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Abstract

In the theory of general relativity, the Penrose conjecture claims a lower bound for

the mass of a spacetime in terms of the area of an outermost horizon, if one exists.

In physical terms, this conjecture is a geometric formulation of the statement that

the total mass of a spacetime is at least the mass of any black holes that are present,

assuming non-negative energy density. For the geometry of light-rays emanating off

of a black hole horizon (called a nullcone), the Penrose conjecture can be reformulated

to the so-called Null Penrose Conjecture (NPC). In this thesis, we define an explicit

quasi-local mass functional that is non-decreasing along all foliations (satisfying a

convexity assumption) of nullcones. We use this new functional to prove the NPC

under fairly generic conditions.
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1

Introduction

In the framework of Albert Einstein’s theory of General Relativity, the presence

of matter induces curvature of the four dimensional fabric we inhabit called space-

time. Our perception of gravity is a direct consequence of this curvature and the

reaction of entities to its presence. Mathematically, we recognize a spacetime as a

semi-Riemannian manifold pM4, gq, where M is a four dimensional manifold with

metric gp¨, ¨q of signature p´,`,`,`q. Throughout this thesis, we will be setting the

universal gravitational constant and the speed of light to unity. The fundamental

bridge between our geometric and physical interpretations of the framework is given

by the Einstein equation,

G “ 8πT

where T represents the physical stress-energy tensor, and G “ Ricg ´
1
2
Rgg is the

Einstein tensor. From a physical perspective, the tensor T p¨, ¨q signals the presence

of matter in space-time by the measurement of energy-momentum at any given point.

With regards to geometry, since the Einstein tensor G is constructed from the Ricci

curvature tensor Ricgp¨, ¨q and scalar curvature Rg (of the metric g), it measures ge-

ometric curvature. The Einstein equation therefore conflates both these interpretive
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lenses providing a theory whereby matter curves spacetime.

1.1 The Penrose conjecture

In 1973, Sir Roger Penrose ([23]) conjectured that the mass contributed by a collec-

tion of black holes should be no less than
b

|Σ|
16π

, where |Σ| is the total combined area

of all black hole horizons Σ in our spacetime. Alternatively,

M ě

c

|Σ|

16π
, (1.1)

where M is the total mass. One of the fundamental ingredients of Penrose’s heuris-

tic argument was the use of cosmic censorship. As a statement on the global future

evolution of a system, cosmic censorship is essential for an existence theorem in

general relativity. This hypothesis asserts that generically all spacetime singulari-

ties are hidden from the rest of the universe by black holes. Since singularities are

shown to exist for physically reasonable spacetimes (by the famous work of Hawking

and Penrose [13]), these semi-permeable information barriers serve to prevent their

chaotic physical implications from influencing our deterministic system. Finding a

counterexample to (1.1) would likely indicate a failure of cosmic censorship (in fact

this was Penrose’s original motivation for studying (1.1)), and, conversely, a proof of

(1.1) would provide indirect support to its validity. Another important ingredient in

Penrose’s argument was to assume the Dominant Energy Condition. This condition,

via the energy-momentum tensor T , imposes local curvature constraints to model a

spacetime with non-negative energy density. From this perspective, (1.1) in essence

claims that this non-negative energy density must aggregate (in analogy to our clas-

sical understanding of mass) to at least the black hole contributions. This would

also refine the famous positive mass theorem of Schoen and Yau ([26],[27]) discussed

in Section 1.3.

2



Recognizing the implications of the Penrose conjecture on the immensely successful

framework laid out by Einstein, mathematicians and physicists have spent consider-

able effort in the last forty years towards a rigorous proof. Thus far, attempts have

centered on two main approaches. The traditional approach centers on analyzing ini-

tial data pN 3, ḡ, Kq where pN , ḡq denotes a Riemannian slice of the spacetimeM of

extrinsic curvature (or second fundamental form) K. We briefly discuss this setting

and the beautiful results that answer special cases in Section 1.3. The study of this

thesis however, involves an approach involving null slices ofM. A null hypersurface

Ω ãÑ M is represented by a three-dimensional manifold Ω on which the induced

metric γ “ g|Ω is degenerate. A major appeal of this setting is the existence of a null

tangent vector L P ΓpTΩq generating null geodesics that rule Ω. For this very rea-

son, many approaches in the Riemannian setting involving difficult geometric partial

differential equations reduce in the null setting to an analysis of ordinary differential

equations. To enrich the discussion of these two approaches and to help build an

intuition for the fundamental ideas that underpin this thesis we spend some time in

the setting of Einstein’s theory of Special Relativity.

1.2 Minkowski spacetime

In a vacuum, namely G “ 8πT “ 0, our simplest model is given by the flat Minkowski

space R4
1 :“ pR4, gq whereby g is given by the quadratic form

ds2
“ ´dt2 ` dx2

` dy2
` dz2

in a global chart pt, x, y, zq. Although highly restrictive, Minkowski spacetime orig-

inally served as the springboard for the development of Albert Einstein’s general

theory as well as an initial gateway to some of the most fundamental discoveries

in twentieth century physics. In this section, we invest some time introducing key

aspects of the Minkowski spacetime that will serve as a backdrop throughout this
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thesis.

1.2.1 Particles and Observers

An immediate consequence of the vector space structure is the canonical isomorphism

between the spacetime and its tangent spaces, whereby R4
1 – T~qR4

1 for any point

~q P R4
1. This warrants our ability to unambiguously pull-back the quadratic form

associated to g “ x¨, ¨y. Therefore, given a non-trivial vector v P R4
1, we immediately

notice its existence within one of three categories. If xv, vy ă 0 we say v is timelike, if

xv, vy ą 0 we say v is spacelike, and if xv, vy “ 0 we say v is null. We define the length

of v P R4
1 with |v| :“

a

|xv, vy|. It will also be useful to distinguish spacelike vectors

from non-spacelike vectors by referring to the latter as causal vectors. Taking the

globally defined timelike vector Bt to define a pointwise ‘direction of time’, any causal

vector v can then be identified as either future pointing if xv, Bty ă 0 or past pointing

if xv, Bty ą 0. A material particle is then represented in R4
1 by a curve αpτq : I Ñ R4

1

which has a unit future-pointing timelike velocity α1 (i.e. such that xα1, α1y “ ´1).

Given the frame tBt, Bx, By, Bzu “ tBt, Biu the energy-momentum for a particle of mass

M is given by

T :“Mα1 “ EBt ` P
i
Bi.

For convenience we may denote T “ pE, ~P q, where E is the measured energy of the

particle and ~P its linear momentum. We see that M2 “ ´xT , T y “ E2´|~P |2, which

is independent of our choice of frame (i.e. under an arbitrary isometry φ : R4
1 Ñ R4

1),

whereas E and ~P are not.

In General Relativity, ‘free-falling’ particles are characterized by the restriction that

α be geodesic i.e. α2 “ 0. In R4
1 we conclude therefore that free falling particles have

constant energy-momentum.

Within the Lie group of isometries of R4
1, we will concentrate on the subgroup fixing

the origin called the Lorentz group. In particular, the connected component of the
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identity (or the restricted Lorentz group), is generated by pure rotations of space

(SOp3q) and the Lorentz boosts φ~v : R4
1 Ñ R4

1:

pE, ~pq
φ~v
ÝÑ

´

µ~vpE ´ ~v ¨ ~pq, ~p` pµ~vE `
pγ ´ 1qp~p ¨ ~vq

|~v|2
q~v
¯

(1.2)

for some ~v P 8B3 Ă R3 and µ´1
~v :“

a

1´ |~v|2. It’s easily seen that all future directed

unit timelike vectors are uniquely reached by a boost of Bt. As a result, given any

free falling future directed trajectory α we are able to boost to a frame where it

remains at rest, i.e. αi “ 0. Equivalently, we may identify these trajectories as

co-observers within Minkowski spacetime each with an associated boosted frame of

reference. A free falling particle is therefore viewed from an observer at rest (relative

to the motion of the particle) to have energy-momentum

T “ pM,~0q

giving Einstein’s famous identity that E “M (or E “Mc2 when the speed of light,

c, is not set to unity).

1.2.2 Nullcones

Given a linear map φ : R4
1 Ñ R4

1 it’s an easy exercise to show (forgiving the abuse

of notation) that φ “ dφ. Since the Lorentz group is induced by linear maps we

therefore observe for any w P R4
1 – Tφ~vpwqR4

1 that xdφ~vpwq, dφ~vpwqy “ xw,wy. As a

result, the hyperquadrics of R4
1

HC :“ tv P R4
1|xv, vy “ Cu

are fixed under the action of φ~v, which therefore restricts to a diffeomorphism of

submanifolds. Whenever C ‰ 0, φ~v furthermore restricts to an isometry of the

induced semi-Riemannian submanifold HC .

Considering the hyperquadric given by C “ 0, we are finally led to one of the
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fundamental entities in this thesis and the notion of light in General Relativity. A

ray of light (similarly to a free falling particle) is identified by a geodesic trajectory.

While a particle is restricted to having a timelike velocity, a light ray βpλq instead

must satisfy xβ1, β1y “ 0. As a result, for a ray of light emanating from the origin

in R4
1 we are handed some βpλq “ λv whereby xv, vy “ 0. The collection of all

past-pointing null geodesics form a null hypersurface Ω ãÑ R4
1

Ω :“ tv P R4
1 | xv, vy “ 0 ă xv, Btyu

called the past nullcone of o. Interestingly, given the characterization of particles

and light, we notice that the set Ω ` αpτq bounds the causal history of an observer

at αpτq since no matter or light to the future of this boundary can reach the event

αpτq. Moreover, by time symmetry, no particle released to the future of αpτq will

be able to escape the future nullcone. The reader may recognize this as a geometric

realization of the fact that matter cannot travel faster than the speed of light (which

is fixed at c “ 1).

We conclude this section by showing a one-to-one correspondence between round

foliations of Ω and the boosts φ~v. Since any slicing of R4
1 by parallel spacelike hyper-

planes is uniquely identifiable by their common timelike future normal (and therefore

to a boost), they are given as level sets of a boosted ‘time function’ t̄. We start there-

fore with the trivial slicing associated to our coordinate function t and observe that

it induces a foliation of Ω by round spheres (any two of which are homothetic under

a radius re-scaling). Since the diffeomorphism φ~v|Ω is induced by an isometry that

isometrically ‘tilts’ the trivial slicing, intersection with Ω leads to an isometric tilting

of the initial foliation. In fact, in spherical polar coordinates we see that the image

under φ~v of the unit sphere is given by Σ :“ tt “ r “ ωu for some function ω P FpS2q

only if the inverse map gives φ´~vp´ωpϑ, ϕq, ωpϑ, ϕq, ϑ, ϕq “ p´1, 1, fpϑ, ϕq, gpϑ, ϕqq.

6
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x, z

t̄

ȳ

x̄,z̄

α

R4
1

Figure 1.1: Particle in R4
1

From this, (1.2) gives

ωpϑ, ϕq “
1

µ~vp1´ ~v ¨ ~npϑ, ϕqq
(1.3)

for ~npϑ, ϕq the unit position vector in R3. From the quadratic form in spherical polar

coordinates

ds2
“ ´dt2 ` dr2

` r2
pdϑ2

` psinϑq2dϕ2
q,

we conclude that Σ has induced round metric ψ2γ̊ (i.e. Gaussian curvature Kψ2γ̊ “ 1)

where γ̊ is the standard round metric of S2. Equivalently, for ∆̊ the Laplacian

associated to γ̊,

1 “
1

ω2
p1´ ∆̊ logωq. (1.4)

The converse, namely that any function solving (1.4) must be of the form (1.3) is

7



known ([18]) and follows from the following geometric result (the reader may wish

to skip the proof, which we include for completeness):

Lemma 1.2.1. Σ ãÑ Ω is a round sphere only if Σ is the intersection of Ω with a

spacelike hyperplane.

