, Xi, Xon)

S e . .
- §Xi(vXj’71(Xk;; Xm) + V1 (Xj, Xin) — Vx,,71(X;, Xi))

S ° o o
+ §Xj(VXi'71(Xka Xm) + Vi, (Xi, Xin) — Vi, 11(Xs, Xi))
+0(1)
= _SXile(%Xij; Xm) + SXijl(%XiXk; Xm)

g(%xj V(X Xo) + Vi, Va1 (X5, Xon) — Vi, Vi, (X5, Xi)
— Vi, V1 (Xe, Xo) = Vi, Vi, 11(Xj, X)) + Vi, Vi, 1 (X5, Xk))
+ O(1).

It remains to simplify the two terms of the first line in the second equality. Since

fh(vx Xi, Xm) = Vi, ’Yl(VX X, X)) + 71(%Xi6Xija Xm)
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we conclude that
— X1 (Vx, X, Xon) + X (Vi X Xon) = 71(Rx,x, Xe Xn)-

Moreover, it is easily shown using our choice of basis extension that

1 ° o ]_ o o o
§vvaX¢71<Xk7Xm) - §VX¢VXj’V1(Xk,Xm) + 71 (R, x; Xk, Xim)

1 o o
= 5(71(RX¢Xij7Xm) — 71 (Rx,x; X, Xi))-

So we finally have from the fact that X, is of dimension 2 that

(R, x, Xk, Xm) = 52K (SitSim — FimVit)

S, . . .
+ §’C(%k’71jm — VimV1jk T Vim Vi — YikV1im)

S o o o o o o o o
+ §(Vjvk71im = ViVarie = ViVitijm + ViViaye) + O(1).

Using (12) to take a trace over i, k:

s o, 1. .
(Ric®)jm = KAjm — EICQ’ij

1 o . . . K
+ 2—S(Vj(V A)m + 2V Vil = (V29)jm + (V- (V71))my) + g(QQ’ij + Y1jm)
+0(s7?)
— KAjm
1/. . . 1o 1 o . . 1.,
+ ;(KQ’ij + Kyijm + §VJ(V "V )m + §(V (V7)) + ViVl — §(V 71)jm>
+0(s™%)

and then over j, m:
9. 1,/ . L ) 9 . »
2K = 5K+ E(2/¢Q—2/¢Q+ VoV +280) + K0+ 0(s7)

giving the result. [l
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Remark 5.3.1. Interestingly, in the case that §2 is asymptotically flat satisfying the

enerqgy flurz decay condition we conclude that

£ 1. . o
Kys) == + E(ICQ +V-t)+0(s)

according to Proposition 5.3.2.

Definition 5.3.3. For Q past asymptotically flat with background geodesic foliation

{3} we say a foliation {3, } is asymptotically geodesic provided

5= s, +&

with scale factor ¢ > 0 a Lie constant function along L and L'€ = oy ;(s'%) for

0 < i< 2. In addition (similarly to [18]), we will say {¥s,} approaches large spheres

provided the class of geodesic foliations measuring ¢ = 1 also induce v to be the

round metric on S?.

Remark 5.3.2. Given a basis extension {X;} < E(3g) (on {£s}) and a foliation

{¥Xs,} as in Definition 5.5.8, Lie dragging s|s,, along L to give w € F(£2) we see at

qe s,
Wi = Gise + Eswi + &

Wij = GijSx + Esswiw; + Esjwi + Eswij + &

where w; = Xjw, wij = X;Xw, § 1= L&, & = LLE, & = X;(§

Es(q)); gsi = Xz(gs Es)

and &; = X;X;(&|s,). The decay on & therefore gives us that:

w; = gblls*_—z& = 0;Ss + 0(84)

= ¢ijS + 0(S4).
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From (12) and Lemma 5.3.2 we conclude that

dw

., +ols )

. = (0P

(s.).

1
Aw|25* = ¢28*
5.8.1 Asymptotic Mass and Energy

Using Theorem 5.2.1 we prove a slightly weakened version of the beautiful result

found by the authors of [18] (Theorem 1):

Proposition 5.3.3. Suppose Q is past asymptotically flat and {34} is an asymptot-

ically geodesic foliation with scale factor ¢ > 0. Assuming L7 = o7 (1) we have

I{ 2dA
lim Bi(S,.) = 7 Sd) f /ce 0 — A+ 4V - tl)dA
Sx—00 T

with 7, I&, 0, 0 and ty associated with the background geodesic foliation.

Proof. Given any fixed s, we define w € F(Q2) by Lie dragging along L:

v, = (05« +8)|s

as before. From the decomposition v, = ¥ + sy, + 7 and the standard identity for

any invertible matrix M:
det(M + sB) = det M(1 + str(M'B) + O(s?))

we have

1
det(v,) = s*v/det(¥)(1 — =0 + o(s™1)).
s
From the first identity of Lemma 5.1.1 we therefore conclude that

dA,, = dAy|ls. = s2¢*fdA

Sx

96



where f =1+ o(s?).
In Theorem 5.2.1, denoting the sum of all but the first two terms by 7, (Vw) we see

K>+ G(L,L)
tr K

n(Ve) = (1K + G(L L)Vl + (L. V) + Vi
— 2K (i'— Vlogtr K, Vw)
= %(;f(\? +G(L, L))|Vw]* + G(L, Vw) — Vw(Llogtr K + %trK)
— 2K (i'— Vlogtr K, Vw)

giving from Propositions 5.3.1 and 5.3.2

K[+ G(L, L)
tr K

Ar———2 = deAw = Jp +V- ( Wu}) + 1,(Vw)dAs,,

r

= | p+n,(Vw)dA,,
J

:Jr‘(g;—i—%(leﬁ—{—%ﬁ-%'%‘f‘AQ)_}l(

+V-t+ GL(Vw)
1, -
+5(IK7 + G(L, L) |V

1 o
— Alogtr K — Vw(Llogtr K +  tr K) = 2K (f— Vlegtr K, Vw))dAs*

+o(s, )
:f(é(%lég—%m%%ﬁ-vwﬁﬁ)

1 S
+ V. t+ Gr(Vw) — §thrK—2K(t,Vw)
1 -
IR+ G L)

— Alogtr K — VwLlogtr K + 2K(V10gtr K, Vw))dAS*
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having used the Divergence Theorem to get the second line. From Lemma 5.2.2 we

have
—Alogtr K —VwLlogtr K + 2K (Vlogtr K, Vw) = —Alogtr K + V- (Llog tr KVw)

and therefore integrates to zero on >, by the Divergence Theorem. We also notice

from the fact that L is geodesic and Yw = Vw + |Vw|?L that
K(V,Vw) = K(V,Vw) = x(V, V)
for V € E(5). Lemma 5.1.1 and 5.2.1 therefore gives
Vil (W) + (Vi (x - dw) (W) = VW) + x(W, Yw)) = (VW) = x(Vi W, Vw)
— (V + VwL)(W) — (t(VVW L VWE(W) + WwR (V) — K(V,W)Vw)
~K(VyW + VOE(W) + WuK (V) — K(V, W)V, W)) — XYW, Yw)

= Vyt(W) + VwLlpt(W) — VwK (t, Vw) — WwK (t, Vw) + K(V, W)t(Vw)

where all terms in the penultimate line canceled from Lemma 5.2.1. Taking a trace

over V., W
V-¢(-V  (X(Yw) =V t+ Lt(Vw) — 2K (I, Vw)

1 N .
=V -t+G(Vw) — §thrK —2K(t,Vw) = V- K(Vw) + Vwtr K — tr Kt(Vw)
having used (11) to get the last line. We conclude that

1 . N
fV-t—l—GL(Vw)—EVw tr K—2K(t,Vw)dA,, = JV‘K(VM)—VW tr K+tr Kt(Vw)dAs,

giving
En(Xs,) f 1 /1. 1 le o o
) i s — (=K — =0+ -V -V- Ad
T i (w?’(QK_ 0TV Vet —)
16m
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~ 1 -
+ V- K(Vw) = Votr K + tr Kt(Vw) + S(IK P + G(L,L))|Vw|2>dAs*
+o(s;1).
Now we turn to simplifying the final term in the integrand

(K2 + G(L, L)|Vw]2 = (Vo — Yw) tr K — %(tr K|Vl

Denoting g := tr K — 2 — s% we conclude from the hypothesis £15 = o7(1) that

g = 07(s7%). So denoting g, := g|s,., we have from Remark 5.3.2 (regarding the

decay) that

Vwtr K

s, = Vwgls,, + S—lzvch o
— Vb +o(s?)
Votr& = Yug + Vo> + 2)
— V- (0.50) — hge — IVl + V()
=V (0.V) — (A — 2K (i, Vo)) — | Vl? + Pl )
V- (0.¥) — IVl + Vel ) + ofs2?)
S IVl = 52+ PV + ofs2?)
= ZIVul + 2Tl + ofs7?).

Combining terms we conclude

(IK]* + G(L, L)) Vel L =V (0.Yw) +o(s.7).

Sx

It’s a simple exercise to show K = —3(m + 07) + 0(1), so for dw

Yoy
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— (s2¢*)(— do!

_+o(s;')) we have from Lemma 5.3.2

VR (Volls, = 555057 (0 + 8D(T07) + ofs.?)
13 ;2% 19 4 o(s=?)
12 = -1 -3
tr Kt(Vw)|s,, = —;Etl(qu ) +o(s, ).
Therefore
«/W)zfdAJ ICO+ v v 71+A6’——0>
+ 2v (11 + 039) (Vo) + V610 — 2t (Vo™ ))dA+o(59)
giving

/ 244
lim By (S, Scb J ICO+ v v 71+A9——9>

+ v (11 + 05) (Vo) + V10 — 2, (Vo™ ))

I{ ¢2dA
Siﬁ f /ce+ v v 71+A9——9>

1 o o o 2 . o
— 50TV V (k- 87) o7 Ag 4 SV tl)dA

U ffda 1
=2 (K= — Ag+ 4V -1, )dA
167\ 4n Lzs(@ 6-A6+4v “)d

having integrated by parts to get the second equality. O

Remark 5.3.3. Suppose () is a past asymptotically flat null hypersurface with a back-
ground geodesic foliation {¥s} approaching large spheres (i.e 7y is the round metric
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at infinity). Then for any other geodesic foliation of scale factor 1 it follows that the
metric at infinity is V*3 (see [18], Section 4) approaching large spheres if and only
if ¥ solves the equation

1— % = Alog . (5.7)

Proposition 5.5.3 shows all asymptotically geodesic foliations {34, } of the same scale
factor ¢ share the limit
E(¢) = lim Ep(%,,)

Sx—00

which measures a Bondi energy Eg(v) if ¢ solves (5.7). The Bondi mass is therefore
given by

mp = inf{E5(¥)]1 — ¢ = Alog}.

Theorem 5.3.4. Suppose €) is a past asymptotically flat null hypersurface inside a
spacetime satisfying the dominant energy condition. Then given the existence of an

asymptotically geodesic (P)-foliation {3} approaching large spheres we have

for Eg the Bondi energy of Q associated to {¥s,}. If equality is achieved on an
(SP)-foliation then Ep = mp the Bondi mass of Q. In the case that tr x|s, = 0 we

conclude instead with the weak Null Penrose inequality

30|
=< E
167 B

where equality along an (SP)-foliation enforces that any foliation of Q shares its
data (7y, x, trx and ) with some foliation of the standard nullcone of Schwarzschild

spacetime.