Proof. Utilizing the spherical polar form of the metric of Minkowski space we con-

clude as before that Σ must have induced metric γ “ ω2γ̊ for some function ω P FpS2q.

The assumption that Σ be round also gives us that Kω2γ̊ “ 1 (and that ω solves (1.3)).

Our result therefore follows as soon as we show the existence of a constant unit time-

like vector N P ΓpTKΣq for Σ. In the Minkowski spacetime we have the position

vector field P :“ tBt ` xiBi such that DXP “ X for any X P ΓpTR4
1q, where D is

the Levi-Civita connection. From the associated second fundamental form and mean

curvature of Σ

IIpV,W q “ DKVW

~H “ trΣ II

for V,W P ΓpTΣq, we conclude from metric compatibility that xII, P y|Σ “ ´γ implies

x ~H, P y “ ´2. From construction of Ω it also follows that xP, P y|Ω “ 0 so that

xV, P y “ 1
2
V xP, P y “ 0, for any V P ΓpTΣq. We conclude that Σ has trivial normal

bundle with basis tP, ~Hu Ă TKΣ. Since II “ aP ` b ~H for two symmetric 2-tensors

a, b we have ´2b “ xII, P y “ ´γ. So for the traceless part of II it follows that

ÎI “ âP . From the Gauss equation ([21], pg.100) for Σ ãÑ R4
1 we see

K ´ 1

4
x ~H, ~Hy `

1

2
xÎI, ÎIy “ 0,

so we immediately conclude that x ~H, ~Hy “ 4. We now show that N “ P ` 1
2
~H

suffices as our choice of timelike unit normal.

8



Since xDV
~H, P y “ V x ~H, P y “ 0 and xDV

~H, ~Hy “ 1
2
V x ~H, ~Hy “ 0, we conclude that

DKV
~H “ 0. From the Codazzi equation ([21],pg.115)

pDKV IIqpW,Uq “ pDKW IIqpV, Uq

the fact that DK ~H “ 0 implies that p∇V âqpW,Uq “ p∇W âqpV, Uq for ∇ the induced

connection on Σ. As a result, taking a trace over V, U and using the fact that

contraction commutes with covariant differentiation, we have

p∇ ¨ âqpW q “ trΣp∇W âq “ W trΣ â “ 0.

It is a well known consequence of the Uniformization Theorem that the divergence

operator on a spacelike 2-sphere is injective when restricted to symmetric tracefree 2-

tensors (see for example, [25]), so we conclude that â “ 0 which implies ÎI “ 0. From

this it follows that xDV
~H,W y “ ´x ~H, IIpV,W qy “ ´1

2
x ~H, ~HyxV,W y “ ´2xV,W y

and therefore DV
~H “ ´2V . Finally, this gives us that

DVN “ DV P `
1

2
DV

~H “ V ´ V “ 0,

as desired.

From Lemma 1.1.1, the one-to-one correspondence between boosts φ~v and round

foliations of Ω is therefore evident via (1.3).

1.3 Formulations of the Penrose conjecture

An immediate difficulty we face when we delve into the general theory is to un-

derstand the nature and behavior of energy and momentum, and, by extension, a

meaningful measurement of mass. Fortunately, a means of measuring total energy

and momentum is afforded by certain spacetimes.

For matter that is isolated and locally concentrated within a spacetime pM, gq,

9



the ‘farther away’ one is from the matter content the more the geometry settles

towards ‘flatness’. With regards to the metric g, this translates into certain de-

cay conditions on the associated curvature tensors, and such spacetimes are called

asymptotically flat.

1.3.1 The spacelike setting

A hypersurface N 3 ĂM with induced Riemannian metric ḡ is said to be asymptot-

ically Euclidean if ḡ decays sufficiently fast to the flat metric δ on R3 and, up to a

compact region C (surrounding the matter content), the sub-structure ofN´C is also

in agreement with (possibly more than one copy of) R3. Specifically, N´C “
Ťk
i“1Ni

where each end Ni is diffeomorphic to R ´ B3, for B3 the unit ball. Moreover, in

the chart txiu for R3 (with radius r2 :“
ř3
i“1 x

2
i ) we have that ḡij “ δij ` εij and

r|εij|`r
2p|Bεij|`|Kij|q`r

3p|BBεij|`|BKij|q ď C, where K is the second fundamental

form of N . The pair N Ă M therefore become asymptotically characteristic of a

Euclidean slice E Ă R4
1. Within these isolated systems, similarly to a particle in R4

1,

we observe an abstract ADM energy-momentum pE, ~P q ([2]) that is given (assuming

summation over repeated indices) by

E “ lim
rÑ8

1

16π

ż

Sr

pBj ḡij ´ Biḡjjq~nidσ (1.5)

and P i
“ lim

rÑ8

1

8π

ż

Sr

pKi
j ´ δ

i
jKkkq~njdσ (1.6)

where Sr represents a coordinate sphere of radius r with unit normal ~n. It can be

shown that E and P i do not depend on our choice of chart txiu ([3]), and two distinct

asymptotically Euclidean slicings of M differ by a Minkowskian boost (1.2) in their

respective measurements of pE, ~P q (see [24]).

We are now in a position to state a beautiful result first proved by Schoen and

Yau using minimal surface techniques ([26],[27]) and then by Witten using spinors

10



([32]).

Theorem 1.3.1 (Positive Mass Theorem). Let pN , ḡq ãÑ pM, gq be an asymptoti-

cally Euclidean hypersurface, where the metric g satisfies the Dominant Energy Con-

dition. Then for each end Ni we have that

E2
ě |~P |2.

Moreover, if E “ 0 for some i, then pN , ḡq “ pR3, δq.

It follows therefore that the mass of the spacetime satisfies

M “

b

E2 ´ |~P |2 ě 0

as expected. The Penrose conjecture further predicts a stricter lower bound for the

total mass M whenever spacetimes contain any black hole horizons, namely, the

inequality (1.1).

A natural special case to consider is when the slice pN , ḡq represents a rest-

frame P i “ 0, E “ M . We see from (1.6) that this holds in the event that N is

totally geodesic, i.e. K “ 0. Since the tensor K is given by a normal variation of

ḡ off of N (by first variation of area) we would obtain this condition from a time-

symmetric slicing of the spacetimeM. From the Gauss equation, it then follows that

the Dominant Energy Condition is equivalent to the statement that N have non-

negative scalar curvature Rḡ ě 0. It is also known in this setting that the black hole

horizon is represented by an ‘outermost’ minimal surface Σ0 possibly with multiple

components; each component a sphere and no two spheres intersecting (see [20, 15]).

From this the Penrose conjecture completely reduces to a statement relating the total

mass of the time-symmetric three-dimensional Riemannian manifold N and the area

of Σ0 ãÑ N , called the Riemannian Penrose Inequality (or RPI). A fundamental

breakthrough came at the very end of the twentieth century with a complete proof of
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the RPI. Whenever Σ0 is a single connected component Huisken and Ilmanen proved

the RPI in 1997 ([15]) which was subsequently generalized to multiple components

by Bray in 1999 ([6]) using a completely new approach.

Theorem 1.3.2. (Bray) Suppose pN , ḡq is complete, has non-negative scalar curva-

ture and contains an outermost minimal surface Σ0 “
Ťn
i“1 Si. Then

M ě

c

ř

i |Si|

16π

with equality only in the case that pN , ḡq is isometric to a time-symmetric slice of

the Schwarzschild spacetime (see Section 1.4.1 below) of mass M .

An interesting energy functional for any closed spacelike surface Σ introduced by

Hawking ([12]) is defined by

EHpΣq “

c

|Σ|

16π

´

1´
1

16π

ż

Σ

x ~H, ~HydA
¯

for ~H the mean curvature of Σ. This Hawking Energy was the definitive tool used by

Huisken and Ilmanen to prove the Riemannian Penrose Inequality. An observation

due to Geroch ([10]) shows that under inverse mean curvature flow, EH is non-

decreasing within slices of non-negative scalar curvature. It also follows for coordinate

spheres Sr of an asymptotically Euclidean slice that lim
rÑ8

EHpSrq “ E. So if the

slice N is time-symmetric, not only do we conclude that lim
rÑ8

EHpSrq “M but on

a minimal surface Σ0 (where ~H “ 0) it also follows that EHpΣ0q “

c

|Σ0|

16π
. From

Geroch’s observations, Jang and Wald ([16]) observed a potential application towards

the Riemannian Penrose Inequality given the existence of a smooth flow from the

vicinity of a horizon to round spheres at infinity. It was soon realized however that

this flow would not remain smooth in general, which is where Huisken and Ilmanen’s
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work was needed to close the argument. They were able to show the existence

of a weakly defined inverse mean curvature flow to overcome possible singularities

and found that the leaves Σs approached round spheres asymptotically as needed.

Unfortunately, the monotonicity of the flow is dependent on the topology of the initial

surface, requiring that the flow begin on a connected component of Σ0 “
Ť

i Si. As

a result, they were able to show

max
i

c

|Si|

16π
“ EHp0q ď lim

sÑ8
EHpsq “M.

Rather than a flow of surfaces within the fixed geometry of the slice, Bray’s insight

was instead to construct a flow of metrics that vary the geometry of the slice via

a one-parameter family of conformal factors. Bray was able to construct this flow

so that the area of the outermost minimal surface was unchanging, the scalar cur-

vature remained non-negative (enforcing Mptq ě 0 by the Positive Mass Theorem)

and the ADM mass was non-increasing. Moreover, the flow approaches spherical

symmetry, so combined with positive mass this ensures the limit is a time-symmetric

slice of the Schwarzschild spacetime. Since (1.1) achieves equality for these slices in

Schwarzschild we conclude that:

c

|Σ0|

16π
“ lim

tÑ8

c

|Σt|

16π
“ lim

tÑ8
Mptq ďM.

Where Huisken and Ilmanen’s proof is strongly dependent on the dimension of the

slice, Bray’s argument was shown by Bray and Lee ([8]) to generalize to dimensions

less than eight. In either instance the case of equality for (1.1) enforces N to be the

time-symmetric slice of Schwarzschild.
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1.3.2 The null setting

In Minkowski spacetime, upon changing our coordinates to ‘ingoing null coordinates’

pt, rq Ñ pv, rq where v “ t` r, the associated quadratic form is given by

ds2
“ ´dv2

` 2dvdr ` r2
pdϑ2

` psinϑq2dϕ2
q,

and we recognize the past null cones along the time-axis as the slices Ω “ tv “ v0u.

We find that Bv “ Bt and the gradient of v satisfies Dv “ Br P ΓpTΩq X ΓpTKΩq,

which is a past-pointing null vector. From the identity DDfDf “
1
2
D|Df |2, we

conclude that integral curves of Br are geodesic, so Br generates the light rays that

rule Ω. In fact, any spherical cross-section Σ ãÑ Ω is uniquely identified as a graph

over S2 by specifying r|Σ. For a cross-section Σ :“ tr “ ωpϑ, ϕqu, we may then assign

a normal null basis tL,Lu P TKΣ such that L “ Br and xBr, Ly “ 2, from which we

decompose the second fundamental form II of Σ accordingly to χ :“ ´xII, Bry and

χ :“ ´xII, Ly. For Σ, as shown in Section 6.1 (with β “ M “ 0), denoting by {∇

the induced connection, ζpV q :“ 1
2
xDV Br, Ly the connection 1-form for the normal

bundle, and γ̊ the standard round metric on S2, one has

γ “ ω2γ̊,

ζ “ ´{d logω,

χ “
1

ω
γ,

trχ “
2

ω
,

χ “
1

ω
p1` | {∇ω|2qγ ´ 2Hω,

trχ “
2

ω
p1´ ∆̊ logωq.

Therefore, for any geodesically induced foliation of Ω along Bs “ ψBr (for some

ψ P FpS2q), dependence of the data on the affine parameter s is given via ωps, ϑ, ϕq “

sψpϑ, ϕq. According to the null basis tψBr,
1
ψ
Lu we therefore get

γs “ s2ψ2γ̊,

ζs “ ζ ` {d logψ “ 0,

χ
s
“ ψχ “

1

s
γ,

trχ
s
“ ψ trχ “

2

s
,

trχs “
trχ

ψ
“

2

s
Kψ2γ̊.

For asymptotically flat spactimes, one obtains the notion of an asymptotically

flat nullcone Ω by specifying decay along a geodesic foliation that mirrors the above
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dependence on the affine parameter s to leading order (see Section 5.3 for precise

definitions). The work of Mars and Soria ([18]) then shows that lim
s‹Ñ8

EHpΣs‹q ă 8

for any asymptotically geodesic foliation tΣs‹u satisfying s “ ψs‹`ξ, where ξ decays

‘sufficiently fast’. As was the case for asymptotically Euclidean slices, we find that

EHpΣs‹q approaches a measure of energy called the Bondi-energy EB if the leaves of

our foliation tΣs‹u approach asymptotically round spheres. This coupling between

energy measurements and asymptotically round foliations of Ω should be familiar

given our analysis of the Minkowski spacetime, where we showed a one-to-one cor-

respondence between the boosts (1.2) and round foliations of the past null cone of a

point. Heuristically, we imagine an asymptotically round foliation of Ω induced by

intersection with an asymptotically Euclidean slicing ofM (see Figure 1.2 below). As

these intersections asymptotically coincide with coordinate spheres in the slicing (as

is the case in Minkowski spacetime) the Hawking energy becomes comparable to the

energy associated with the slicing. Minimizing over all possible energies, we there-

fore obtain the Bondi-mass mB. By taking a Riemannian hypersurface asymptotic

to Ω, Schoen and Yau (see [28]) were able to construct an asymptotically Euclidean

manifold (not necessarily embeddable inM) whose ADM mass is no larger than mB.

From this the positivity of the Bondi-mass follows from the Positive Mass Theorem.

In order to formulate the Penrose conjecture in this setting, we need to first mo-

tivate a definition of a horizon Σ0. For any cross-section Σ ãÑ Ω, it follows that

we recover Ω ‘outside Σ’ by emitting null geodesics along our past-pointing null

geodesic generator L P ΓpTΩq X ΓpTKΩq. If Ω is asymptotically flat, we also con-

clude that any foliation along L has expanding area (see Lemma 5.3.1), so L points

‘outwards and to the past’ of Σ. It follows, by rescaling L, that Σ admits a null

basis tL´ “ L
trχ
, L` “ trχLu such that xL´, L`y “ 2 (i.e. L` is ‘outward and to

the future’ of Σ) and therefore ´2 ~H “ L` ´ x ~H,L`yL´. For an infinitesimal flow
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t̄
ȳ

x̄,z̄

t

y

x,z

EHpΣs‹q Ñ E

EHpΣsq ÑM

Figure 1.2: Isolated Black Hole

along L` off of our initial surface Σ, we have from a first variation of the area form

that 9dA “ ´x ~H,L`ydA “ x ~H, ~HydA. Thus, if we’re able to locate a Σ ãÑ Ω for

which ~H is a timelike vector, then Σ is ‘trapped’ in the sense that light rays emitted

off of the surface of Σ yield a collapsing sphere. A horizon is therefore identified

by a marginally outer trapped surface Σ0 where the mean curvature ~H is null, i.e.

x ~H, ~Hy “ 0.
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We notice immediately for a horizon Σ0 ãÑ Ω that EHpΣ0q “

b

|Σ0|

16π
. As was the case

for Huisken and Ilmanen’s proof of the RPI, we ask whether we’re able to interpolate

the Hawking energy along Ω from the horizon to null infinity. In his PhD thesis,

Johannes Sauter ([25]) showed that, for a shear free nullcone Ω (i.e. χ̂ “ 0) andM a

vacuum spacetime, one is able to solve a system of ODEs to yield explicitly the data

on Ω. This then enables a direct analysis of EH at null infinity that allowed Sauter

to prove the Penrose conjecture in this setting. From an observation attributed to

Christodoulou (see [25]), monotonicity of EH follows for foliations tΣs‹u if either the

mass aspect function µ :“ K´ 1
4
x ~H, ~Hy ´ {∇ ¨ ζ or trχ remain constant on each Σs‹ .

Interestingly, the latter flow is in fact a null ‘inverse mean curvature’ flow since the

flow vector L satisfies ´xL, ~Hy “ trχ “ const. on each Σs‹ . Sauter was able to show

that, for small pertubations of Ω off of the shear free condition, one obtains global

existence of either flow and that EH converges. Unfortunately though, unlike the

Huisken and Ilmanen case, one is unable to conclude that the foliating 2-spheres be-

come round asymptotically. In fact, Bergqvist ([4]) noticed this exact difficulty had

been overlooked in an earlier work of Ludvigsen and Vickers ([17]) towards proving

the weak null Penrose conjecture, namely
b

|Σ0|

16π
ď EB.

Alexakis ([1]) was able to prove the null Penrose conjecture for vacuum perturbations

of the black hole exterior in Schwarzschild spacetime by successfully using the mono-

tonicity of EH along the null inverse mean curvature flow. Here the author was once

again aided by an explicit analysis of EH at null infinity. Work by Mars and Soria

([18]) followed soon after that identified the necessary conditions on Ω (inside gen-

eral ambient spacetimes) needed to free up an explicit analysis of lim
sÑ8

EHpΣsq along

geodesic foliations. With their notion of an asymptotically flat null hypersurface Ω,

the authors were able to show an explicit limit of EH at null infinity along various

asymptotically geodesic foliations. In a later work ([19]), Mars and Soria constructed
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a new functional on 2-spheres and showed for a special foliation tΣλu off of the horizon

Σ0 called geodesic asymptotically Bondi (or GAB) that,

c

|Σ0|

16π
ď lim

λÑ8
EHpΣλq ă 8.

Thus, for GAB foliations that approach round spheres, the authors reproduce the

weak null Penrose conjecture of Bergqvist ([4]), Ludvigsen and Vickers ([17]). Unfor-

tunately, as in the aforementioned work of Sauter, Bergqvist, Ludvigsen and Vickers

there is no guarantee of asymptotic roundness.

1.4 Schwarzschild Spacetime

Relaxing our restriction from flat to spherically symmetric solutions in vacuum

(G “ 0 or, equivalently Ric “ 0), we extend beyond Minkowski to the 1-parameter

family of Schwarzschild solutions. Modeling a static black hole of mass M , the

Schwarzschild spacetime is characterized in spherical polar coordinates by the quadratic

form

ds2
“ ´p1´

2M

r
qdt2 `

dr2

p1´ 2M
r
q
` r2

pdϑ2
` psinϑq2dϕ2

q

valid for 2M ą r ą 0, r ą 2M . From this we confirm that M “ 0 reproduces the

quadratic form of Minkowski spacetime. The maximal extension of this geometry is

called the Kruskal spacetime pP ˆr S2, gKq which is given by the warped product of

the Kruskal Plane P :“ tUV ą ´2Me´1u and the standard round S2 with warping

function r “ g´1pUV q for gprq “ pr ´ 2Mqe
r

2M
´1, r ą 0. Therefore, the associated

quadratic form that extends the Schwarzschild metric is given by:

ds2
“ 2F prqdV dU ` r2

pdϑ2
` psinϑq2dϕ2

q

where F prq “ 8M2

r
e1´ r

2M . We recover the Schwarzschild spacetime on V ą 0, U ‰ 0

with the coordinate change t “ 2M log |V
U
| ([21]). Each round S2 has area 4πr2 so

we interpret r as a ‘radius function’, the curvature singularity at r “ 0 we trace back

to the function F prq, known as the ‘black hole’ singularity.
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1.4.1 Time-symmetric slices of Schwarzschild

The time-symmetric slices of the Riemannian Penrose inequality are given by N :“

tV “ e
t0

2MUu or t “ t0 in the Schwarzschild region. The fact that N is asymptot-

ically Euclidean is evident under a change to isotropic coordinates represented by

pt, rq Ñ pt, Rq for r “ Rp1` M
2R
q2. The metric ḡ is represented by:

dr2

1´ 2M
r

` r2
pdϑ2

` psinϑq2dϕ2
q “

´

1`
M

2R

¯4

pdx2
` dy2

` dz2
q

where R2 “ x2` y2` z2. We see that the coordinate singularity at r “ 2M has been

removed in the change to isotropic coordinates. Moreover, for the diffeomorphism

φ : p0,8q Ñ p0,8q given by φpRq “ pM
2
q2 1
R

inspection of isotropic coordinates in

spherical polar form identifies an isometry of N . One can also show that φ is the

restriction to N of the isometry given by U Ñ ´U, V Ñ ´V . From this we conclude

that N has two asymptotically Euclidean ends joined at the minimal sphere R “ M
2

.

r “ 0

r “ 0

r “ 4M

r “ 5M

V

U

P N

R “ M
2

Figure 1.3: The time-symmetric slice N

This minimal sphere corresponds to the black hole horizon at r “ 2M . We also

show that the second fundamental form K vanishes. Since the components of the

Schwarzschild metric are independent of the coordinate t, we know Bt is a Killing
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vector i.e. xDXBt, Y y ` xDY Bt, Xy “ 0 for all vector fields X, Y . So restricting to

X, Y P ΓpTN q we conclude that

KpX, Y q9 ´ xBt, DXY y “ ´
1

2

´

xBt, DXY y ` xBt, DYXy ` xBt, rX, Y sy
¯

“
1

2

´

xDXBt, Y y ` xDY Bt, Xy
¯

“ 0

as expected.

In the Appendix, we further explicitly analyze the effect on Bartnik data for

coordinate spheres of a time-symmetric slice that undergoes a boost of its asymptotic

frame of reference (recall Figure 1.2). As a consequence, we expand calculations of

Wang and Yau ([31]) in obtaining the energy-momentum (according to EH and (1.6)).

Specifically, we show, under a boost of isotropic coordinates

ˆ

t
z

˙

Ñ

ˆ

coshψ ´ sinhψ
´ sinhψ coshψ

˙ˆ

t
z

˙

(here ψ represents a constant ‘rapidity’), that

pE, ~P q : pM, 0, 0, 0q Ñ pM coshψ, 0, 0,M sinhψq.

1.4.2 Standard Nullcones of Schwarzschild

The past nullcone of a point in Minkowski spacetime also has a counterpart in

Schwarzschild spacetime. In order to show this, we make yet another change of co-

ordinates to the so called ingoing Eddington-Finkelstein coordinates, pt, rq Ñ pv, rq

whereby dv “ dt` dr
1´ 2M

r

:

ds2
“ ´p1´

2M

r
qdv2

` 2dvdr ` r2
pdϑ2

` psinϑq2dϕ2
q.

Once again, setting M “ 0 the resemblance with Minkowski is apparent. The stan-

dard nullcone of Schwarzschild is therefore given by slices of the form Ω :“ tv “ v0u.
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Up to a positive constant multiple we find that V “ e
v

4M , so that the coordinates

pv, r, ϑ, ϕq cover the whole Schwarzschild region V ą 0, including the horizon at

U “ 0. Arguing identically as in the case of Minkowski, we find our null geodesic

generator to be Br “
BU
F prq

, and any cross section Σ ãÑ Ω is uniquely identified by

specifying r|Σ “ ωpϑ, ϕq.

r “ 0

r “ 2M

r “ 4M

r “ 5M

ω “ r|Σ

2BV
BU
F

L

L

r “ 0

r “ 0

r “ 4M

r “ 5M

V

U

Ω :“ tV “ V0u

P Ω
U “ 0

U “ gp4Mq
V0

U “ gp5Mq
V0

Σ

Figure 1.4: Standard Nullcone of Schwarzschild Ω

Endowed with a null normal basis tL “ Br, Lu Ă TKΣ such that xBr, Ly “ 2, the

data on Σ is found in Section 3.2 (or Section 6.1 with β “ 0)

γ “ ω2γ̊,

ζ “ ´{d logω,

χ “
1

ω
γ,

trχ “
2

ω
,

χ “
1

ω
p1´

2M

ω
` | {∇ω|2qγ ´ 2Hω,

trχ “
2

ω
p1´

2M

ω
´ ∆̊ logωq.