Proof. Since any asymptotically geodesic (P)-foliation has non-decreasing mass from

Theorem 2.1.1 and m(3;,) < Eg(X;,) from Lemma 3.2.2, it follows from [18] (The-
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orem 1) that m(3;,) converges since Ey(X;,) does. Moreover,

lim m(X,,) < lim Ey(Z,,)

Sx—0 Sx—00

and from [18] (Corollary 3) it follows that limg, .., Ex(Xs,) is the Bondi energy
associated to the abstract reference frame coupled to the foliation {¥,,}. Given

the case of equality, Theorem 2.1.1 enforces that m(0) = m(X,,) for all s.. So

2 3
Theorem 4.3.2 applies and we conclude that m(X) = %(ﬁgr{f dA()) * (for some

positive function ro on X of area form rgdAy) irrespective of the cross-section 3 < €.
This gives, according to Remark 5.3.3 and Lemma 3.2.2,

11 (2 3
lim m(Xs,) = —<— frgdA()) = Ep < inf E(¢) < mp.

54— 2 \4m $>0

Since Fp < inf E(¢) < mp < Ep all must be equal.

If tr x|s, = 0 property (P) gives
0 = A 10g p|20

and the maximum principle implies gy, = K + Y - 7 is constant. From the Gauss-

Bonnet and Divergence Theorems we conclude that gy, = é—’;‘ from which it follows

that m(0) = %. Under this restriction Theorem 4.3.2 enforces that any foliation

of € corresponds with a foliation of the standard nullcone in Schwarzschild with

respect to the data v, x, tr x and ¢. O]

From Proposition 5.3.3 and Lemma 3.2.2

1,1 . . 5 o\ 5
inf E(¢) = —(4— J(ICQ— 60— Al +4V - tl)ﬁdA>

$>0 4 \4r

provided K8 — 6 — AG+4V - t; = 0. We show, given that () satisfies the strong

flux decay condition, this quantity is infact lim m(Xs,). We will need the following

Sx—00

proposition to do so:
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Proposition 5.3.5. Suppose € is past asymptotically flat with strong decay. Given a

choice of affinely parametrized null generator L and corresponding level set function,

s, we have
1 o
Ad _
AtrK = T o(s™) (5.9)
1. ig
V-tZEV-tl—l—o(s ) (5.10)

Proof. From Lemma 5.3.2 and (5.2)

. 1
VilKjm = Vi(8Yjm + 5%jm) — D} Ky — Dl K + 07 (1)

1. .
= 5 ViTigm = ViTijm + o1 (1)

1o
= —ivi’yljm + Of(l)

where the first term of the second line comes from the fact that V'y = 0. Next we

compute

ViV, Kon = ViViKyy — DEV Ko — DV i Ky — DYV Ko

1. .
= =5 ViV¥imn +0(1)

So contracting with (5.1) over j,m followed by i,n we get (5.8) and contracting

instead over m,n and then 7, j (5.9) follows. For (5.10)

- k

1o
= gvitlj + 0(8_1)

and the result follows as soon as we contract with (5.1) over ¢, j. O
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Remark 5.3.4. As soon as we impose that 0 has strong decay it follows from the

fact that [Lx, Ly] = Lixy) that Lx,7, and Lx,Lx,7 = 01(s), since, for example,
LLLxy = Lipxy¥ + L£x, Ly = o(1).
As a result its not hard to see early in the proof of Proposition 7 that

K K
Ky = =+ = +O01(s™)

sz g3

for some Lie constant function K. We may therefore provide a simpler proof using

Proposition 5.3.5 and the propogation equation (4.1)

LK=—-tr KK—Atr K+V -V - K
i order to find KCq.

Theorem 5.3.6. Suppose €2 is past asymptotically flat with strong flur decay and
{¥s} is some background geodesic foliation. Then for any asymptotically geodesic
foliation {Xg,} with scale factor ¢ > 0 we have

1

sipls:) = 553

</€Q—9— AQ+4¢'t1> + 0(s?)

Proof. First let us remind ourselves of Theorem 5.2.1

p=p+ V. <|K!2 -L-rCfr;(QL)Ww) n %(‘KP n G(L,L))\VWF

12
L KPP+ GLL)
tr K

+ G(Vw) — 2K (f— Viogtr K, Vw).

Denoting the exterior derivative on X, by dj, since tr K = 2+ 5% +0(s7%), we conclude

that dslogtr K = %SdQ . +o(s7!) giving

Es* = 0(8:3)

K(t'—Vliogtr K, Vw)
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(s7H) noy(s™!) we also see that

Since L35 = off
A 1 2 2 1.2 4
K|? L L)=—-LtrK ——(trK)?=—(—= — =) — = (= + =)?
KPP+ G(LL) = Lk — LK) = —(—5 20 -2+ 4
+ 0¥ (573 no(s7?)

and therefore, from Remark 5.3.2:
K[>+ G(L, L K[>+ G(L, L
KP+GLL) | 5 |KP+GLL)

tr K

|K|?+G(L,L)
Ww) - Ww tr K

W' ( tr K
(o |K?+G(L,L) o, | K2+ G(L, L)
N (Vw tr K * |Vw| L tr K
K2 + G(AL))
Yoy

+ (Aw — 2K (Vw, Vw)) e

= 0(s,”)
From the strong flux decay condition we have G1(Vw)ls,, = o(s;?) also. From (5.9)
we have
AtrK  |VirK|?
Alogtr K = -
e tr K (tr K)?
A9 s
= 2_83 + 0(8 )

and combining this with Propositions 5.3.2 and 5.3.5:

p=rls., +o(s.”)
1 /1. 1. . C 1. 1. »
_E(—/CQ+§V-V-%+AQ—§9>+Ev-t1—2—ngQ+o(s*)

1

(/%Q 9 A+ 4V t1> +o(s7?)

2uw3

having used Proposition 5.3.1 in the final line to substitute %V V- Y1+ AQ =Vt
O

and the result follows.
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Remark 5.3.5. We would like to bring to the attention of the reader our use of
(5.4) in the second to last equality in the proof of Theorem 5.3.6. Assuming {3} is
infact a geodesic foliation, running a parallel argument to decompose p as we did for
p allows us to conclude that (5.4) must also hold for {¥,}. We refer the reader to
[18] (Proposition 3) to observe that under the additional decay of Theorem 5.5.6, part
4 from Definition 5.5.1 is no longer necessary to give (5.4) for an arbitrary geodesic

foliation provided it holds for at least one. We will exploit this fact in Section 6.2.

Corollary 5.3.6.1. With the same hypotheses as in Theorem 5.53.6 we have

1/1 . . . N
lim m(%,,) = —(— J(ICQ— 0 — A + 4V - tl)ﬁdA>2

Sx—00 4 \4r

Proof. From Theorem 5.3.6 we directly conclude

dr(4m(s,))3 = J(2p)§dAw - f% (f’cg 9 AO AV 1+ 0(1)) A
giving
4n(4 lim m(%,.))} = J <1€Q 9 A0+ 4V t1> A
by the Dominated Convergence Theorem. [

Finally we’re ready to prove Theorem 2.1.2:

Proof. (Theorem 2.1.2) The first claim of Theorem 2.1.2 is a simple consequence of

Theorem 2.1.1. Property (P) and Theorem 5.3.6 enforces that

0 < lim sfpzi(@—e—ﬁgwﬁtl)

Sx—>00 2¢3

therefore, Theorem 2.1.1, Corollary 5.3.6.1, Lemma 3.2.2 and Proposition 5.3.3 gives

1/1 . . . o\ 5
m(Xo) < lim m(%,,) = - (— f(/cg — 60— A +4V- tl)%dA) * = inf E(¢) < mp.
5400 4 \4r >0
The rest of the proof is settled identically as in Theorem 5.3.4. ]
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6

Perturbing Spherical Symmetry

6.1 Spherical Symmetry

For the known null Penrose inequality in spherical symmetry (see [14]) we provide
proof within our context in order to motivate a class of perturbations on the black
hole exterior that maintain both the asymptotically flat and strong flux decay con-
ditions. We also show the existence of an asymptotically geodesic (SP)-foliation for

a subclass of these perturbations toward a proof of the null Penrose conjecture.
6.1.1 The metric
In polar areal coordinates [22] the metric takes the form

g = —a(t,r)’dt @dt + b(t,r)*dr @ dr + r*5

for 4 the standard round metric on S?. From which the change in coordinates
(t,r) — (v,r) given by

b

dv = dt + —dr

a

produces the metric and metric inverse given by
g=—be¥dv®@dv + e’ (dv@dr + dr ® dv) + r*%
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1
g =P (0@ + 0, ®0) + 10 @0 + 577

for h = (1 — 2280y where M(t,r) := 5(1 — ) and a(t,7)? = he?’.

It’s a well known fact that assigning M (t,r) = mo > 0 and S(t,7) = 0 for my a
constant the above metric covers the region given by v > 0 in Kruskal spacetime
or Schwarzschild geometry in an ‘Eddington-Finkelstein’ coordinate chart. We will
therefore refer to the null hypersurfaces Q := {v = vo} as the standard nullcones (of

spherically symmetric spacetime) as they agree with the similarly named hypersur-

faces in the Schwarzschild case.
6.1.2 Calculating p

We approach the calculation similarly to the case of Schwarzschild. Denoting the
gradient of v by Dv we use the identity Dp,Dv = $D|Dv|? to see L := Dv = e~ ?0,
satisfies DL = 0 providing us our choice of geodesic generator for {2 and level
set function s (as in Section 4.1). For convenience we will choose our background
foliation {¥,} of €2 to be the level sets of the coordinate r. An arbitrary cross-section
¥ of €2 is therefore given as a graph over ¥, (for some ry) which we Lie drag along
Or to the rest of Q giving some w € F(2). On ¥ we therefore have the linearly

independent normal vector fields
L = e_ﬁar

D(r—w)=e"0,+ho, — Vw

where in this subsection (6.1.2) V will temporarily denote the induced covariant
derivative on %,. We wish to find the null section L € T'(T+Y) satisfying (L, L) = 2.
Since L = 1L + coD(r — w) we have

2={(L,L) = cye™P0,(r —w)

= 026_6
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0={(L,L)=2cico(L,D(r —w)) + cg<D(7‘ —w),D(r —w))
= 201026_6 + C§<€_2B<am a’u> + |VW|2 + 26_Bb<8v7 ar>)
= 2cic¢7P + (b + |Vw|?)

giving ¢y = 2¢° and ¢; = —e?(h + |Vw|?) so that
L =—€(h+|Vw?)o, + 20, + 2he?d, — 2¢°Vw

=20, + e’ (h — |Vw[*)d, — 2¢°Vw

=20, +€’(h — |[Yw|?)d, — 26 (Vw — |Yw|?d,)

=20, + e’(h + |Yw|*)o, — 2e°Vw
having used the fact that Yw = Vw+|Vw|?0, to get the third equality. We note from
the warped product structure (as for Kruskal spacetime) that E, (3,,) = £(S?)|q
where £(S?) is the set of lifted vector fields from the S? factor of the spacetime
product manifold. As a result we may globally extend V € FE, (¥,,) to satisfy

[0y, V] = 0. The following facts are a direct application of the Koszul formula, we

refer the reader to [21] (pg.206) for the details:

Da, 00 — —%ﬁT(hezﬁ)e_Bﬁr (6.1)

Dyéy = 0 (6.2)

D(%ar = arﬁar (63)
1

Dvﬁr = ;V (64)

Lemma 6.1.1. Suppose Q) = {v = vy} is the standard null cone in a spherically

symmetric spacetime of metric
g = b dy @ dv + € (v, ) (dv @ dr + dr ® dv) + r*%

where h = (1 — M) and % is the round metric on S®. Then for some cross-section
Yoo € Q and we F(X,,), X :={r =womr} produces the data (writing wom as w):
v =w’y
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e—Bvo.w)

X = ot
w

2e~Alvow)

try = ———
= w

x = 70 (0 + [Vl) L - 202 — 284w @ d)

266 (U07 )

try = (b — w?Alogw — wf|Yw|?)

- —dlogw
2M (v, B,
p= 20 | gt Dy
w3
Proof. ForanyV € E; (X,,) we have from Lemma 5.1.1 that V := V+Vwé,|g € T(TY)

so that the first identity follows directly from the metric restriction. From (25):

-8
DyL = ¢ ®Dy(8,) + ?VwD L = <V
- r

so the second identity is given by

x(V,W) =(DyL, W)
e P
= 7<V, w)

and a trace over V, W gives the third so that Alog trx = —Ap — Alogw. For the

forth identity:

X(V, W) = 2Dydy, W + (b + |[Yw|?){ Dy 0, W) — 2¢2( D Vw, W) — 28, VwlWw

= (b + |Vw]*)~ <V W) —2e° H(V, W) = 26,¢" (dw ® dw)(V, W)
where (Dy0,, W) = 0 from (6.1) and (6.2) to give the second equality. Taking a

trace over V, W we conclude with the fifth identity:

2eB(vo.w)

(b + |[Yw]* — whw) — 28,670 |2
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2" :
2wt B V) g e
2¢P

= 7([‘) —w?Alogw — wp|Ywl?).
As a result we have that
773 4 2 2
(H,H)=trxtrx = E(b —w?Alogw — wp|Yw|?).
Since the metric on ¥ is given by w?9 we conclude that it has Gaussian curvature
1 o 1
K= E(l — Alogw) = i Alogw

and therefore

l, = = _QM(U())(’U) 51” 2
K Z<H>H>—T+W|Y7w|-

Moreover, the torsion is given by

(V) = (DyL

from which we conclude ¢(V)|y, = =V logw and ¥ - ¢ = —Alogw, giving

p= 2M0) kg Bripap.
w w

[]

Remark 6.1.1. We recover the data of Lemma 3.2.1 as soon as we set mg = M,
B =0 and ro = 2mg as expected.
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In comparison to the Schwarzschild spacetime, we have the two additional terms
AB + 52|VYw|? in the flux function p. It turns out that a non-trivial G(L, L) is
responsible. Since A = 5W\Y7w\2 + B,Aw and

1 .
G(L.L) = ~LtuK - S(wK)? — K]

-8 -2
:_675&“(26 )_146
r 2 r2

20,
£6_2B
T

it follows, for arbitrary w, that AB(w) + %]WMQ = 0 if and only if 3 is independent

of the r-coordinate and therefore G(L, L) = 0. For the function M (vy,r) we look to
G(L, L) along the foliation {X,} since:

G(L,L) = Ltry — 2K, + 2V -t + 2|{]* + (H, H)

2¢8 oM 2 4 2M
=P (S-(1-=0) = G 5= =)

r r r2 r

_ 2B 2M)AM,

r r r2

It follows from Lemma 4.3.1, on ., that

Gp=0.

Since these components are all that contribute to the monotonicity of (2.2) for the

foliation {3,} we see that our need of the dominant energy condition reduces to

on {h = 0} n Q. Next we show that {¥,} is a re-parametrization of a geodesic

(SP)-foliation:
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6.1.3 Asymptotic flatness

We now wish to choose the necessary decay on 5 and M in order to employ Theorem

2.1.2. For L = ¢ 70, the geodesic foliation {3} has level set function given by

s(r) = J PO at

for which w = const. <= s = const. and therefore

It follows from Lemma 6.1.1 that }1<ﬁ, H) - sAlogp = Do >0 = r(s) >ry=

r(s)?

2M (vg,19) as in Schwarzschild.

Lemma 6.1.2. Choosing |B(ve,7)| = 02(r™1) integrable and M (vy,r) = mg + o(r°)

for some constant mq, Q) is asymptotically flat with strong flux decay.

Proof. We've already verified that G, = 0. Since % = &%) = (1 + ﬁeﬁﬂ_l), 18] is

eﬂﬁ_l is bounded it follows that % = 1+ f where |f| = op(r™!) is

integrable. As a result

integrable and

s=r—7’o+foof(t)dt_Joof(t)dt:T_CO+O3(TD)

where 3y = S:z f(t)dt and cy = rog — By. We conclude that 7(s) = s + ¢ + 03(s") since

our assumptions on 3 imply that S:?S) f(t)dt = 03(s°). From the fact that

. o G _ o o o o
Vs = s, = (s + co + 03(1))*7 = s*(1 + ;0 +o03(s7))*Y = 875 + 2c08Y + 03(s)Y

we see § = 03(s)7 ensuring condition 1 of Definition 5.3.1 holds up to strong decay

given that all dependence on tangential derivatives falls on the L Lie constant tensor
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4. Since ¢ = 0 for this foliation condition 2 follows trivially up to strong decay. If we
assume that M (vg, ) = mg + o(1) for some constant mg we see directly from Lemma

6.1.1

trQ = tryls,

(1= 25, + ofs™)

Co 2m0

(1-—=)A—==)+o(s?)

S S

i 3N

= — 28—2 + 0(8_2)

2 co + 2myg
S

giving us the third condition of Definition 5.3.1.

We refer the reader to [18] to observe the use of the forth condition of Definition
5.3.1 in proving (5.4) for an arbitrary geodesic foliation. As mentioned in Remark
5.3.5, strong flux decay bypasses our need of this condition since tr ) = % +o(s71)

is verified above. O]

From Lemma 6.1.2, Theorem 2.1.2, Theorem 4.3.2 and the comments immediately
proceeding Remark 6.1.1 we have the following proof of the known (see [14]) null

Penrose conjecture in spherical symmetry:

Theorem 6.1.1. Suppose Q = {v = v} is a standard null cone of a spherically

symmetric spacetime of metric

2M (v, r)

ds* = —<1—
,

>62ﬂ(“’r)dvz + 2e"V N dvdr + 12 (dﬂz + sin 192d902)
where

1. |B(vg,7)| = 02(r1) is integrable

2. M(vo,r) = mg + o(r°) for some constant mg > 0
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3. 0<bp, < 2k

Then,

Vi6r =

for mq the Bondi mass of Q@ and ¥ := {ro = 2M (vo,1r0)}. In the case of equality
we have f = 0 and M = myq so that ) is a standard null cone of Schwarzschild

spacetime.
6.2 Perturbing Spherical Symmetry

We wish to study perturbations off of the spherically symmetric metric given in
Theorem 6.1.1 for the coordinate chart (v, 7,4, p). We start by choosing a 1-form 7
such that 1(0.(0,)) = Lo,n = 0 and a 2-tensor ~ satisfying ~(0,(0,),:) = Lo,7 = 0
with restriction |, )xs2 positive definite. Finally we choose smooth functions M,
f and «. Defining 77 to be the unique vector field satisfying (7, X) = n(X) for
arbitrary X € T'(T'M) and r?|7j|* := ~(77,7]) the spacetime metric and its inverse are
given by

g=—(b +Oé)€2ﬂdv®d1} + eﬁ(dv®(dr+n) + (dr +n) @ dv) + ry

1
g = (0@ +0,00)+ (h+a+ [0 Q0 — (7@ +0.Q0) + 577,

We see that Q := {v = vy} remains a null hypersurface with L(= Dv) = ¢ %0, €
D(TQ) AT(TQ). Our metric resembles the perturbed metric used by Alexakis [1] to
successfully verify the Penrose inequality for vacuum perturbations of the standard
null cone of Schwarzschild spacetime. We’ll need the following to specify our decay

conditions:

Definition 6.2.1. Suppose 2 extends to past null infinity with level set function, s,

for some null generator L. For a transversal k-tensor T
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o We say T(s,0) = dox(s™™) if T = oX(s™™) and

1
limsupsup =|s"(Lx, ...Lx, T)(s,0)| < for0<j<n
550 @ 0 " K

o We define
2 2 > (2 |2
T3 = T2+ VT + -+ |[V™T]3.

Decay Conditions on €:

1. 7%y = r?% + réy; + 7 where:

(a) ¥ is the d,-Lie constant, transversal standard round metric on S? inde-
pendent of o

(b) 71 is a 0,-Lie constant, transversal 2-tensor independent of §

(c) 7 is a transversal 2-tensor satisfying (Lp, )"y = dos_,(r'™") for 0 <i < 3

2. a = 0% + a where o is a J,-Lie constant function independent of ¢ and

& g2 < 0hy(r) for hy = o(r~1)
3. [ satisfies:
(a) |B] = 02(r~1) is r-integrable
(b) |%6|ﬁ[3 < hy(r) for some integrable hy = o(r~1)
() VBl = Or")
4. M = mg + m where mg > 0 is constant independent of § and |/m|g. < dhs(r)
for hy = o(1)

5. n is a transversal 1-form satisfying:

(a) 7= 02(1)
(b) [nlis + 7Lol s < Sha(r) for hy = o(1).
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6.2.1 A geodesic foliation

As in the spherically symmetric case we identify the null geodesic generator Dv =
e $0,. We will again for convenience take the background foliation to be level sets
of the coordinate r. We wish therefore to relate the given decay in r to the geodesic
foliation given by the generator L := Dv in order to show () is asymptotically flat
with strong flux decay.