It follows that trχ trχ “ x ~H, ~Hy “ 4
ω2 p1´

2M
ω
´ ∆̊ logωq and, by the Maximum

Principle, the cross-section of Ω given by Σ0 :“ tr “ 2Mu uniquely satisfies x ~H, ~Hy “

0. So Σ0 is a horizon, in fact, from either the ingoing Eddington-Finkelstein or
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Kruskal metric, we see that U “ 0 if and only if r “ 2M is a null hypersurface

with spherical cross-sections, all of area 16πM2. This hypersurface represents the

outermost boundary of the black hole singularity called the event horizon. Regarding

asymptotic flatness, from a geodesic foliation Σs :“ tr “ sψpϑ, ϕqu of Ω we see that

the only distinction from the case in Minkowski spacetime is higher order decay in

the datum trχs “
2
s
Kψ2γ̊ ´

1
s2

2M
ψ2 . In fact, for any cross-section Σ we observe that

K ´ 1
4
x ~H, ~Hy “ 2M

ω3 . Thus, from the Gauss-Bonnet Theorem followed by Jensen’s

inequality, we conclude, as did Sauter (see [25]), that,

EHpΣq “

c

ş

ω2dσ

16π

ż

2M

ω
dσ ěM,

where integration is over the standard round S2. We have equality only if ωpϑ, ϕq “

ω0, which is given by intersections of the time-symmetric slices N with Ω (or a rest

frame measurement with respect to our black hole). Moreover, for round spheres

given by (1.3), we see EHpΣsψq “
M?

1´|~v|2
, in exact agreement with the boosted

energies of a particle (here the black hole) in special relativity.

1.5 Mass rather than Energy

Although the Hawking Energy enjoys monotonicity and convergence along certain

flows, difficulty remains in assigning physical significance to the convergence of EH

due to the lack of control on the asymptotics of such flows. We expect these difficul-

ties may very well be symptomatic of the fact that an energy functional is particularly

susceptible to the plethora of ways boosts can develop along any given flow.

Analogous to the addition of 4-velocities in special relativity, P1`P2 “ P3 which

gives E3 “ E1`E2 (see Figure 1.5), we expect an infinitesimal null flow of Σ within

a fixed reference frame to raise energy due to an influx of matter. However, with no

a priori knowledge of the flow, we have no way to fix or even identify a reference frame.
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P2 “ pE2, ~P2q

P1 “ pE1, ~P1q

PP 1
P3 “ pE3, ~P3q

Figure 1.5: Boosts

So it is likely that ‘phantom energy’ will accumulate from infinitesimal boosts along

the flow, in analogy with special relativistic boosts, P Ñ P 1 (i.e energy increases),

or P 1 Ñ P (i.e. energy decreases) as shown in Figure 1.5. Geometrically, we expect

this to manifest along the flow in a (local) ‘tilting’ of Σ. One may even expect a

net decrease in energy. For the standard nullcone Ω of Schwarzschild spacetime, if

we insist upon the use of EH , we observe as in the previous section that our only

choice of foliation increasing to the mass M is to foliate Ω with time-symmetric slice

intersections (i.e. ω “ const.). Not only is this flow highly specialized, it dictates

strong restrictions on our initial choice of Σ from which to begin the flow. This is

to be expected of a quasi-local energy due to its inherent sensitivity to boosts of our

abstract reference frame along the flow.

This is not a problem, however, if we appeal instead to mass rather than energy

since boosts leave mass invariant, M2 “ E2´|~P |2 “ pE 1q2´|~P 1|2 “ pM 1q2. Moreover,

by virtue of the Lorentzian triangle inequality (provided all vectors are timelike and

either all future or all past-pointing), along any given flow the mass should always

increase:

M3 “ |pE1 ` E2, ~P1 ` ~P2q| ě |pE1, ~P1q| ` |pE2, ~P2q| “M1 `M2.

We hope therefore that, by appealing instead to a quasi local mass functional, a
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larger class of valid flows and more generic monotonicity should arise. In this thesis,

we construct such a mass functional by first finding an optimal choice of flux function

for EH .

1.5.1 Overview of Thesis

In Chapter 2, we develop the necessary technical preliminaries in order to provide a

canonical choice of null frame tL´, L`u P TKΣ for 2-spheres Σ in spacetime. From

this, we introduce a new flux function ρ and use it to construct a new quasi-local

mass mpΣq. We also state and provide short discussions of our two main results,

Theorem 2.1.1 and Theorem 2.1.2, motivating the notion of a (P) (or (SP))-foliation

of a nullcone.

In Chapter 3 we motivate our construction of ρ and mpΣq from some of our simplest

example spacetimes. Specifically, in Section 3.1, we identify an interesting relation-

ship between the canonically defined connection 1-form τ of TKΣ, the shear tensor

χ̂´, and the underlying null geometry of Σ in a space formM. By way of the Gauss

equation, this yields a simple expression for our flux function ρ and mass mpΣq.

Moreover, revisiting the standard nullcone of Schwarzschild, we show that mpΣq is

chosen precisely to yield the mass M of the black hole irrespective of the choice of

cross-section Σ.

In Chapter 4 we expand to general spacetimes and calculate the propagation of

ρ along an arbitrary foliation of a nullcone Ω. From this, we prove Theorem 2.1.1,

which indicates fairly generic monotonicity of our mass functional mpΣq. Specifically,

we have monotonicity along any (P) (or (SP))-foliation.

In Chapter 5, we decompose the flux ρ of any cross-section Σ ãÑ Ω in terms of
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the data for some background foliation of our nullcone Ω. We then introduce the

necessary asymptotics to explicitly formulate the limit of our mass functional mpΣq.

We find a new notion of mass for Ω, namely M :“ limsÑ8mpΣsq, which is com-

pletely independent of our choice of asymptotically geodesic foliation. This allows

us to prove Theorem 2.1.2, yielding the Null Penrose Inequality under fairly generic

conditions.

In Chapter 6, we investigate spherically symmetric spacetimes and identify a class

of perturbations of the black hole exterior admitting asymptotically flat nullcones of

strong flux decay with an (SP)-foliation. As a result, the existence of such pertur-

bations satisfying the dominant energy condition gives the Null Penrose Inequality

(1.1).
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2

Technical Background

2.1 Preliminaries and Main Results

A spacetime pM, gq is defined to be a four dimensional smooth manifoldM equipped

with a metric gp¨, ¨q (or x¨, ¨y) of Lorentzian signature p´,`,`,`q. We assume that

the spacetime is both orientable and time orientable, i.e. admits a nowhere vanishing

timelike vector field, defined to be future-pointing.

Throughout this paper, we will denote by Σ a spacelike embedding of a sphere in

M with induced metric γ. It is well known that Σ has trivial normal bundle TKΣ

with induced metric of signature p´,`q. From any choice of null section L P ΓpTKΣq,

we have a unique null partner section L P ΓpTKΣq satisfying xL,Ly “ 2, providing

TKΣ with a null basis tL,Lu. We also notice that any ‘boost’ tL,Lu Ñ tLa, Lau

given by:

La :“ aL, La :“
1

a
L

(for a P FpΣq a non-vanishing smooth function on Σ) gives xLa, Lay “ xL,Ly “ 2 as

well.

Our convention for the second fundamental form II and mean curvature ~H of Σ
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are

IIpV,W q “ DKVW, ~H “ trΣ II

for V,W P ΓpTΣq and D the Levi-Civita connection of the spacetime.

~H

L

L

TKΣ

M

V,W P ΓpTΣq

Σ

Figure 2.1: About a 2-sphere in spacetime

Definition 2.1.1. Given a choice of null basis tL,Lu, following the conventions of

Sauter [25], we define the associated symmetric 2-tensors χ, χ and torsion (connec-

tion 1-form) ζ by

χpV,W q :“ xDVL,W y “ ´xL, IIpV,W qy

χpV,W q :“ xDVL,W y “ ´xL, IIpV,W qy

ζpV q :“
1

2
xDVL,Ly “ ´

1

2
xDVL,Ly

where V,W P ΓpTΣq.

Denoting the exterior derivative on Σ by {d, any boosted basis tLa, Lau produces

the associated tensors of Definition 2.1.1:

χ
a
pV,W q :“ xDV paLq,W y “ aχpV,W q

χapV,W q :“ xDV p
1

a
Lq,W y “

1

a
χpV,W q

ζapV q :“
1

2
xDV paLq,

1

a
Ly “ ζpV q ` V log |a| “ pζ ` {d log |a|qpV q.
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For a symmetric 2-tensor T on Σ its trace-free (or trace-less) part is given by

T̂ :“ T ´
1

2
ptrγ T qγ

allowing us to decompose χ into its shear and expansion components respectively:

χ “ χ̂`
1

2
ptrχqγ.

Definition 2.1.2. We say Σ is expanding along L for some null section L P ΓpTKΣq

provided that,

x´ ~H,Ly “ trχ ą 0 (†)

on all of Σ.

Any infinitesimal flow of Σ along L gives, by first variation of area,

9dA “ x´ ~H,LydA “ trχdA.

So the flow is locally area expanding ( 9dA ą 0) only if Σ “is expanding along L”:

Σ0

Σs

Ω

L L

Figure 2.2: An expanding nullcone

Remark 2.1.1. In Section 5.3 we will show (Lemma 5.3.1), whenever Ω is past

asymptotically flat inside a spacetime satisfying the dominant energy condition, a
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consequence of the famous Raychaudhuri equation ((4.4), Section 4.2) is that any

Σ ãÑ Ω is expanding along L P ΓpTKΣq X ΓpTΩq|Σ the past pointing null section.

So inequality (:) holds for any foliation of Ω along La where a ą 0 and we have an

expanding nullcone (as illustrated in the figure above).

For Σ expanding along some L P ΓpTKΣq we are able to choose a canonical null

basis tL´, L`u by requiring that our flow along L´ “ aL be uniformly area expanding

( 9dA “ dA). From first variation of area, flowing along aL gives

9dA “ ´x ~H, aLydA “ a trχdA.

So we achieve a uniformly area expanding null flow when a “ 1
trχ

giving:

Definition 2.1.3. For Σ expanding along some L P ΓpTKΣq we call the associated

canonical uniformly area expanding null basis tL´, L`u given by

L´ :“
L

trχ
, L` :“ trχL

the null inflation basis.

We also define χ´p`q :“ ´xII, L´p`qy. It follows from the comments proceeding Defi-

nition 2.1.1 that

trχ´ “ 1

trχ` “ trχ trχ “ x ~H, ~Hy

and for V P ΓpTΣq the torsion associated to this basis is given by

τpV q “
1

2
xDVL

´, L`y “ pζ ´ {d log trχqpV q.

We will denote the induced covariant derivative on Σ by {∇.
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Definition 2.1.4. Assuming Σ is expanding along L, for some L P ΓpTKΣq, we

define the geometric flux function

ρ “ K ´ 1

4
x ~H, ~Hy ` {∇ ¨ τ (2.1)

where K represents the Gaussian curvature of Σ.

This allows us to define the associated quasi-local mass

mpΣq “
1

2

´ 1

4π

ż

Σ

ρ
2
3dA

¯
3
2
. (2.2)

For the induced covariant derivative {∇ we denote the associated Laplacian on Σ

by {∆.