Once again % = ¢ = 1+ f where f = 66%1

is r-integrable due to decay condition

3. Taking local coordinates (1, ¢) on ¥, (for some ry) we have
s =1 —=co(,0) = Bu(r, 0, ) (6.5)

for Bo(¥, ) = S:z f(t,9,9)dt, co = 1o — Bo and S1(r, 9, ¢) = S:O f(t, 9, p)dt. Since
each Y, is compact, an m-th order partial derivative of f is bounded by C \V flipm-r
for some constant C' independent of r (from decay condition 3). From decay condition
3, provided m < 4, derivatives in 9, ¢ of fy and f3; pass into the integral (for fixed

r) onto f and are bounded. On any ¥ (i.e fixed s) it follows from (6.5) that

S:o aﬂ((p)f(tu 197 @)dt
1+ f

()T = = = e’ f Baoe”dt
ro

with bounded derivatives up to third order. It’s a simple verification in local coordi-

nates, from
r(s,7,¢) = s+ co(V, ) + P1(r(s,0,¢),7, ),
that 0i8; = o5 ;(s7%) for 0 < i < 3. Coupled with the fact that L, = e ?L; on

transversal tensors we conclude that (£)"5 = o5 ,(s'™%) for 0 < i < 3 and therefore

2

Vs = 12]g, = 825 + sTy + T (6.6)

where
[y = 2cpy + o
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D=4+ 25819 + g7 + codm + 17 + 2c0B1% + from
satisfies the requirements towards strong decay.
6.2.2 Calculating p

Since we will compare computations for the foliation {¥,} with the geodesic foliation
of 5.4.1 we will revert back to denoting the covariant derivative on >, by V and
the covariant derivative on X, by V. For the foliation {¥,} we have the linearly

independent normal vector fields
L = eiﬁar

Dr =e %0, + b+ a+ |ﬁ|2)&n -1

from which similar calculations as in spherical symmetry yield the unique null normal

satisfying (L, L) = 2 to be given by
L=20,+¢e’(h+a+|7o. — 277

Lemma 6.2.1. We have

g, . 0 1 N
X=e€ Prs + oM + 5(567-7))
2 00
_ B v X ()2
trx =e (- +-5) +dog (r™)
for @ = —%tor%. Moreover,

m 0
V"X =~ PSV™ 400, (1), 0<m <4,

Proof. First we extend V, W € E, (%,,) off of Q such that [0,, V()] = 0. Then for
X
x(V,W) = (Dy(e™70,),W)
= e A Dyo,., W)
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= LAV

: 5 1, .
= e MV, W) + 5n(VoW) + S Lo A(V, W)

having used the Koszul formula to get the third line. So using a basis extension

{X1, Xo} € Ep, (2,,) Proposition 5.3.1 provides the inverse metric

g _ L 0 Ly -
y(r)" = ﬁ’YJ R 7+ dog (r7%)

and tr y follows by contracting (r)~" with x. For the final identity we note from

Lemma 5.3.2 we have for the decomposition v, = 725 +rdvy; +7 the difference tensor
(D(V,W), Uy =Yy W — VyW,U)

5/ . .
= % (Vv%(Wa U) +Vumn(V,U) = Vun(V, W))

1/ o o
+ E(V‘m(W, U)+ Vw3V, U) = Vyi(V, W))
for V,W,U € E(%,,). So proceeding as in Proposition 5.3.5
Vix;, = Vixy, = PijX, — Pirx,,,

. ) ) 1 .
= Vi(re P4+ e Pomy, + e ﬁ§(£6r7>jk) — e P6Vi(nyp) + 0o (1)

2
o & _50 e J o
= ryjkvi(e 6) — € 5§Vﬂljk + 5’71jkvi(€ 5) + 50?(1)
_55 2 X
= —e §Vﬂljk + 503 (1)

Iteration provides our result

N
3

N
W

m — 5 =~ m
\% X =—¢ fBEV 71jk+50f_m(1), 1

from decay condition 3. m
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For x we have
X(V,W) = 2(Dyo,, W) + €’ (b + a + [ ){ Dy 0, W) — 2(Dye"ij, W)
= 2(Dy 0y, W) + (b + a + [i7*)x (V. W) = 2V v (") (W)
and using the Koszul formula on the first term we see
2(Dy 0y, W)
= V(en(W)) + 0V, W) = W(e"n(V)) = (V. [00, W) + (00, [W. V) + (W, [V, 0])
= Vv (&) (W) = V(" n)(V)

= curl(e’n)(V, W)

so that a trace over V, W yields tr x = e*(h+a +77]*) tr x —2¥ - (¢”)) and therefore

(H, H) = e (b+a+ i) (tr x)* =2V - () tr x

(-2 (B
(-2 (4 ) s

L £

4 2my 6 Q
- ( s
r r r

> + 6oy (r™?)

from decay conditions 2-5. For ¢ we have
C(V) = (Dy(e770,),0,) — &*(Dy (e 70,), )
= —VB+ e ?(Dyo,, 0y — (Dyor, i
= —VB+ e P(Dyo,, 0,y — XV, ).
From the Koszul formula
2(Dy 0y, )
= VX0r, 00) + 0V, 0p) = 0V, Or) =V, [0r, 0u]) + €0 [ 00, V) + (0o, [V, O1])
= VB + o, (e (V)
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= VB + Lo, (" n)(V)

from which we conclude that (V) = —3V(3) + %Ear(eﬁn)(‘/) — ePx(V,77) and

2

V¢ =g AG+ SV (Lo () V- (X))
= —3AB+ SV - (Bn) + Y (Lam) — PX(VB) — Y - (x(7)
~ 505 (™)

having used decay conditions 3, 5 and Lemma 6.2.1 for the final line.

Lemma 6.2.2.  satisfies conditions 1, 2 and 3 of Definition 5.3.1. 0 additionally

satisfies strong flux decay if and only if
1.
§V st + dQ =0

for 6 = —%torfyl and is subsequently past asymptotically flat.

Proof. Having already verified condition 1 up to strong decay for v, of our geodesic
foliation {¥,} we continue to show conditions 2 and 3.
Given V € E, (%,,) Lemma 5.1.1 ensures V — VsL|x, € I'(T'E;) and we see that
[V~ VsL,L] = [V, L] + LVsL
= V(e P)L+ e PV (d,8)L
= PV (e™?) + e PV (eP))L

=0.
SoV —VsLe E(¥) and Lemma 5.1.1 gives
HV ~ VL) = 6(V) = C(V) + X(V, V)
= —JVB) + 38m(V) + 5(Lom)(V) — XV, ) + x(V, V)

= (d03 (r~") mor(r™))(V) + x(V, V')
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= (03 () M o) (V) + re (Y, V)

g
= — VB + (605 (r ") nor(r 1)) (V)

-
,
having used decay conditions 3 and 5 to get the second line, Lemma 6.2.1 for the
third and (6.5) for the last. Moreover,

(Lv—vspt)(W = WsL) = (V = VsL)(t(W — WsL)) — t([V,W])
= (Lyt)(W) = VsL(t(W))

=(Ly — e_ﬁVsﬁar)(dTﬁo)(W) +o(r )

a %ﬁv(dﬁo)(w) +o(r )
- %(‘CV—VSLdﬁ())(W —WsL)+o(r™")

where the last line follows since [y is L-Lie constant. With a basis extension
{X;} © E(3) we therefore conclude that Lyt = 1Lx,dBy + o(s™) so that con-
dition 2 for asymptotic flatness is satisfied up to strong decay with t; = df,. From

Proposition 5.3.1 and (6.6):

2 1. i
tr K = o @trfl +o(s77)

2 1 - . -
= g — 2—82131‘(2007 + 571) + O<S 2)
2 00— 2c¢ —2
=~ + = Fo(s7)

and

- 1
KzK—EtrK%

1 1,2 6602
= 8’3/4- §F1 —5( — 3 0 +0(8_2)>78+0(1)

S S

1 1.2 00— 2c
et 190k 4 s — (2 0
m+2(%y+yg 23+ =
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= 2+ 89 + ol

For condition 3 we take r|yx, € F(X;s) and Lie drag it to the the rest of {2 along
Or (hence L) to give ry € F(Q2). Using Lemma 5.1.1 from the vantage point of the

cross-section Y, amongst the background foliation {¥,}:

e Ptr@Q =ePtry —4(¢+ dloge®)(Vry) — 2Ar, + |Vr,|*e” try — 28, |Vrs|?

From the expression of (s) in 5.4.1, recalling Remark 5.3.2; we see drs = —dfy+o(1)
from which Lemma 5.3.2 implies that Ar, = —S%Aﬁo—i—o(s_Z). From decay conditions

3, b and Lemma 6.2.1 we have

A
tr@ = trxls, + 2?60 +o(s7?%)

= (#0417 trx — 27 - (), + 2250 4 o(s7)

ABy

2 50— 2¢ oM L
2 00 — 2co — AM + 26 A

= -+ = il 5 0 +2 fo +o(57%)
S S S
2 +2M 1 o

= — — 200—2 + —2(5Q + ZAB() + 25@0) + 0(8_2)
S S S

and condition 3 follows as soon as we set M = mg + o5 (1). As in the spherically

symmetric case the highest order term for tr () agrees with % where K = 1 is the
Gaussian curvature of 4. We recall that our use of condition 4 depends on whether
Q2 has strong flux decay (Remark 5.3.5). From Proposition 5.3.1 and (6.6) we will
have strong flux decay if and only if

le 1,
d@o = tl = EV : Fl - §dtrf‘1

1o
= EV- (2c0y + 671) + d(60 — 2co)
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1 0
= §d(_2ﬁ0) + §V st + 5d€ + 2dﬁ0

1o
= dﬁo +5(§v71 +dQ>

which in turn holds if and only if %V -~y +df = 0. O

Henceforth we will adopt the conditions of Lemma 6.2.2 for €2. From Proposition

5.3.2
1 6 le - . s
/cm:ﬁ+ﬁ(g+§v-vm+AQ>+5o4(r )
16 )
:ﬁ—i-ﬁg—l—(SOf(T 3).

From Lemma 6.2.1 we have
S .
Wivjxmn = _Evivj/ylmn + 502 (1>
so that contraction with (r)~! first in mn then ij gives
Atry = O A0+s )
rx = A0+ 00y (r

. Atryx |V tr x|?

which we use in Alogtr X = to conclude

trx (tr X)Q

o o
Alogtry = ﬁAQ + doy (r7).

Finally we have p
1 - -
p= ICT‘2’Y_ Z<H>H>+W'C_A10gtrx

1 ) 1 2m0 0 (%)) )

o L4 A X (.—3

SptElTpt e T T T et n )
2m 0,1« -

ZFO—E(§AQ+Q/0)+5O§((T %)
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_2mo 0 LRyt ag) + 60X ()

73 r3°2
and
1 - - 1 . 1 2m0 Q (7))
(I~ ghogp = 5(1- =2 467 +620)
2 o 1.
——Alog (ﬂ_r_< A9+ao)+602( )) —1—(505((7“3).

We may now use Lemma 5.3.2 to decompose the last term
2 o 5
Alog (ﬂ _ T_( Af + ag) + 605 (r 3))

= —Alog <1 - ZL( A + o) + 50§(I)> + 6o(r~?)

mo

= —Alog <1 - 2i( Af + ao)) + do(r™?)

mo

giving

<H H>——4Alogp— ! <1—@——Alog (1—2%%( AQ+a0)>> + 6o(r™?2).

Since mg > 0 we notice for sufficiently small § our perturbation ensures p > 0 for
all » > 0. However, from our construction so far it’s not yet possible to conclude
that some ¢ > 0 will enforce }Kﬁ , H )= %A]og p along the foliation. Moreover, the

existence of a horizon (tr y = 0) is equally questionable.
6.2.3 Smoothing to Spherical Symmetry

We will solve this difficulty by ‘smoothing’ away all perturbations in a neighborhood
of the (desired) horizon in order to obtain spherical symmetry on r < r; for some
r1 > 0 yet to be chosen. The resulting spherical symmetry will uncover the horizon
at v = ro < 71 and will also provide a choice of § > 0 so that 1(H, H) > 1Alogp

away from it, causing the foliation {3,} to be an (SP)-foliation.
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We will use a smooth step function 0 < Ss(r) < 1 such that Ss(r) = 0 for
r < ry and Ss(r) = 1 for r > ry for some finite 75(0) chosen to ensure |Si(r)| < 6.
By first choosing parameter functions for the desired spherically symmetric region;
B(v,r) and 0 < M(v,7) = mg + o(1) such that 7y = 2M (vg, 7o) and 2M (vg, ) < 7
for r > ry we induce spherical symmetry on r < r; with the following substitutions:

7= 0r(Ss(r) = Dm + S5(r)7

B(r,9,¢) — Ss(r)B(r, 9, ¢) + (1 — S5(r))B(vo, 7)

M (r,9,¢) — Ss(r)M(r,d, ) + (1 — Ss(r)) M (vo, )

6[ — 55(7")6[ — (1 — S(;(T))(S;ﬂ

n = S5(r)n.
We leave the reader the simple verification that these changes to our perturbation

tensors 7, 8, M, & and n maintain the decay conditions 1-5. Clearly for » > ry

our substitutions leave the metric unchanged while inducing spherical symmetry on

r < rp with the spherical parameter functions NB L M:
o = 2M(U0, ’l“o)

FIGURE 6.1: Perturbing Spherical Symrﬁetry

An example Ss(r) is given by the function

0 r<nr
Ii
Ss(r) =8 —=——— mn<r<mn
e’l’l*’l‘+e’r77‘2
1 ro <71
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where k = % and r9(8) = r; + k. Since Ss(r) = P(— +

ri—r ro—r

L) for P(r) = 2

1+ekr

satisfying the logistic equation
P'(r) = kP(1— P)

we have
Ss(r) = kSs(r)(1 — S‘S(T))((r *17“1)2 + & 17‘2)2)
1-— Sg(?“)

(r —rg)?