Remark 2.1.2. Whenever trχ` “ x ~H, ~Hy ‰ 0, Σ has two null inflation bases given

by tL´, L`u and t L`

trχ`
, trχ`L´u. As a result we typically have two distinct flux

functions

ρ´ “ K ´
1

4
x ~H, ~Hy ` {∇ ¨ τ

ρ` “ K ´
1

4
x ~H, ~Hy ´ {∇ ¨ τ ´ {∆ log |x ~H, ~Hy|

with associated mass functionals m˘. For the Bartnik datum αH (see Definition

3.1.1), we will see for a past pointing L that ρ´ ´ ρ` “ 2 {∇ ¨ αH (Lemma 3.1.3).

For x ~H, ~Hy ‰ 0, whenever Σ is ‘time-flat’ (i.e. {∇ ¨ αH “ 0) it follows that ρ´ “ ρ`

implies m´ “ m`.

For a normal null flow off of some Σ with null flow vector L, technically the flow

speed is zero since xL,Ly “ 0. In the case the Σ expands along L we define the

expansion speed, σ, according to L “ σL´. We notice that σ “ trχ. We are now

ready to state our first result.
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Theorem 2.1.1. Let Ω be a null hypersurface foliated by spacelike spheres tΣsu

expanding along the null flow direction L such that |ρpsq| ą 0 for each s. Then the

mass mpsq :“ mpΣsq has rate of change

dm

ds
“
p2mq

1
3

8π

ż

Σs

σ

ρ
1
3

´

p|χ̂´|2`GpL´, L´qqp
1

4
x ~H, ~Hy´ {∆ log |ρ|

1
3 q`

1

2
|ηρ|

2
`GpL´, Nq

¯

dA

where

• G is the Einstein tensor for the ambient metric g

• σ “ trχ is the expansion speed

• ηρ :“ 2χ̂´ ¨ {d log |ρ|
1
3 ´ τ

• N :“ |{d log |ρ|
1
3 |2L´ ` {∇ log |ρ|

1
3 ´ 1

4
L`

If we assume therefore that our spacetime M satisfies the dominant energy con-

dition we can show our mass functional mpΣsq is non-decreasing for foliations tΣsu

satisfying the following convexity condition:

Definition 2.1.5. Given a foliation of 2-spheres tΣsusě0 we say it is a (P)-foliation

provided:

ρ ą 0

1

4
x ~H, ~Hy ě {∆ log ρ

1
3

is satisfied on each Σs. We say tΣsusě0 is a strict (P)-foliation or (SP)-foliation if

additionally:

1

4
x ~H, ~Hy “ {∆ log ρ

1
3 , for s “ 0

1

4
x ~H, ~Hy ą {∆ log ρ

1
3 , for s ą 0.
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So for a (P)-foliation the dominant energy condition ensures the product of the

first two terms of the integrand in Theorem 2.1.1 be non-negative. The second is

non-negative since each Σs is spacelike and the last term is non-negative from the

dominant energy condition since xN,Ny “ 0 and xN,L´y “ ´1
2
ă 0 (i.e. N is null

and at every point p P Σ lies inside the same connected component of the nullcone

in TpM as L´).

We will assume in Chapters 5 and 6 that L is past pointing. Adopting the same

definitions as Mars and Soria [18] (see Section 5.3) we have our second main result:

Theorem 2.1.2. Let Ω be a null hypersurface in a spacetime satisfying the dominant

energy condition that extends to past null infinity. Then given the existence of a (P)-

foliation tΣsu we have

mp0q ď lim
sÑ8

mpΣsq “: M

(for M ď 8). If, in addition, Ω is past asymptotically flat with strong flux decay and

tΣsu asymptotically geodesic (see Section 5.3) then

M ď mB

where mB is the Bondi mass of Ω. Moreover, in the case that trχ|Σ0 “ 0 we have

the null Penrose inequality
c

|Σ0|

16π
ď mB.

Furthermore, when equality holds for an (SP)-foliation we conclude that equality

holds for all foliations of Ω and the data (γ, χ, trχ and ζ) agree with some foliation

of the standard nullcone of the Schwarzschild spacetime.
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2.2 Final introductory remarks

Recalling the Hawking Energy for a closed spacelike surface Σ

EHpΣq “

c

|Σ|

16π

´

1´
1

16π

ż

Σ

x ~H, ~HydA
¯

we notice by the Gauss-Bonnet and Divergence Theorems that

ż

Σ

ρdA “ 8π
EHpΣq
b

|Σ|
4π

motivating in part why we call ρ a flux function.

As mentioned previously, one such flux introduced by Christodoulou [9], is the

‘mass aspect function’

µ “ K ´ 1

4
x ~H, ~Hy ´ {∇ ¨ ζ

associated to an arbitrary null basis tL,Lu Ă ΓpTKΣq. Using µ in his Ph.D thesis [25],

Sauter showed the existence of flows on past nullcones that render EH non-decreasing

making explicit use of the fact that under a boost this mass aspect function changes

via ζ according to

ζ Ñ ζa “ ζ ` {d log |a| ùñ µÑ µa “ K ´
1

4
x ~H, ~Hy ´ {∇ ¨ ζ ´ {∆ log |a|.

From these observations, the divergence term in (2.1) (up to a sign) is somewhat

motivated by an attempt to find a flux function independent of boosts. In fact, it

follows in the case that 0 ă x ~H, ~Hy “: H2 and L is past pointing, that ρ can be

given in terms of the Bartnik data of Σ as

ρ “ K ´ 1

4
x ~H, ~Hy ` {∇ ¨ αH ´ {∆ logH

(we refer the reader to Chapter 3 for definitions and proof). Moreover, in our two

simplest cases, namely spherical cross-sections of the nullcone of a point in a space
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form or the standard nullcone of Schwarzchild spacetime, the last two terms cancel

identically. Interestingly, work of Wang, Wang and Zhang [30] show deep connection

between the 1-form αH ´ {d logH and the underlying null geometry of a closed, co-

dimension 2 surface Σ. For Σ satisfying αH “ {d logH they show for various ambient

structures that Σ must be constrained to a shear-free (χ̂ “ 0) null-hypersurface of

spherical symmetry. In Chapter 3 (Proposition 3.1.1) we show for a connected Σ of

arbitrary co-dimension inside a space form, if Σ is expanding along some null section

L P ΓpTKΣq such that DKL9L, then it must be constrained to the nullcone of point

whenever χ̂ “ 0. Leaning on work by Bray, Jauregui and Mars ([7]) we also find

direct motivation for (2.1) showing that ρ arises naturally from variation of EH along

null flows.
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3

Motivation

In this chapter we further develop our motivation for ρ based on an analysis of

nullcones within space forms. We then provide analysis of standard nullcones in

Kruskal spacetime to motivate mpΣq and for comparison with (SP)-foliations satis-

fying dm
ds
“ 0. We also show how an arbitrary variation of EH building on work of

Bray, Jauregui and Mars [7], points toward ρ being the optimal choice of flux func-

tion in the case of null flows. In this thesis we will be using the following convention

to construct the Riemann curvature tensor:

RXYZ :“ DrX,Y sZ ´ rDX , DY sZ.

From this will have need of the following versions of the Gauss and Codazzi equations:

Proposition 3.0.1. Suppose Σ is a co-dimension 2 semi-Riemannian submanifold

of Mn`1 that locally admits a normal null basis tL,Lu such that xL,Ly “ 2. Then,

pn´ 1qK ´ n´ 2

n´ 1
x ~H, ~Hy ` χ̂ ¨ χ̂ “ ´R ´ 2GpL,Lq ´

1

2
xRLLL,Ly (3.1)

{∇ ¨ χ̂pV q ´ χ̂pV, ~ζq ` n´ 2

n´ 1
trχζpV q ´

n´ 2

n´ 1
V trχ “ GpV, Lq ´

1

2
xRLVL,Ly (3.2)

for V P ΓpTΣq and pn´ 1qK the scalar curvature of Σ.
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Proof. From the Gauss equation ([21],pg.100) we have,

x {RV,WU, Sy “ xRV,WU, Sy ` x~IIpV, Uq, ~IIpW,Sqy ´ x~IIpV, Sq, ~IIpW,Uqy

for {R, R the Riemann tensors of Σ,M respectively and V,W,U, S P ΓpTΣq. Re-

stricted to Σ the ambient metric has inverse

g´1
|Σ “

1

2
Lb L`

1

2
Lb L` γ´1

so taking a trace over V, U then W,S in Σ we have:

x {RVWU, Sy
pV,Uq
ÝÝÝÑ {RicpW,Sq

pW,Sq
ÝÝÝÑ pn´ 1qK

xRVWU, Sy
pV,Uq
ÝÝÝÑ RicpW,Sq ´

1

2
pxRLWL, Sy ` xRLWL, Syq

pW,Sq
ÝÝÝÑ R ´ 2RicpL,Lq ´

1

2
xRLLL,Ly.

Since ~II “ ÎI` 1
n´1

~Hγ “ ´1
2
χ̂L´ 1

2
χ̂L` 1

n´1
~Hγ we have

x~II, ~IIy “
1

2
pχ̂b χ̂` χ̂b χ̂q ´

x ~H,Ly

2pn´ 1q
pχ̂b γ ` γ b χ̂q ´

x ~H,Ly

2pn´ 1q
pχ̂b γ ` γ b χ̂q

`

´ 1

n´ 1

¯2

x ~H, ~Hyγ b γ

so returning to our trace

x~IIpV, Uq, ~IIpW,Sqy
pV,Uq,pW,Sq
ÝÝÝÝÝÝÝÑ x ~H, ~Hy

x~IIpV, Sq, ~IIpW,Uqy
pV,Uq,pW,Sq
ÝÝÝÝÝÝÝÑ χ̂ ¨ χ̂`

1

n´ 1
x ~H, ~Hy.

Equating terms according to the Gauss equation we have

pn´ 1qK “ R ´ 2RicpL,Lq ´
1

2
xRLLL,Ly ´ χ̂ ¨ χ̂` p1´

1

n´ 1
qx ~H, ~Hy

“ ´R ´ 2GpL,Lq ´
1

2
xRLLL,Ly ´ χ̂ ¨ χ̂`

n´ 2

n´ 1
x ~H, ~Hy
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having used Gp¨, ¨q “ Ricp¨, ¨q ´ 1
2
Rx¨, ¨y, (3.1) follows.

From the Codazzi equation ([21],pg.115), for any V,W,U P ΓpTΣq,

RKVWU “ ´p {∇V IIqpW,Uq ` p {∇W IIqpV, Uq

where

p {∇V IIqpW,Uq :“ DKV pIIpW,Uqq ´ IIp {∇VW,Uq ´ IIpW, {∇VUq.

So given our choice of null normal L we see that

xDKV pIIpW,Uqq, Ly “ ´V pχpW,Uqq ´ xIIpW,Uq, DVLy

“ ´V pχpW,Uqq ´
1

2
xIIpW,Uq, LyxL,DVLy

“ ´V pχpW,Uqq ` χpW,UqζpV q

xp {∇V IIqpW,Uq, Ly “ ´V pχpW,Uqq ` χpW,UqζpV q ` χp {∇VW,Uq ` χpW, {∇VUq

“ ζpV qχpW,Uq ´ p {∇V χqpW,Uq.

Therefore,

xRVWU,Ly “ p {∇V χqpW,Uq ´ p {∇WχqpV, Uq ´ ζpV qχpW,Uq ` ζpW qχpV, Uq.

Taking a trace over V, U we conclude,

RicpW,Lq ´
1

2
xRL,WL,Ly “ {∇ ¨ χpW q ´Wtrχ´ χpW, ~ζq ` trχζpW q

“ {∇ ¨ χ̂pW q ´ n´ 2

n´ 1
Wtrχ´ χ̂pW, ~ζq `

n´ 2

n´ 1
trχζpW q

and notice that GpW,Lq “ RicpW,Lq since xL,W y “ 0.