501 S5)) 4 kSs(r)

(r —rp)?

L )

Elementary analysis reveals on the interval v < r < ry that

k

en-r 4e?
0 —— < —
(r—mry)? = k2
1 1
0<k—<§ ?

eri—r + er—r2

yielding from simple symmetry arguments that both S“(:))Q, };_552(;3 < 21%24 and there-
fore
oA
0<S5(r) < kﬁ =9

as desired. Denoting m(r,d) := Ss(r)mg + (1 — Ss(r))M(r) the new metric gives

r<nrn
-5 Ab + ap) + 60X (r3), m<r<r
27% %(%AQ—F@O)—I—%Q( 3), ry < T

%(1 _ 2]\7[(1)0,7"))

o r 5 r<<nmn
%5 1—M—lélog< —L(1A9+ao)>) +do(r=2), r <r<nr
L1 — e — 1Alog (1 - —( A + ozo)>> + do(r=2), To < T.
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Since C(r1) = m(r,0) = mg for C(ry) = sup, .., M we see for any choice of
r1 > C(ry) (which is possible since M = myq + o(1)) and sufficiently small § the foli-
ation {3} satisfies property (SP). If we therefore restrict to perturbations satisfying

the dominant energy condition on 2 then Theorem 2.1.2 implies the following:

Theorem 6.2.1. Let gs be a metric perturbation off of spherical symmetry given by
g5 = —(h + a)e?Pdv®dv + e’ (dv @ (dr + 1) + (dr + 1) ® dv) + r’y
where

1. 7%y = r®y + 16y, + 7 is trasversal with ¥ the transversal 0,-Lie constant round
metric on S? independent of §, v, a transversal 0,-Lie constant 2-tensor inde-

pendent of § satisfying V-~ = d(try,) and (L£4,)"5 = 00 ,(r'=") for 0 <i < 3.

2. o= 0% + & where o is 0,-constant, independent of § and |G|z < 0hy(r) for

hy = o(r™)
3. (B satisfies:
(a) |B] = 02(r~1) is r-integrable
(b) |VB|ys < 6ho(r) for some integrable hy = o(r™?)
() VB2 = O(r")

4. M = mg+ m where mg > 0 is constant, independent of § and |m|g. < dhs(r)

for hg = o(1)
5. m is a transversal 1-form satisfying:

(a) n=0y(1)

(b) |nljzs + Lo Ml jzs < Oha(r) for hy = o(1).
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Then for sufficiently small §, Q := {v = vy} is past asymptotically flat with strong
fluz decay. In addition, for any choice of spherical parameters B(U, ) and M(v,r)
such that 0 < M (vy,7) = mo + o(1), ro = 2M (vy,70) and 2M (vy,7) < T for r > 70,
smoothing to spherical symmetry with the step function Ss(r) (as above) according

to:
Y = 0r(Ss(r) — )y + Ss(r)y
ﬁ('f’, 197 90) - SzS(r)B(Tv 197 @) + (1 - S&(r»B(T)
M(r,9, ) = S5(r)M(r,0,¢) + (1 = Ss(r)) M(r)

a— Ss(rya—(1— 55(7“))@

r

n — Ss(r)n

we have that X := {ro = 2M (v, 7o)} is marginally outer trapped and the coordinate
spheres {3, },=r, form an (SP)-foliation. Moreover, if gs respects the dominant energy

condition on €2 we have the Penrose inequality:

E<mB
V 167

where mp s the Bondi mass of §2.
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Appendix A

Bartnik data of coordinate spheres in boosted
Schwarzschild

The Schwarzschild metric in isotropic coordinates is given by,

2
ds* = —<%> dt* + g*(dz® + dy* + d2?)

Whereazl—%andﬁzl—i—%forR:\/m.
Alternatively making a change to spherical coordinates,

x = Rsin? cos ¢

y = Rsinvsing

z = Rcost
transforms the metric to
2 (O 4 2 207,92 N2, 2
ds? = (ﬁ) dt? + 8 (dR + RY(d¥? + (sind)%dy )).

Definition A.0.1. For semi-Riemannian manifolds (B, gg) and (F, gr), given f > 0

a smooth function on B the warped product M = B x; F' is the product manifold
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B x F' furnished with the metric tensor,

g =mi(98) + (f om)*m5(gr)
where m; and 7y represent the canonical projections onto B and F respectively.

For Warped Products we have a pointwise decomposition of each tangent space
into orthogonal compliments 7, M = ker(d(m3),) ® ker(d(m),) known as normal
and tangent vectors (i.e. T,M = nor(1T,M) @ tan(7,M)) respectively. We also in
the case of product manifolds recall the submodules L(B), L(F) < ['(T'M) of lifted
vector fields, whereby X € L(B) < ker(dmy) is the canonical representative of some
X e I'(T'B) such that dm (X) = X. For every (p,q) € B x; F we refer to the semi-
Riemanian submanifold B x q as a leaf and p x F' as a fibre.

Therefore, returning to Schwarzschild geometry, we recognize a Warped Product
structure P x g2 S* with leaves isometric to P = (R x (4, oo),(%)th2 + 64dR2> and

fibres homothetic to the standard round sphere via the function R3? on P.

Introducing the boosted coordinates,

coshy ~—sinhe\ (t) [t
—sinh)  cosh) 2] \z

it is easily shown that the standard boosted slice {t = 0} (or {t — tanh(¢))z = 0})

inherits the induced metric:

ds? = 34 <di2 + di? + (coshep — (%)2 sinh? ¢)d52)

for 7 := \/m = R\/(l — tanh® ¢ cos? ). It is also easy to show that
the boosted time slice is asymptotically flat with the metric clearly displaying the
required asymptotic behaviour for large 7.

Using the ambient Warped Product structure our goal is to study the geometry
of the coordinate spheres, S2, given by constant 7 = \/m that foliates this
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boosted slice. We start by realizing S? as the intersection of the slices:

t = tanh ¢ R cos v (A.2a)
R —t* =7 (A.2b)
yielding the equations
7 tanh )
1) = 7 tanh v cos (A.30)
\/1 — tanh? ¢ cos? ¥
R(V) = ’ (A.3b)
v/1 — tanh? ¢ cos? ¥ .
or equivalently, for tanhn := tanh cos = %,
t = rsinhn (A .4a)
R = ¥ coshn (A.4b)

(for constant 7).

From these equations we recognize a family of embeddings, j; : S* — S%

ST P e S?
Nk
82

fr o
(197 gp)ﬁ-(lﬁ(ﬁ)) R(ﬁ)v 197 @)ﬁ(ﬁa QO)
As such, given any V' € n(TS?), by denoting dj;(V) as V, we have (assuming restric-

tion to S2 throughout):

V =V(t)0: + V(R)0r + Vg2

= V??X + ‘/SZ

for X = R0, + t0r and Va2 € L(S?).
Henceforth we will drop the subscript Vs2 and will refer interchangably between
elements of L(S?) and T'(T'S?) as the meaning should remain clear from the context.

Our use of the Warped Product structure will be extensively due to, ([21],pg.206)
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Proposition A.0.1. On a Warped Product M = B x; F, if X, Y € L(B) and
V, W e L(F) then

1. DxY € L(B) is the lift of DxY on B.

2. DxV = DyX = v

3. norDyW = —<V’TW>Df

4. tanDyW € L(F) is the lift of VyW on F.

Armed with this Proposition we extract some necessary results from the ambient

spacetime

Corollary A.0.1.1. For X = R0; + tog € L(P) and V,W € L(S?),

M1
1. (a) DaRaR = _ﬁgéR
M 1
(b) Do,0y = Do,0r = ﬁa—ﬁ&f
o M1
(c) Dg,0; = (@)ﬁ@@a
Ma M, t, oM t
2. DxX = (R+ FE F(E> )Or + (t + a—ﬁﬁ)at
9. DyW = VW — <‘;?2/>D(Rﬁ2) = VW — R%(V, W)

Where (-, -) denotes the ambient metric tensor, (-,-) and V the standard round

metric and corresponding covariant derivative on the sphere S2.

Proof. We recall that, (Or, 0r) = 8* and (0}, &;) = _(%)25

L. & (Da,r, 0r) = $0r(0R, Or) = 26%(— ) = — "
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o (D3, 0r, 0ty = —(ORr, Doty = —30¢(0r, gy = 0
o (D;, 0, 0r) = %§t<§R, Or) =0

o (Do 01,01y = 50r(—($)?) = —

e
=

i <Datat7§R> = _%6R<8t, at> = %%
d <Datat7 at> = %&@t, 8,;} =0

<D5’R aR:aR>

<D6R6Ruat>a _ M
(Or,0R) t

Or + (0t,0t) - R

Giving Dy, 0r = Or, b) and c) follow simi-

larly.

2. Since Dx X = t*D,,0r + t0; + 2tRD,,0; + RO + R?D;,0; the result follows

from 1.

3. Given Dy W = tanDy W +norDy W, this is a simple application of Proposition
A.0.1. and the fact that

(VW) = R?B*(dmyV, dmyW) o o

With all these tools in place we finally direct our attention towards S2.
A.1 The Fundamental Forms of S2

Proposition A.1.1.

2M t
t4 =
+ [VyWn{t + e R}+RVW17]&}

t
T v g %E{vnw LWV
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Proof.
DVW = DVnX+V(W77X + W)

=VnWnDx X +VnDxW + VIWnX + WnDy X + DyW

X (RB?
=VnWnDxX + —J(%ﬁf )(VUW + WnV)
VW) b pig?
FVWX = S5 D(REY) + VeIV

the final equality following from Proposition A.0.1. Now using Corollary A.0.1.1 we

have,
— VIR + 5~ S+ 1+ 22
—taR}ggf) (VoW + WnV) + VWn{tdg + Ré,} — <‘;;Z>D(R52) +Vy W
—VWl(R + 5%% _ %%)53 . 21‘;;@} ; SV + WgV)
+ VWn{tor + RO,} — R%(V, W) + VW
collecting up all the terms the result follows. O

In order to extract the extrinsic geometry of SZ from Proposition A.1.1 we’ll be
needing an orthonormal basis {v,v*} for the normal bundle. Recalling equations

(A.4a) and (A.4b) we obtain a normal frame field,

{D(R — 7 coshn), D(t — 7sinhn)} = {548R_T51nh773v2247_(5) Oy —rcoshnRVQZ4}
Ln 1ty B8 1V
B2 32 B2RRA? o'« t 32 RB32

where V7 := gradg.n.