3.1 Nullcone of a point in a Space Form

In this section we spend some time studying ρ and mpΣq on cross-sections of the

nullcone of a point in a space form. We adopt the notation as in [21] where Rn
ν

corresponds to the manifold Rn endowed with the standard inner product of index

ν.
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Lemma 3.1.1. Suppose Σk ãÑ Rn
ν (k ě 2) is a connected semi-Riemannian sub-

manifold admitting a non-trivial section ~n P ΓpTKΣq such that DK~n “ η~n for some

1-form η. Then the following are equivalent

1. p ÞÑ expp´~n|pq is constant

2. η “ 0 and xII,´~ny “ γ

3. xII,´~ny “ γ

where γ “ x¨, ¨y|Σ and exp : TRn
ν Ñ Rn

ν is the exponential map.

Proof. Choosing an origin ~o for Rn
ν with associated position vector field given by

P “ xiBi P ΓpTRn
ν ) it follows that

expp´~n|~pq “ pP ´ ~nq|~p

where, by an abuse of notation, we have omitted the composition of canonical isome-

tries T~pRn
ν Ñ T~oRn

ν Ñ Rn
ν identifying ~p with P |~p. As a result, for any V P ΓpTΣq:

dpexpp´~nqqpV q “ DV pP ´ ~nq

“ V ´DV ~n

“ pV ´D
}

V ~nq ´ ηpV q~n

and we conclude that exp ˝p´~nq is locally constant (or constant when Σ is connected)

if and only if both V “ D
}

V ~n for any V P ΓpTΣq and η “ 0. Since D
}

V ~n “ V for

any V P ΓpTΣq is equivalent to ´xIIpV,W q, ~nyp“ xW,DV ~nyq “ xV,W y for any

V,W P ΓpTΣq we have that 1. ðñ 2.

2. ùñ 3. is trivial. To show 3. ùñ 2. we start by taking any U, V,W P ΓpTΣq so

that the Codazzi equation gives

xp {∇V IIqpW,Uq, ~ny “ xp {∇W IIqpV, Uq, ~ny
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where

xp {∇V IIqpW,Uq, ~ny :“ xDKV pIIpW,Uqq ´ IIp {∇VW,Uq ´ IIpW, {∇VUq, ~ny

“ ´p {∇V γqpW,Uq ´ xIIpW,Uq, DV ~ny

“ ηpV qxW,Uy

and therefore ηpV qxW,Uy “ ηpW qxV, Uy. Taking a trace over V, U we conclude that

ηpW q “ kηpW q so that k ě 2 forces η “ 0 as desired.

The Hyperquadrics of Rn
ν correspond to the complete, totally umbilic hypersur-

faces HC of constant curvature C (provided C ‰ 0) given by

HC :“ t~v P Rn
ν |x~v,~vy “ Cu

where C runs through all values in R. When C “ 0, Ω “ H0 is the collection of all

null geodesics emanating from the origin called the nullcone centered at the origin.

Consequently Ω` ~p corresponds to the nullcone at the point ~p. Similarly for a space

form M we will define the nullcone of a point p P M as the collection of all null

geodesics emanating from p.

Proposition 3.1.1. Suppose Σk ãÑMn´1 (k ě 2) is a connected semi-Riemannian

submanifold of a space formM. Suppose that Σ is expanding along some null section

L satisfying DKL “ ζL for some 1-form (or torsion) ζ. Then the following are

equivalent

1. p ÞÑ expp´ kL
trχ
|pq is constant

2. τ :“ ζ ´ {d log trχ “ 0 and χ̂ “ 0

3. χ̂ “ 0

where χ :“ ´xL, IIy.
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Proof. If M has constant curvature C ‰ 0 we find a Hyperquadric HC of Rn
ν (for

some ν) of the same dimension and index as M. It’s a well known fact that M

and HC have isometric semi-Riemannian coverings ([21],pg.224 Theorem 17) which

we identify and denote by O. As a result, for any q P Σ Ă M we find a ~q P HC

with isometric neighborhoods. Moreover, we find an open set Uq Ă Σ of q which is

isometric onto some V~q Ă HC . Without loss of generality we will also identify TKpUqq

and TKpV~qq. Denoting the ambient connection on Rn
ν by D̄ and the unit normal of

Hn´1
C Ă Rn

ν by ~N we conclude, for the null section L´ “ L
trχ

, with the decomposition

D̄KVL
´ “ τpV qL´`x ~N, ~NyxD̄VL

´, ~Ny ~N . So given that all Hyperquadrics are totally

umbilic it follows that xD̄VL
´, ~Ny9xV, L´y “ 0 and therefore D̄KVL

´ “ τpV qL´.

We wish to show 3. ùñ 1. From the hypothesis we have that χ “ 1
k

trχγ

so it follows that kχ´ “ ´xkL´, IIy “ γ and Lemma 3.1.1 applies for V~q Ă Rn
ν .

We conclude that V~q is contained inside the nullcone of a point ~o P Rn
ν , where

~o “ expn,νp´kL
´q|V~q , and every ~p P V~q is connected to ~o by a null geodesic in Rn

ν

along kL´|~p “
kL
trχ

ˇ

ˇ

ˇ

~p
P TK~p V~q Ă T~pHC . Since HC is complete and totally umbilic these

null geodesics must remain within HC . Up to a possible shrinkage of V~q we may lift

a neighborhood of the geodesic ~q Ñ ~o to a neighborhood of some null geodesic q̃ Ñ õ

in O concluding that the isometric image Vq̃ of V~q contracts to õ along null geodesics.

Since M is complete the null geodesic q̃ Ñ õ in turn gives rise to a null geodesic

q Ñ o in M and up to an additional shrinkage we conclude that Uq contracts along

null geodesics onto o:

In fact our argument shows that the union of all points in Σ that get transported to

o must form an open subset of Σ. Conversely, if any point in Σ gets transported to a

point other than o the same follows for a neighborhood around that point in Σ. By

connectedness, all of Σ must be transported to o along null geodesics as desired.

For 1. ùñ 3. we take a null geodesic from q P Σ along kL´ “ kL
trχ

to the focal
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~q

~o

o

q

Uq
V~q

HC

M

~N

kL
trχ

Figure 3.1: Nullcones at ~o and o

point, at say, o PM. Similarly as before this gives rise to a tubular neighborhood

around some null geodesic ~q Ñ ~o in HC within which V~q is contracted along null

geodesics onto ~o. Since HC is totally umbilic V~q is transported to ~o along null

geodesics in Rn
ν forming part of the nullcone at ~o “ expn,νp´kL

´q|V~q . Lemma 3.1.1

applies once again and we conclude that kχ´ “ γ implies χ̂ “ 0 on V~q hence on Uq

(since they have isometric neighborhoods). Since q was arbitrary chosen the result

follows.

Once again 2. ùñ 3. is trivial. To show 3. ùñ 2. we have similarly as in Lemma

3.1.2 from the Codazzi equation for Σ ãÑM and M of constant curvature that:

τpV qxW,Uy “ τpW qxV, Uy

so that a trace over V, U yields again τpW q “ kτpW q and therefore τ “ 0.

For any connected, co-dimension 2 surface admitting a null section L P ΓpTKΣq,

since xDVL,Ly “
1
2
V xL,Ly “ 0, it necessarily follows that DKL “ ζL for some

associated 1-form ζ. In particular, Σ will be contained inside the nullcone of a point
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inside a space formM if we’re able to find a null section L along which Σ is expanding

and shear-free. Along such L it follows from Lemma 3.1.1 for C “ 0 and Proposition

3.1.1 for C ‰ 0 that τ “ 0. So for Lorentzian space forms of dimension-4 (i.e.

‘Minkowski spacetime’ for C “ 0, ‘de Sitter spacetime’ for C ą 0 and ‘anti-de Sitter

spacetime’ for C ă 0) it follows from (3.1) that Σ has flux ρ “ K ´ 1
4
x ~H, ~Hy “ C.

When Σ is a 2-sphere, by the Gauss-Bonnet Theorem, we conclude that

mpΣq “ |EHpΣq| “
|C|

2

´

|Σ|

4π

¯
3
2
.

The reader may be wondering why the need for the divergence term in (2.1) when it

vanishes altogether. We take as our first hint the fact that vanishing τ “ ζ´{d log trχ

is characteristic of spherical cross-sections of Ω which subsequently may obscure it’s

contribution. In the paper by Wang, Wang and Zhang ([30] Theorem 3.13, Theorem

5.2) the authors prove τ “ 0 to be sufficient in spacetimes of constant curvature

to constrain a closed, co-dimension 2 surface Σ to a shear-free null hypersurface of

spherical symmetry. Proof follows from the following Lemma and Proposition 3.1.1

when Σ is a 2-sphere:

Lemma 3.1.2. Suppose Σ is a spacelike 2-sphere expanding along some L inside a

space form M. Suppose also DKL “ ζL for some 1-form ζ then

τ :“ ζ ´ {d log trχ “ 0 ùñ χ̂ “ 0.

Proof. As used in Proposition 3.1.1 to prove the implication in the opposite direction,

we start with the Codazzi equation. For L´ “ L
trχ

we recall that DKL´ “ τL´ “ 0

and trχ´ “ 1 so we have:

x {∇V IIpW,Uq, L´y “ xDKV pIIpW,Uqq ´ IIp {∇VW,Uq ´ IIpW, {∇VUq, L
´
y

“ ´p {∇V χ
´
qpW,Uq ´ xIIpW,Uq, DKVL

´
y

“ ´p {∇V χ
´
qpW,Uq
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“ ´p {∇V χ̂
´
qpW,Uq

0 “ xRKVWU,L
´
y “ x´ {∇V IIpW,Uq ` {∇W IIpV, Uq, L´y

“ p {∇V χ̂
´
qpW,Uq ´ p {∇W χ̂

´
qpV, Uq.

Taking a trace over V, U this implies {∇ ¨ χ̂´ “ 0. Since Σ is a topological 2-sphere

it’s a well known consequence of the Uniformization Theorem (see for example [9])

that the divergence operator on symmetric trace-free 2-tensors is injective so that

χ̂ “ trχχ̂´ “ 0.

Definition 3.1.1. We say a 2-sphere Σ is admissible if

x ~H, ~Hy “ H2
ą 0.

In the case that Σ is admissible we’re able to construct the orthonormal frame

field

ter “ ´
~H

H
, etu

for et future pointing. The associated connection 1-form is given by

αHpV q :“ xDV er, ety.

From the following known Lemma ([30]), Proposition 3.1.1 and Lemma 3.1.2, a

necessary and sufficient condition for an admissible sphere Σ to be constrained to

the past(future) light-cone of a point in a space form is given by αH “ ˘{d logH:

Lemma 3.1.3. For Σ admissible

τ “ ˘αH ´ {d logH

from which we conclude that

ρ¯ “ K ´
1

4
x ~H, ~Hy ˘ {∇ ¨ αH ´ {∆ logH

where `{´ indicates whether L´ is past/future pointing.
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Proof. Since ´ ~H “ 1
2
ptrχL ` trχLq we see H2 “ trχ trχ so that the inverse mean

curvature vector is given by

~I :“ ´
~H

H2
“

1

2

´ L

trχ
`

L

trχ

¯

.

As a result,

αHpV q “ xDV er, ety

“ xDV
er
H
,Hety

“ xDV
1

2

´ L

trχ
`

L

trχ

¯

,¯
1

2
ptrχL´ trχLqy

“ ˘
1

4

´

xDV
L

trχ
, trχLy ´ xDV

trχL

H2
, H2 L

trχ
y

¯

“ ˘
1

4

´

xDV
L

trχ
, trχLy ` xDV pH

2 L

trχ
q,

trχL

H2
y

¯

“ ˘
1

4

´

2xDV
L

trχ
, trχLy ` 2V logH2

¯

“ ˘

´

ζpV q ´ V log trχ` V logH
¯

Wang, Wang and Zhang ([30] Theorem B’) also extend their result to expand-

ing, co-dimension 2 surfaces Σ in n-dimensional Schwarzschild spacetime (n ě 4).