Thus, we may construct a normal vector field in L(P) from the linear combination
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given by D(R — Fcoshn) — £D(t — Fsinhn) = g(%(g—“‘) + %(gé’t)). By denoting

['=(%)*—(£)? and A =1 —T|Vn|? we find our orthonormal frame field from

Lemma A.1.1. For sufficiently large 7, S2 inherits an orthonormal frame field
{v,v*} given by:

1 a&R

1 s
[Py = @(@) E(aa)
1,1, t Or «Q V?]
FQAQV = E(BQ) 63( (9t) RﬂZ
Proof. 1t’s clear that (v*,v*) = —1 and {(v,v*) = 0 so it suffices to show that

(v*, V) =0 for any V e n(TS?). So we calculate,

t&R «

DAL, V) = V(8 )+ﬁ(5at) {0 + RA + T~

RﬁQ’ V)

~ (k5 - RIS} + RET(VRV)

)%} + RATVY,

- REVI{(H) ~ (5

=0
O

Remark A.1.1. Here ‘sufficiently large 7’ serves to ensure that T > 0 on SZ and as

a consequence A > 0.

Denoting the second fundamental form of S? by II we have,

Proposition A.1.2.

1. TE, IL(V, W) = Van[R {1—(t)} gf 92 t

—R(E)Z(V, W)
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2+ MB( — (o

«

2. T2 A2 TL(V,W)) = VWa[t82{1 — (53

)
(P = U
Proof.

1. Since (DyW,v) = (I1-(V, W), v) the result follows from Proposition A.1.1 and

Lemma A.1.1 following a tedious yet straight forward calculation.

2. As in the proof of 1., after the use of Proposition A.1.1 and Lemma A.1.1 the

expression eventually simplifies to,

t

2} - MB()* MY

«
(0%

53
— RB*TVWn + RBT(Vy W, V) — taB(V, W)

At

Tz A2 IL(V, W) = VWn[t8*{1 — ( ( 63) 7]

+ 2tafI'VnWn

at which point the third term admits the substitution (V W, Vn) = V(W, Vn)—
(W,VyVn) = VWn — (W, VyVn). This in turn removes VIWn from the ex-

pression and (W, Vy, Vn) satisfies the following identity:

Lemma A.1.2. As a function on round S?, the Hessian of n satisfies
. tR t
HL(V.W) = =(55 o fr ) (V. W) +2( 55 © fr ) V.

Proof. From the identity Vn = (£)2V(%) we have Vi = (£)2V (%) for any
V e T(TS?) as well as

(W, Vv n) = W)V (1)) + (W, VvV (5)



LWV + (P, VvV (%

— 92—
R(f R 'R T R

))-

So proving the Lemma is equivalent to showing that

t t
W, VyV(=)) = —=(V,IW
and since % = tanh 1 cos 1 this is, in turn, equivalent to

HE 4 cos 9y =0
for 4 the standard round metric. This is easily verified for the basis {0y, 0,}. O

After substituting the identity of Lemma A.1.2 the expression simplifies to the

result.

]

In order to find the mean curvature H of S2 we will need the induced metric and

its inverse. The metric we find from

VW) = VWX, X) + (VW) = VaWa{t?5* — R?(%)?} + (VW)
= R*BY(V,W) —TVyWn}
So in a coordinate basis the induced metric and it’s inverse take the form

9ij = R*B*%s; — Tmin;}

gU: R254{’7]+KT]T/]}

for n* = 3%n;.
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Corollary A.1.2.1.

B

J.R%ﬁﬁxmﬁ>:m%ﬂzw+aﬂp%%WWﬂ

M o, o 2
+E§Q§)—@+0M§)HVM

a o1+ 2

)

t
g«

LA B — Iy Lty
2. BETING ) = [Vnl[t8 1~ (55)7) + MB ()" — (

i

+¢W«RFF—%M2—mvm%

=
Proof. We make the following observations:

1

G _ ‘VU‘Q
g 77177] - R2/34

r
2 - 4y _
(1l + 5191 = 4

- 1 r 2—T|Vn)?
R = (D4 2y 17 n
g ’yl] R254( + A‘vn‘ ) AR264

In either expression of Proposition A.1.1 taking a trace with ¢¥ yields the above

factors. A straight forward simplification yields the result. O]
Remark A.1.2. We notice that lim (Rﬁ‘lf‘%(z/, HY) = -2, lim Tz = }% and lim § = 1.
F—00 F—00 F—00

- 2 1 - 1

As a result we deduce that (v, H) = —— + O(=;) and similarly that (v*, H) = O(—).
T T T

This is to be expected since, for large 7, the spacelike normal Rv approaches the po-

sition vector field P = t0; + ROr in Minkowski (or R}) and it’s a well known fact

that the coordinate sphere of radius 7 in any boosted R®* < R} has mean curvature

o

=N
=1

A.2  Curvature and Energy

Letting A = lim A(F) we refine our estimate of (v, H)

T—00
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Corollary A.2.0.1.

-, 2 1
1. {v,H) = - + fi? + O(ﬁ>’ where

F

f =2 AR+ 1)~ 1)
2. (v H) = 7_% + O(f—lg), where

t 1 T
— 2M-A"2{3+ X1 —(=)?
g A3 (5)7

Proof. 1. We start by approximating I',

e’ t

FZ(@)Q—(EV
& 9 Lo
:(@) —1+1—(§)
T2 R, Y
= (1= () (1—(@) )}

giving,

1 T R1 1
I'z = —={1-2M—- O(—=
R{ 7777}+ (fz)

and,

1 R1 1
RI'2 = 7#{1l —2M—— O(-).
Hl—2M=—} +0(:)

From this we conclude that,

L R1 f 1

R 1 1
= -2+ (4M? + f)% + O(ﬁ)'
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Now,

A2+ RT2(y, HY) = 2A — (

SR 0+ S (RPITIP + ()

M

+ () = @+ )RVl

where we've isolated with ( : ) all terms of magnitude O(2). As 7 — o0

A(4M§ + f) = lim AF(2 + RT3 (v, H))
r —00

- SM}% + |V {—aM -

T t T T
— + M— 2()2{4M — + 3M —
© o M} + Vi ()HAM T +3M L)

+ M {1—3( )}IWI2

= 8M T —2M (1 = 25 ) VP

R

making the substitutions |Vn|?> = (£)?(1 — \) and (£)? = 1 — (%)? the result

follows.

2. From our approximation of I in 1. we see

so that

(R

7

)2r—1_—4M§1+0( >)
rr T




1
(1 — a8
T

1
= +0(=).
) T0(5)
Using this we see directly from Corollary A.1.2.1

E)@ lim 7(v*, H) = hm R?B'T2A2 2(v* H)

7—00

= [V M+ M2 () - )}

S ML) 2~ (LVP)
= M%{G\V?ﬂz +2)\ — 8(;)2}

t R, R,
= 2ML8() A+ (2)7 = A}

tR T
= 2MA\—= A (=)?
S+ (57

Definition A.2.1. The Hawking Energy of a closed surface 3 is given by;

/IE J
Ey = i, | A
a 160 \" 167 ( >d

It’s a well known fact that the Hawking Energy for coordinate spheres in an
asymptotically flat hypersurface approach the ADM energy as 7 — o0. In Schwarzschild
we see therefore that coordinate spheres in the cononical time slice {t = 0} are
round (of radius 7 = RfB?) and satisfy ¢ = n = 0 so that Corollary 2 gives us
(H,HY = (v, H)* = %(%)2. Therefore

4T R? (54 1

Ey — 1—
H 167 ( 167

R RS

. = Ja+B)a—p) = M.

?) - .

As a result of boosting this slice to the rapidity ¢ we expect the ADM energy to
boost to M coshy. We are now in a position to verify this expectation.
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Proposition A.2.1. For the boosted time slice {t = 0} the Hawking Energy Ep(F)

of the coordinate sphere S? satisfies

lim Fy(r) = M cosh

7—00

Proof. From the change ¥ — ¥ given by,

.= sin ¢
siny =
v/1 — tanh? ¢ cos? ¥
- sech) cos 1
cost =

\/1 — tanh? ¢ cos? ¥

it’s easily shown that
52 N2 2 R, 2 N2 A2 S
dv* + (sind)*dp® = (=){AdJ” + (sin¥)°dp”} = lim —dsg.
T F—0 T T

We conclude for large 7, S? approaches round S? and therefore,
82 V/detg !
| J © dﬁd JA 4 sin Ydydp =% J)@ (}—_%)2 sin ¥dddyp = 4.
T

From our refined decomposition of H

Lo 2 fy? 1. 4 f 1
(H,H) = (—%+f—2) +O(f—4) _ﬁ_4r_3+0(ﬁ>
we are able to approximate Fy(T),
- ‘SQ| f Ry 1 Adnd 1oay 1
Ex(F) = 47T 16W2( (S)[F(MF - ABBY) + FA%S ]smz?dﬁdcp) +0(2)

giving,

lim Ey(7) = ! 1J(R) [lim (F(A2 — A23Y) + fA2]sin YMIdep.

F—00 47 2 r—0
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So in order to calculate the limit, we will also need next to leading order information

about /detg. We find this next order term by noting that since

Qo 4M 1
A=1-T|VnP =X+ (1= () =X+ 7\V77|2 +0(=3)

8

we have that

L M Loy, 2M o |OnP 1
AZBY = N2(1+ 2= 1+ — =)=\ + —
B = b1+ ZLITHPL+ o) 4 0(5) = M+ 2R+ BT 1 oG
giving
. A ALy i 1 |V77|2
Fh_)rg(r()\? A23%)) = QMR)\2(1 e ).
so that
. 1 ro IV
7711%% Ey(7) = 87 oo f- QME(l + T)dA.

Using Corollary A.2.0.1 it’s an easy calculation to show that

1 T B 2M{35 X

(f - 2M 72— oty

= =

R(

<

= 2M{2cosh ¢ + Sech@/)((g)2 - 2(?)4)}

so that finally we calculate

lim Ey (7 Mf f {2 cosh®) + Sech@/)(( ) (§)4)}sin Ydidy

7—00

M 1 1 1
= 2M cosh 1) + —sech) 2 —2 2 dr
2 —11—tanh”¢z? (1 — tanh”a?)?
M o 1
= 2M cosh ) + 786Ch¢[ (1+ C&)Jl 1 — c2a2 dm] c=tanh
1

M 2 2 2
= 2M cosh ) + —sechw[ —Ztanh 'c—c¢(—Stanh e+ =
2 c c? cl—¢c?