Namely, that any such Σ satisfying αH “ d logH must be inside a shear-free null

hypersurfaces of symmetry, or the ‘standard nullcone’ in this geometry. So with the

hopes of further illuminating modification of EH by way of the flux function ρ we

move on to this setting in dimension 4.
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3.2 Standard Nullcones of Schwarzschild Revisited

Recall the Kruskal spacetime Pˆr S2 with associated quadratic form:

ds2
“ 2F prqdvdu` r2

pdϑ2
` psinϑq2dϕ2

q.

A standard past nullcone of Schwarzchild spacetime Ω is the hypersurface given by

fixing the coordinate at v “ v0 ą 0. Denoting the gradient of a function f by Df

we recognize the null vector field Bu
F
“ Dv restricts to Ω as both a tangent (since

Bupvq “ 0) and normal (since Dv K TΩ) vector field. It follows that Dv P TKΩXTΩ

and the induced metric on Ω degenerate, so Ω is an example of a null hypersurface.

From the identity DDfDf “
1
2
D|Df |2 we see Bu

F
is geodesic and Ω is realized as the

past light cone of a section of the event horizon at r “ 2M (see Figure 1.4).

Setting L “ Dp4M log vq “ 4M
v
Bu
F

we see Lprq “ 4M
v

ru
F
“ 4M

v
v

g1prqF
“ 4M

v
v

4M
“ 1. We

conclude that r restricts to an affine parameter along the geodesics generating Ω and

therefore any cross-section Σ can be given as a graph over S2 in Ω with graph function

ω “ r|Σ. We extend ω to the rest of Ω by assigning Lpωq “ 0 and to a neighborhood

of Ω by assigning Bvω “ 0. From the canonical, homothetic embedding onto the

leaves S2 ãÑ P ˆr S2 we obtain the lifted vector fields V P LpS2q Ă ΓpT pP ˆr S2qq

such that xBupBvq, V y “ rBvpBuq, V s “ 0. It follows that LpS2q|Σr “ ΓpTΣrq (for

Σr :“ tr “ const., v “ v0u) and therefore Ṽ :“ V ` V ωL P ΓpTΣq since

Ṽ pr ´ ωq “ ´V ω ` V ωLprq “ ´V ω ` V ω “ 0.

Since Σ “ t4M log v
v0
“ 0, r “ ωu we have L,Dpr ´ ωq P ΓpTKΣq are linearly

independent so that L “ aL ` bDpr ´ ωq and we wish to solve for a, b. Also, we

have Dr “ ru
Bv
F
` rv

Bu
F
“ v

4M
pBv ` rvLq and Dω “ ∇ω for ∇ the induced covariant

derivative on Σr giving

L “ pa` b
v0

4M
rvqL`

bv0

4M
Bv ´ b∇ω.
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For simplicity we set A “ a` b v0

4M
rv and solve for A, b in L “ AL` bp v0

4M
Bvq ´ b∇ω:

2 “ xL,Ly “ bx
v0

4M
Bv, Ly “ b

0 “ xL,Ly “ 2Ab` b2
|∇ω|2 “ 4pA` | {∇ω|2q

having used ∇ω “ {∇ω ´ | {∇ω|2L in the second equality. We conclude that

L “
v0

2M
Bv ´ | {∇ω|2L´ 2p {∇ω ´ | {∇ω|2Lq

“
v0

2M
Bv ` | {∇ω|2L´ 2 {∇ω.

Lemma 3.2.1. Given a cross-section Σ :“ tr “ ωu of the standard nullcone Ω,

given by Ω :“ tv “ v0u in Kruskal spacetime, we have for the generator L satisfying

Lprq “ 1 that

xṼ , W̃ y “ ω2
pṼ , W̃ q

χpṼ , W̃ q “
1

ω
xṼ , W̃ y

trχ “
2

ω

χpṼ , W̃ q “
1

ω
p1´

2M

ω
` | {∇ω|2qxṼ , W̃ y ´ 2Hω

pṼ , W̃ q

trχ “
2

ω

´

1´
2M

ω
´ ω2 {∆ logω

¯

ζpṼ q “ ´Ṽ logω

ρ “
2M

ω3

where Ṽ , W̃ P ΓpTΣq and p¨, ¨q the round metric on S2.

Proof. The first identity follows trivially from the metric gK upon restriction to Σ.

From the Koszul formula and the fact that L is geodesic it is a straight for exercise

to show that DṼL “
Lprq
r
V |Σ “

1
ω
V . Denoting the Hessian of ω on Σ by Hω we
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therefore have

χpṼ , W̃ q “ xDṼL, W̃ y

“
1

ω
xV,W y

χpṼ , W̃ q “
v0

2M
xDṼ Bv, W̃ y ` | {∇ω|

2
xDVL,W y ´ 2xDṼ

{∇ω, W̃ y

“
v0

2M

´

xDV Bv,W y ` V ωxDLBv,W y `WωxDV Bv, Ly ` V ωWωxDLBv, Ly
¯

` | {∇ω|2χpV,W q ´ 2Hω
pṼ , W̃ q

“
v0rv
2Mω

xV,W y `
1

ω
| {∇ω|2xV,W y ´ 2Hω

pṼ , W̃ q

where in the forth line we use the Koszul formula to evaluate the first term and

metric compatibility to show the last three terms vanish. We have

vrv
2Mr

“
v

2Mr

u

g1prq
“

1

2Mr

Fg

4M
“

1

r
p1´

2M

r
q

so the second and forth identities follow upon restriction to Σ. The third identity is

simply a trace over Σ of the second. Similarly the fifth follows our taking a trace of

the forth and employing the fact that

{∆ω ´
1

ω
| {∇ω|2 “ ω {∆ logω.

For ζ:

ζpṼ q “
1

2
xDṼL,Ly

“
1

2ω
xV,

v0

2M
Bv ` | {∇ω|2L´ 2 {∇ωy

“ ´
1

ω
xV, {∇ωy

“ ´
1

ω
xṼ , {∇ωy
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“ ´Ṽ logω.

From the first identity we conclude that Σ has Gaussian curvature K “ 1
ω2 ´ {∆ logω

and therefore

x ~H, ~Hy “ trχ trχ “ 4pK ´ 2M

ω3
q.

Since ζ ´ {d log trχ “ ´{d logω ´ p´{d logωq “ 0 on Σ we have

ρ “ K ´ 1

4
x ~H, ~Hy “

2M

ω3
.

It follows, in Schwarzschild spacetime, that all foliations to the past of a section of

the event horizon (r “ 2M) inside the standard nullcone (v “ v0) are (SP)-foliations

since Σ “ tr “ ωu satisfies

1

4
x ~H, ~Hy ´

1

3
{∆ log ρ “

1

ω2
p1´

2M

ω
q ą 0 ðñ ω ą 2M.

Moreover, equality is reached only at the horizon itself indicating physical significance

to our property (P). One of the motivating factors for our choice of mass functional

comes from our ability, in this special case, to extract the exact mass content within

any Σ Ă Ω:

mpΣq “
1

2

´ 1

4π

ż

Σ

p
2M

ω3
q

2
3dA

¯
3
2
“

1

2

´ 1

4π

ż

Σ

p2Mq
2
3

ω2
ω2dS2

¯
3
2
“M.

Lemma 3.2.2. Suppose Σ is a compact Riemannian manifold, then for any f P FpΣq

´

ż

f
2
3dA

¯
3
2
“ inf

ψą0

´

d

ż

ψ2dA

ż

|f |

ψ
dA

¯
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Proof. by choosing ψ3
ε “ |f | ` ε for some ε ą 0 it’s a simple verification that

´

ż

p|f | ` εq
2
3dA

¯
3
2
ě

d

ż

ψ2
εdA

ż

|f |

ψε
dA ě inf

ψą0

d

ż

ψ2dA

ż

|f |

ψ
dA

so by the Dominated Convergence Theorem

´

ż

f
2
3dA

¯
3
2
“ lim

εÑ0

´

ż

p|f | ` εq
2
3dA

¯
3
2
ě inf

ψą0

d

ż

ψ2dA

ż

|f |

ψ
dA.

We show the inequality holds in the opposite direction from Hölder’s inequality

ż

f
2
3dA “

ż

p
f

ψ
q

2
3ψ

2
3dA ď

´

d

ż

ψ2dA
¯

2
3
´

ż

|f |

ψ
dA

¯
2
3

where the result follows from raising both sides to the 3
2

power and taking an infimum

over all ψ ą 0.

So given any 2-sphere with non-negative flux ρ ě 0 in an arbitrary spacetime, defining

Eψ
HpΣq :“ 1

8π

b

ş

ψ2dA

4π

ş

ρ
ψ
dA, we conclude that

mpΣq “ inf
ψą0

Eψ
HpΣq ď EHpΣq

as desired. Recalling our use of Hölder’s inequality in the proof of Lemma 3.2.2, we

see that mpΣq “ EHpΣq if and only if ρ is constant on Σ. So for Σ :“ tr “ ωu Ă Ω,

where Ω is the standard nullcone in Schwarzschild spacetime, we see that mpΣq

underestimates the Hawking energy EHpΣq with equality only if ρ hence ω is constant.

Namely the round spheres within ‘time-symmetric’ slices given by t “ const ą 0 or

equivalently v
u
“ const ą 0 (so that v “ v0 implies r “ const) as expected from

Sauters work ([25], Lemma 4.4).
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3.3 Variation of EH

In this section we spend some time studying arbitrary normal variations of EH on

admissible spheres following work of Bray, Jauregui and Mars ([7]). The authors of

[7] consider ‘uniform area expanding flows’ according to the flow vector Bs “ ~I`β~IK

so we first spend some time extending their Plane Theorem to incorporate arbitrary

normal flows Bs “ α~I ` β~IK. Subsequently, we show that an arbitrary null flow is

obstructed from monotonicity by a term with direct dependence upon ρ in analogy

with the variation found by Christodoulou regarding the mass aspect function µ (see,

for example, [25] Theorem 4.1). We hope that this points towards ρ being poten-

tially closer to an optimal choice of flux for the Hawking Energy EH in capturing

the ambient spacetime.

The following proposition is known (see [5], Lemma 4), we provide proof to com-

plement the Plane Theorem of [7] and to establish the result in the notation intro-

duced in Definition 3.1.1.

Proposition 3.3.1 (Plane Derivation). Suppose Ω – I ˆ S2, for some interval

I Ă R, is a hypersurface of M and α ‰ 0 is a smooth function on Ω. Assuming

the existence of a foliation of Ω by admissible spheres tΣsu according to the level set

function s : Ω Ñ R whereby Bs|Σs “ α~I “ ´α
~H
H2 then we have

1
b

|Σs|
p16πq3

dEH
ds

“

ż

Σs

pᾱ ´ αqp2Ks ´
1

2
H2
´ 2 {∆ logHqdA

`

ż

αp2Gpet, etq ` | ˆIIr|
2
` |ÎIt|

2
` 2|αH |

2
` 2| {∇ logH|2qdA

for IIrptq “ x~II, erptqy where erptq is given in Definition 2.1.5.