= M cosh.
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We will now work towards a stronger result from which we can deduce Proposition

A.2.1. Specifically, we calculate Kg — }Kﬁ H ) from the Gauss equation:

Lemma A.2.1. In the case of Schwarzschild, P x g2 S*, we have,
1. <R6RataR7 at> = _21%_]\24%52(%)2

2. (a) HE (g, 05) = 4
(b) HEP(0p,0,) =0
(c) HE(01,0,) = — 4% (%)?
Proof. Using Corollary A.0.1.1 thoughout:
1. (Ropo,0r,0t) = {Dg,Dp,0r, 0:) — (Do Ds,Or, Or)

= at<DaRaR7 at> - <DaR§Ra Datat> - 8R<D5taR7 at> + <DataRa D5R6t>

M alM M M
=0+ R—Qﬁﬁﬁﬁwm Or) — aR(W<at7 Or)) + (aﬁR2)2<at’ 0r)
Ma M?a  M?
= aR(RQﬁP,) + RiB4 B R4
2Ma M o l+a, 2M’«
= —Rgﬁg + ﬁ(aﬂ@) - MR2,34) + R34
2M o M
- _Rsﬁ?,(l B R_ﬁ)
2Ma?
T OR3pE

M1
where we used the fact that 63(3) - ;—404

53

in the sixth line.
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2. (a) (O, Do, D(RB*)) = Op(RB*) — (Do, 0r, D(RB*))

— B(RE) + L on(RE)

R2p3
M M M M
= 0r(B* - B )T RTB(BQ — ) = 0rlaf) + R_S
= adf + fona + ot = (P2 1 a)
M

-
(b) (O, Do, D(RA?)y = LU L0,(0, o) = 0
(© @0 Da DR = PUE) 6, Dy oy = U Sonan 2

]

Proposition A.2.2. Let M = B x; I be a warped product with Riemannian curva-

ture tensor R. If X,Y,Z € L(B) and U,V,W € L(F), then
1. RxyZ € L(B) is the lift of PRxyZ on B.
2. RyxY = V where H' is the Hessian of f.
3. RxyV =RywX =0
4. RxyW = &2 Dy Df
5. RywU =¥ RywU — BE2L LV YW — (W, U)WV}

Proof. see [21] pg.210. O

Proposition A.2.3. For ¥ = S?

[ M )
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Proof. Knowing that G(-,-) vanishes identically in Schwarzschild our task is to cal-
culate the quantity (R,,«v,v*) = 3(RpL, L) (for L = v—v* and L = v+ ") so that
the result follows from the Gauss equation (Proposition 3.0.1). We use our standard

choice for {v,v*} and break v* into the components Azv* = v} + vy where:

and

(we temporarily denote also vy = v).

We will need to find the determinant of the linear map
o B
18
Ra

which is easily seen to give

Thus Proposition A.2.2 gives

A<RVV*V7 V*> = <RV1 v+ V1, VI + V2> = <RV1VIV1> VI> - <RV2V1V1’ V2>

= Oé%ﬁz<RaR5t@R, &t> — @27—522>HR/32 (Vl, I/l)
oM T|Vnl?, 1 1 e to B prrs
- _(352)3 - ‘Rﬁz| [f{(%f@}ﬂ%ﬂ (Or, Or) + (E)Q(E)QHRB (0,001

2M Vnl2 a1 Mt 8,M, a.,

PP T
M|l o M 6
“wEy BE P RS
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M 2
= _(R62)3(2 + T[Vn[®)

Having used Lemma A.2.1 in the forth. O]
Lemma A.2.2. S? satisfies
(1L, 1Ty = ()(7;4).
Proof. From Proposition A.1.2 and Corollary A.1.2.1 we conclude that the quantities
UV, W), = AV, W), 0) — oV, WYXH )

UV, )0 = AUV, I), 0 — SOV W, o)

converge as T — oo for any V, W € ['(T'S?). Therefore, from the choice of orthonormal

frame

we conclude that

AL = ), (<ﬂ(ei, e;), vy — (l(es, e), u*>2> —0(=)

Proposition A.2.2 therefore allows us to directly conclude that

lim 7 { Ky — —<H i+ <H ) — M(R> 2+ (2 )2IVnf).

T—00

Moreover, from Lemma A.2.2

. _ S
7:h_)r]élo Ey(T) Th_,%ﬂ 167 Jss K — —<H H+ <H I1YdA
1 (" M7 oo o
=-| —+= — Jdv
[ AR (e sin
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tanh? ¢ sin? ¥

5 5 ) sin 9d}
1 — tanh® v cos? ¥

1 ™
= ZMcosh@DJ (1 — tanh? ¢ cos? ) (2 +
0
1 1
= ZLM cosh@DJ 2 — 2tanh? 2 + tanh? (1 — 2?)dx
-1

1 4 2
= ZMCOSh@D(éL ~3 tanh® ¢ + tanh® (2 — §>>
= M cosh

as expected.
A.3 Normal Connection and Momentum

Finally, we finish our study of SZ with its connection 1-form. From this we are able

to deduce the ADM-momentum of our boosted slice.

Definition A.3.1. Given a normal frame field {v,v*} for S2 and V € T(TS?), the

connection 1-form associated to this frame is given by:
a, (V) = (Dyw, v").

Proposition A.3.1. In our standard normal frame {v,v*} we have,

. M1 t
PARa (V) = Vil gl 550 = 1+ 200+ a) () = (55)°)]

Proof.

Dy(T'2v) = VnDx(D2v) + Dy (I'2v)

1 2
— Vn{tDs,(C2v) + RDs,(T2v)} + %V

Now

1 t M1+« t B

1 tDaR(F2 V) E E 66 63 Eaat}
DaR(FNJ) = 83(%%)61% + %%DaRaR 8R(%§)6t + %gDaRat



Ml+al a M1 al M1
VRN A O
t 8t M1 tBM 1

Pome  RR T Rareas”
M1+« t g
“® o R
8 M1 Mt 1
2. RD;(T2v) = (= + —— ——
RD,(T2v) = (= + Rﬁﬁ)at R EFR
1 a 1 ﬁ tﬁ
Dat(rﬂj)— 5352D6taR aat EaDatat
a1l M1 14 tBa 1l M
“BFERa TR Rapp "

Iv(RE?) 1,a
TR RB
[v(RB?)  a 10g(RA%) o 1,1 Ml

REZ BB R BB R RP

2

Giving

t M 1 t M2+« 1 «
b —Yo0+ =—=——0r

Dy(T7v) = Vﬂ[{a(l - (E)Q) + RB

As a result,
(Dy(T'zv),[2A2*) = TAZ(Dyv, v*)

M 1 M2 0
VIS = ()4 st et 5 () + (5

—|—V7}%F
a o 12 M t,2+« a4 1
= Vﬁ[@{gr— (1- (ﬁ) )} E{(ﬁ) T (E) @}]
a o, tio Qo
ZVU[@ 5(53) -1} + Rﬁ4{2( )(R) (53) 1]



It now easily follows that

Corollary A.3.1.1. o, (V) = V{2 + O(%)} for,
R 1 T
h=—-2M=\"2{1+2(=)>
AL 2(5)%

Proof. O]

In order to get hold of the second fundamental from K of our slice {t = 0} we

will need to find the unit timelike normal NocDf which we now work towards.
Lemma A.3.1.
_ t
Dt = —cosh w{ED(R —rcoshn) — D(t — 7sinhn)}

B 1 Vn
BQ +OéOé 6(1_( ))RBQ

Proof. We recall that t = cosh it — sinh )z = cosh ¢t — sinh )R cos v so that,

Dt = cosh @/J{—(g) - tanhw(— cos¥0g — sindy)}.

64 R2 54

— tanh vy sin v
1 — tanh? ¢ cos2 ¥

We also recall that Vi = 0y allowing for the above expression to
be written as

_ R t
Dt = — coshw{( )20, + @Rapb R254( (E)Q)Vn}

and the result follows. O

Remark A.3.1. We notice that (Dt, Dty = cosh® ¢{(%)? _4_(ﬁ)2+54( —(£))IVnl*}

has the same limit for large 7 as — cosh? )T’ A.
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Since Dt is the timelike normal to our boosted slice {¢ = 0} and therefore normal

to S? we must have some function ¢,, € F(S?) such that,

N = —m = cosh ¢,,v* + sinh ¢, v.

It’s an easy calculation to show that

(DETv) ¢ () -1

inh ¢, = (N,v) = -
sinh g, = (N.v) IDfT:  Ra |DfT3

which has magnitude O(%) indicating that N approaches v* for large 7. Since

inh o,
lim sinh ¢ =1
T—00

n

t o (1= (%)? t AMEL
fim 7ipn = —& i L 5)) ¢ MG
7—00 R r—o |Dt|n§ R(}L{)Z)\g

or equivalently,

Lemma A.3.2. Given ¢, € F(S?) such that N = cosh ¢, v* + sinh ¢,,v we have,

(;On = % + O(F%) fOT’,

Proof. m

Corollary A.3.1.2. For the orthonormal frame field {N,ﬁ} in the normal bundle
of S% such that {0, 1y > 0:

1. (N Hy =15 +0(%) for,

t 1 r
[ =2M-X"2{1 - \"1+4+ (=)
A THL- T ()
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2. az(V) =Vn{z + O(

Tsl’_‘

)} for,

_1
s = —2m—

Proof. 1. Since

(N,HY = cosh ¢,(v*, H + sinh ¢, (v, H)
according to Corollary A.2.0.1 and Lemma A.3.2,
. _2 /Nt 1T t _1 —1 T 9 t 1
lim 7(N, H) = —=2M-\"2{3 + A —(E)}—éLMj)\ 2(—2)
r r

T—00

t 1 T
=2M-A"2{1 - X'+ (=)*}.
ATHL=AT ()

2. From

n = cosh ¢, + sinh ¢,,v*

it’s an easy exercise to show that az = a, — d¢,, giving

lim Faz(V) = Vn[—zMgA—é{l + 2(%)2}] - V(—4M;>\_5)
R, t

= PV 2M A3 (1 4+ 2( 2] + MV (5 EAH)
= V(%)[—ZM(%)?’/\é{l - 2(2)2} - 4M§)\5]
— V(EMA = {5 +2)

- —2M§A%vn

having used the fact that coshy =

Rl

A~z in the second line.

]
We are now in a position to verify that the ADM-momentum of our boosted slice
is given by P = (0,0, M sinh ),
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Proposition A.3.2. In the boosted isotropic coordinates (z',z% %) = (Z,7, 2),

1 A
P, = lim — | {K;; — Kg;j}n’dA = M sinhd;3

F—00 T 52
2

where K(-,) = —=Ig(-,-), N) is the scalar second fundamental form of our boosted

slice (K = g"K;;) and 71 is the outward unit normal to S2.

Proof. From the induced metric on our boosted slice we read off,
@af; == B4D§3
0y = B'Dy

0. = B*{cosh? ¢ — (%)2 sinh2 ¢} Dz

giving

— 22DZ + 2§Dy + 2zZD%

Os.

27 2y 2z
+ 2o, + =

= s,
B4 B+ cosh?yp — ([33)2 sinh? ¢

Thus, under restriction to S? we see |D(7?)| = 27 + O(1) so that,

. T R . 1 - 1
{fi, 0z) = —t O(%) = ?smﬂcosgo + O(%) = sin ) cos p + O(%)
- ¥ R L 1
(7, 05) = . —1—0(7:) = smﬁsmgp—l—O(f) = smﬁsmgp—l—O(f)

1
F

z 1 1 -
(M, 05) = ; + O(%) = sechz/zg cos ) + O(%) = cosV + O(=).

i = P2\ we have
| D72

For the orthonormal frame field {e; = Rﬂi—ﬂ, €y = %,

D%
(61,05 = er, Dy = LA ou(5) = A boo (s
1,0z) = p¥e1, Dxy = f 7 Qaﬁ(f)—ﬁ RA 2(?79(fsm19)coscp

R A . 1
= secthQ?(K)% cos ¥ cos ¢ = cos v cos p + O(%)
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1
{ey,0zy = B*sin 1 I(—sindsinp) = —F%sing = —sinp + O(=),
7

r 1 r 1 R
(e, 05) = Ber, DY) = BQ%AWM ) = BQ%AT%(? sin ) sin ¢

S

R A1 - 1
= sechy3? (X)E cos ¥ sin ¢ = cos ¥ sin p + O(%)

(e, 0y = B*sin 1 I(sin ¥ cos p) = % cosp = cos ¢ + O(%)

and finally

RIlRN

(61,0 = A Heosh s — ()7 sink 1) ()

— 52 }—% 2{cosh P — ( )% sinh? w}aﬁ(sechw— cos 1)

ﬁS

2—62 ( ) {Cosh2z/1 ( 3) sinh? ¢/} sin ¥

<)

= —sind + O L
—smv + (%)
{e3,0:) =0

Now given any ambient vector field X restricted to SZ,

K(X,i) — K(X, i) = (X, i)K(f,7) — K) + Z<X, eV K (e;, 1)
= (X,i)(H,N) - Z<X , €i)0ii(€;)
= <X> ﬁ><ﬁ> ]\7> - <Xa 61>O‘ﬁ(61)

where we used 2<Hf(ei, e;), Ny = —K + K (ii,) in the second line and azocdd in

the third line (following from Proposition A.3.1 given that ¢, is independent of ¢).
From our calculations so far we recognize that K(0z, 1) — K{0z, ) = Fi(sin?) cos ¢
and K (dy, 1) — K{0g, i) = Fy(sin?) sin ¢ for some Fy and Fy. So given that ,/detggz

is independent of ¢ we have P, = P, = 0. For P3; we see
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(0= )(H, N) = (er, 0)az(e1)
[2M A2{1— A7 +( )}cosq? QMR/\ 231n19R/\ 27]19] +O( )

- )
sinh ¢ (5)2)\—5[(3052 ¥{1 — sinh® (1 — tanh® ¢ cos® ¥)}

=2M (=
cosh®y ' T

+ cosh? ¢ sin® 19] +O( )

=2M

inh 1 1
csou;lh;f/) (2)2)\2 [cosh? ¢ — 2sinh® ¢ cos® ¥ + sinh? ¢ tanh? ¢ cos® V] =

+0(5)

F 1 1
— oM smhw(%)?x%ﬁ +0()

giving
1 L
— J (0z,1)(H,N)— ey, 0z yaz(e1)dA
8 Sg
= —smhwf A2 sm19d19+0( )
M TN 1
=5 sinhz/)fo (X)i sin vdv + O(%)
i 1
= M sinh¢ + O(-)
T
the result follows. ]

Remark A.3.2. (see [31]) In Proposition A.3.2 we recall for X = 05 that {05, 7) =
cost + O(L) giving for large 7, (0, e1ye; ~ — 5?19 ~ LVcosd. So for any a. =
i — do. where ¢, = ¢2 + O(L) and ¢? € F(S?)
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lim | (s, @AXH,N) — az((0:, e1)er)dA
s2

T—00

r

= | cos@lim(FXH, NY) — lim(Faiz)(V cos 9)do

J§2

~

— | cos?lim(F2(H, NY) + V - (lim(Fa) ) cos Ido

JS§2

r

= | cos9(lim(F(H,N)) + 1im(f3V§§ -ag))do

JS?

r

= | cosP(Um(F*(H, N)) + im(7*Vg: - o) + im (72 Age7¢.) )do

JS2

= [ cos 19(1im(772<ﬁ, ]\7>) +1im(7°V - a,) — 2lim(7¢, ) )do

J§2

having used Agz2 cos¥ = —2cos ¥ after an integration by parts twice to obtain the final

term of the final line.

From this remark we see that the momentum (at least in the limit) is completely

encoded within the connection 1-form provided we choose an orthonormal frame that
-2
yields lim 7p, = lim %<H , N). Noticing that H = (H,v)v—{H,v*)v* is dominated
r—00 r—00

by (H,v)v ~ —2y for large 7 we may choose the orthonormal frame field {vy, v}

whereby;,

—

H o
Vi = —F = cosh o7 + sinh oy N

vy = sinh oy1 + cosh ngN

with associated connection 1-form given by ag = o, — dyy.

157



Bibliography

1]

S. Alexakis. The penrose inequality on perturbations of the schwarzschild exte-
rior. arXw preprint arXiv:1506.06400, 2015.

R. Arnowitt, S. Deser, and C. W. Misner. Republication of: The dynamics of
general relativity. General Relativity and Gravitation, 40(9):1997-2027, 2008.

R. Bartnik. Phase space for the einstein equations. Communications in Analysis
and Geometry, 13(5):845-885, 2005.

G. Bergqvist. On the penrose inequality and the role of auxiliary spinor fields.
Classical and Quantum Gravity, 14(9):2577, 1997.

H. Bray, S. Hayward, M. Mars, and W. Simon. Generalized inverse mean curva-
ture flows in spacetime. Communications in mathematical physics, 272(1):119—
138, 2007.

H. L. Bray. Proof of the riemannian penrose inequality using the positive mass
theorem. Journal of Differential Geometry, 59(2):177-267, 2001.

H. L. Bray, J. L. Jauregui, and M. Mars. Time flat surfaces and the monotonicity
of the spacetime hawking mass ii. Ann. Henri Poincare, 17(6):1457-1475, 2016.

H. L. Bray and D. A. Lee. On the riemannian penrose inequality in dimensions
less than eight. Duke Mathematical Journal, 148(1):81-106, 2009.

D. Christodoulou. Mathematical problems of general relativity 1. European
Mathematical Society, 2008.

R. Geroch. Energy extraction. Ann. New York Acad. Sci, 224:108-17, 1973.

E. Gourgoulhon and J. L. Jaramillo. A 3+ 1 perspective on null hypersurfaces
and isolated horizons. Physics Reports, 423(4):159-294, 2006.

S. W. Hawking. Gravitational radiation in an expanding universe. Journal of
Mathematical Physics, 9(4):598-604, 1968.

158



[13]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[20]

S. W. Hawking and R. Penrose. The singularities of gravitational collapse and
cosmology. In Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, volume 314, pages 529-548. The Royal So-
ciety, 1970.

S. A. Hayward. Gravitational energy in spherical symmetry. Physical Review
D, 53(4):1938, 1996.

G. Huisken and T. [lmanen. The inverse mean curvature flow and the riemannian
penrose inequality. Journal of Differential Geometry, 59(3):353-437, 2001.

P. S. Jang and R. M. Wald. The positive energy conjecture and the cosmic
censor hypothesis. Journal of Mathematical Physics, 18(1):41-44, 1977.

M. Ludvigsen and J. Vickers. An inequality relating total mass and the area of
a trapped surface in general relativity. Journal of Physics A: Mathematical and
General, 16(14):3349, 1983.

M. Mars and A. Soria. The asymptotic behaviour of the hawking energy
along null asymptotically flat hypersurfaces. Classical and Quantum Gravity,
32(18):185020, 2015.

M. Mars and A. Soria. On the penrose inequality along null hypersurfaces.
Classical and Quantum Gravity, 33(11):115019, 2016.

W. H. Meeks and S.-T. Yau. Topology of three dimensional manifolds and
the embedding problems in minimal surface theory. Annals of Mathematics,
112(3):441-484, 1980.

B. O’Neill. Semi-Riemannian geometry with applications to relativity, volume
103. Academic press, 1983.

A. R. Parry. A survey of spherically symmetric spacetimes. Analysis and Math-
ematical Physics, 4(4):333-375, 2014.

R. Penrose. Gravitational collapse: The role of general relativity. Technical
report, Birkbeck Coll., London, 1969.

T. Regge and C. Teitelboim. Role of surface integrals in the hamiltonian for-
mulation of general relativity. Annals of Physics, 88(1):286-318, 1974.

J. Sauter. Foliations of null hypersurfaces and the Penrose inequality. PhD
thesis, ETH Zurich, 2008.

R. Schoen and S.-T. Yau. On the proof of the positive mass conjecture in general
relativity. Communications in Mathematical Physics, 65(1):45-76, 1979.

159



[27] R. Schoen and S.-T. Yau. Proof of the positive mass theorem. ii. Communica-
tions in Mathematical Physics, 79(2):231-260, 1981.

[28] R. Schoen and S. T. Yau. Proof that the bondi mass is positive. Physical Review
Letters, 48(6):369, 1982.

[29] R. M. Wald. General relativity. University of Chicago press, 2010.

[30] M.-T. Wang, Y.-K. Wang, and X. Zhang. Minkowski formulae and alexandrov
theorems in spacetime. Journal of Differential Geometry, 105(2):249-290, 2017.

[31] M.-T. Wang and S.-T. Yau. Limit of quasilocal mass at spatial infinity. Com-
munications in Mathematical Physics, 296(1):271-283, 2010.

[32] E. Witten. A new proof of the positive energy theorem. Communications in
Mathematical Physics, 80(3):381-402, 1981.

160



Biography

Henri Petrus Roesch was born in Pretoria, South Africa on May 12, 1989 to parents
Elize and Henning Roesch. Most recently, Roesch recieved Ph.D and M.A. degrees
in mathematics from Duke University in Durham, North Carolina. Prior to that,
he recieved a B.Sc. degree in mathematics with theoretical physics from University
College London and a M.A.St degree in theoretical physics from Cambridge Univer-
sity in the United Kingdom.

In July 2017, Roesch will be joining the faculty of the University of California,
Irvine Department of Mathematics as a National Science Foundation Postdoctoral
Fellow. In July 2018, Roesch will be joining the faculty of Columbia University

Department of Mathematics as a J.F. Ritt Assistant Professor.

161



	Abstract
	List of Figures
	Acknowledgements
	1 Introduction
	1.1 The Penrose conjecture
	1.2 Minkowski spacetime
	1.2.1 Particles and Observers
	1.2.2 Nullcones

	1.3 Formulations of the Penrose conjecture
	1.3.1 The spacelike setting
	1.3.2 The null setting

	1.4 Schwarzschild Spacetime
	1.4.1 Time-symmetric slices of Schwarzschild
	1.4.2 Standard Nullcones of Schwarzschild

	1.5 Mass rather than Energy
	1.5.1 Overview of Thesis


	2 Technical Background
	2.1 Preliminaries and Main Results
	2.2 Final introductory remarks

	3 Motivation
	3.1 Nullcone of a point in a Space Form
	3.2 Standard Nullcones of Schwarzschild Revisited
	3.3 Variation of EH

	4 Propagation of 
	4.1 Setup
	4.2 The Structure Equations
	4.3 Propagation of 
	4.3.1 Case of Equality


	5 Foliation Comparison
	5.1 Additional Setup
	5.2 Flux Comparison
	5.3 Asymptotic flatness
	5.3.1 Asymptotic Mass and Energy


	6 Perturbing Spherical Symmetry
	6.1 Spherical Symmetry
	6.1.1 The metric
	6.1.2 Calculating 
	6.1.3 Asymptotic flatness

	6.2 Perturbing Spherical Symmetry
	6.2.1 A geodesic foliation
	6.2.2 Calculating 
	6.2.3 Smoothing to Spherical Symmetry


	A Bartnik data of coordinate spheres in boosted Schwarzschild
	A.1 The Fundamental Forms of S2
	A.2 Curvature and Energy
	A.3 Normal Connection and Momentum

	Bibliography
	Biography