Before proving Proposition 3.3.1 we will first need to find the second variation of

area:
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Lemma 3.3.1.

x ~H,DBs ~Hy “ ´α|IIr|
2
´ αRicΩper, erq ´H {∆p

α

H
q

Proof. In this lemma we temporarily denote the induced covariant derivative on Ω by

D noticing that x ~H,DBs ~Hy calculates the same quantity as if the ambient connection

was used. Taking a local basis tX1, X2u along the foliation we define γij :“ xXi, Xjy

giving rise to the inverse metric γij. For any V P ΓpTΩq parallel to the leaves of

the foliation (i.e. V |Σs “ ΓpTΣsq we have rBs, V ss “ BspV psqq ´ V pBspsqq “ 0 giving

rBs, V s|Σs P ΓpTΣsq. As such

x ~H,DBs ~Hy “ x ~H,DBspγ
ij~IIijqy

“ ´γikγjlpxDBsXk, Xly ` xDBsXl, Xkyqx~IIij, ~Hy

` γijxDBspDXiXj ´ {∇XiXjq, ~Hy

“ ´2γikγjlpxrBs, Xks, Xly ´ x~IIkl, Bsyqx~IIij, ~Hy

` γijpx´RBsXiXj `DXiDBsXj `DrBs,XisXj ´D {∇XiXj
Bs, ~Hy

where we used the fact that rBs, {∇XiXjs|Σs P TΣs to get the last term. From the fact

that Bs “ α~I it follows that

2γikγjlpxrBs, Xks, Xly ´ x~IIkl, Bsyqx~IIij, ~Hy “ 2γikxDrBs,XksXi, ~Hy

´ 2p´
α

H2
qγikγjlx~IIkl, ~Hyx~IIij, ~Hy

“ 2γikxDrBs,XksXi, ~Hy ` 2α|IIr|
2

γijxDXiDBsXj `DrBs,XisXj, ~Hy “ γijxDXirBs, Xjs `DXiDXjBs `DrBs,XisXj, ~Hy

“ γijxrXi, rBs, Xjss `DrBs,XjsXi `DrBs,XisXj `DXiDXjBs,
~Hy

“ 2γijxDrBs,XisXj, ~Hy ` γ
ij
xDXiDXjBs,

~Hy

having used the fact that rXi, rBs, Xjss P ΓpTΣsq to get the final equality. This allows
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us to simplify to

x ~H,DBs ~Hy “ ´2α|IIr|
2
`RicΩpBs, ~Hq ` γ

ij
xpDXiDXjBs ´D {∇XiXj

Bsq, ~Hy.

Given also that Bs “
α
H
er we see xBs, DXery “

α
2H
Xxer, ery “ 0 for any X P ΓpTΣsq

so we simplify the last two terms

xDXiDXjBs,
~Hy “ ´HXiXjxBs, ery `HXixBs, DXjery `HxDXjBs, DXiery

“ ´HXiXjp
α

H
q ` αxDXjer, DXiery

“ ´HXiXjp
α

H
q ` αγklxDXjer, XkyxDXier, Xly

“ ´HXiXjp
α

H
q ` α| IIr |

2

xD {∇XiXj
Bs, ~Hy “ ´H {∇XiXjxBs, ery `HxBs, D {∇XiXj

ery

“ ´H {∇XiXjp
α

H
q

and the result follows after we collect all the terms and take a trace over i, j.

Proof. (Proposition 3.3.1) The proof follows in parallel to the Plane Theorem of [7]

(Theorem 2.1). From the first variation of area formula:

9dAs “ ´x ~H, BsydAs “ αdAs

ùñ 9|Σs| “ |Σs|ᾱpsq.

So variation of the Hawking Energy gives:

dEH
ds

“
d

ds

´

d

|Σs|

p16πq3

´

16π ´

ż

H2dAs

¯¯

“

d

|Σs|

p16πq3

´1

2
ᾱ
´

16π ´

ż

H2dAs

¯

´ 2

ż

x ~H,DBs ~HydAs ´

ż

αH2dAs

¯

“

d

|Σs|

p16πq3

´

ż

ᾱp2Ks ´
1

2
H2
qdAs `

ż

2α|IIr|
2
` 2αRicΩper, erq ` 2H {∆p

α

H
qdA
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´

ż

αH2dA
¯

where we used the Gauss-Bonnet Theorem and Proposition 3.3.1 respectively to get

the first and second integrands of the last line. As in [7] we now trace the Gauss

equation for Σs in Ω twice over Σs to get

2RicΩper, erq “ S ´ 2Ks `H2
´ |IIr|

2

for S the scalar curvature of Ω. We then trace the Gauss equation for Ω inM twice

over Ω to conclude

S “ 2Gpet, etq ` 2|αH |
2
` |IIt|

2

since et P ΓpTKΩq. Substitution into our variation of EH therefore gives us after

some algebraic manipulation that

dEH
ds

“

d

|Σs|

p16πq3

´

ż

pᾱ ´ αqp2Ks ´
1

2
H2
qdAs

`

ż

2Gpet, etq ` p|IIr|
2
´

1

2
H2
q ` |IIt|

2
` 2|αH |

2
` 2H {∆p

α

H
qdAs

¯

.

First performing an integration by parts on the last term

ż

H {∆p
α

H
qdA “

ż

p {∆Hq
α

H
dA

followed by the identity {∆H
H
“ {∆ logH ` | {∇ logH|2 we obtain the first line of the

variation in Proposition 3.3.1. The second follows from the fact that

|IIr|
2
“ |ÎIr|

2
`

1

2
H2

IIt “ ÎIt

We refer the reader to [7] (Theorem 2.2) for proof of the Cylinder Theorem:
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Proposition 3.3.2. Under the same hypotheses as in Proposition 3.3.1 with Bs “ β~IK

for some smooth function β ‰ 0 on Ω and ~IK “ et
H

we have

1
b

|Σs|
p16πq3

dEH
ds

“

ż

Σs

βp2Gpet, erq ` 2xÎIr, ÎIty ` 4αHp {∇ logHq ` 2 {∇ ¨ αHqdAs.

The full variation of EH is known from ([5], Lemma 3), we are now in a position

to show it within our context:

Corollary 3.3.2.1. Under the same hypotheses as Proposition 3.3.1 and 3.3.2 with

Bs “ α~I ` β~IK

1
b

|Σs|
p16πq3

dEH
ds

“

ż

Σs

pᾱ ´ αqp2Ks ´
1

2
H2
´ 2 {∆ logHqdAs

`

ż

Σs

αp2Gpet, etq ` | ˆIIr|
2
` |ÎIt|

2
` 2|αH |

2
` 2| {∇ logH|2qdAs

`

ż

Σs

βp2Gpet, erq ` 2xÎIr, ÎIty ` 4αHp {∇ logHq ` 2 {∇ ¨ αHqdAs

Proof. As in [7] (Theorem 1.13) variation of EH is achieved by summing the contri-

butions from Propositions 3.3.1 and 3.3.2 since the variation of the area form and

the mean curvature vector are known to be R-linear over the flow vector decompo-

sition.

Subsequently, we achieve an arbitrary past(future) directed null flow by setting

α “ ¯β ą 0 in Corollary 3.3.2.1 giving Bs “ αp~I ¯ ~IKq and

1
b

|Σs|
p16πq3

dEH
ds

“

ż

Σs

pᾱ ´ αqp2Ks ´
1

2
H2
˘ 2 {∇ ¨ αH ´ 2 {∆ logHqdAs

`

ż

Σs

αp2Gpet, et ¯ erq ` |ÎIr ¯ ÎIt|
2
` 2|αH ¯ {∇ logH|2qdAs.
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It follows in an energy dominated spacetime that the only obstruction to a non-

decreasing Hawking energy is the integrand

pᾱ ´ αqp2Ks ´
1

2
H2
˘ 2 {∇ ¨ αH ´ 2 {∆ logHq “ 2pᾱ ´ αqρ¯.

In particular dEH
ds

ě 0 for any foliation where ρ is constant on each Σs, moreover,

since m¯pΣsq “ EHpΣsq in this case (provided also ρ¯ ě 0) we have monotonicity of

our quasi local mass as well. We extend beyond this case in the next section with

the proof of Theorem 2.1.1.
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4

Propagation of ρ

In this chapter we work towards proving Theorem 2.1.1 by finding the propagation

of our flux function ρ along an arbitrary null flow.

4.1 Setup

We adopt the same setup as in [18] which we summarize here in order to introduce

our notation:

Suppose Ω is a smooth connected, null hypersurface embedded in pM, x¨, ¨yq. Here

we let L be a smooth, non-vanishing, null vector field of Ω, L P ΓpTΩq. It’s a well

known fact (see, for example, [11]) that the integral curves of L are pre-geodesic so

we’re able to find κ P FpΩq such that DLL “ κL.

We assume the existence of an embedded sphere Σ in Ω such that any integral

curve of L intersects Σ precisely once. As previously used, we will refer to such Σ

as cross-sections of Ω. This gives rise to a natural submersion π : Ω Ñ Σ sending

p P Ω to the intersection with Σ of the integral curve γLp of L for which γLp p0q “ p.

Given L and a constant s0 we may construct a function s P FpΩq from Lpsq “ 1

and s|Σ “ s0. For q P Σ, if ps´pqq, s`pqqq represents the range of s along γLq then
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Σs0

Σs2

Σs3

Σs1

Ω

L

L

Figure 4.1: Cross-sections: s3 ă s2 ă S´ ă s0 ă S` ă s1

letting S´ “ supΣ s´ and S` “ infΣ s` we notice that the interval pS´, S`q is non-

empty. Given that Lpsq “ 1 the Implicit Function Theorem gives for t P pS´, S`q

that Σt :“ tp P Ω|sppq “ tu is diffeomorphic to S2 through Σ. For s ă S´ or s ą S`,

in the case that Σs is non-empty, although smooth it may no longer be connected.

We have that the collection tΣsu gives a foliation of Ω.

We construct another null vector field L by assigning at every p P Ω L|p P TpM be

the unique null vector satisfying xL,Ly “ 2 and xL, vy “ 0 for any v P TpΣsppq. As

before each Σs is endowed with an induced metric γs, two null second fundamental

forms χ “ ´x~II, Ly and χ “ ´x~II, Ly as well as the connection 1-form (or torsion)

ζpV q “ 1
2
xDVL,Ly. We will need the following known result ([25]):

Lemma 4.1.1. Given V P ΓpTΣsq,

• DVL “ ~χpV q ` ζpV qL

• DVL “ ~χpV q ´ ζpV qL

• DLL “ ´2~ζ ´ κL

where, given V,W P ΓpTΣq, the vector fields ~ζ, ~χpV q are uniquely determined by

x~ζ, V y “ ζpV q and x~χpV q,W y “ χpV,W q.
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Proof. It suffices to check all identities agree by taking the metric inner product

with vectors L,L and an extension W satisfying W |Σs P ΓpTΣsq keeping in mind

that rL,W s|Σs P ΓpTΣsq. We leave this verification to the reader.

For any cross-section Σ of Ω and v P TqpΣq we may extend v along the generator

γLq according to

9V psq “ DV psqL

V p0q “ v.

Since x P TpΩ ðñ xL|p, xy “ 0 we see from the fact that

9pxV psq, Lyq “ xDV psqL,Ly ` κxV psq, Ly “
1

2
V psqxL,Ly ` κxV psq, Ly “ κxV psq, Ly,

and xV p0q, Ly “ 0, that infact xV psq, Ly “ 0 for all s. As a result, any section

W P ΓpTΣq is extended to all of Ω satisfying rL,W s “ 0. We also notice along each

generator 0 “ rL,W ss “ LpWsq “ 9Ws such that Ws|Σ “ 0 forces Ws “ 0 on all

of Ω. We conclude that W |Σs P ΓpTΣsq and denote by EpΣq Ă ΓpTΩq the set of

such extensions off of Σ along L. We also note that linear independence is preserved

along generators by standard uniqueness theorems allowing us to extend basis fields

tX1, X2u Ă ΓpTΣq off of Σ as well.

4.2 The Structure Equations

We will need to propagate the Christoffel symbols with the known result ([25]):

Lemma 4.2.1. Given U, V,W P EpΣq,

xrL, {∇VW s, Uy “ p {∇V χqpW,Uq ` p {∇WχqpV, Uq ´ p {∇UχqpV,W q

where {∇ the induced covariant derivative on each Σs.
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Proof. Starting from the Koszul formula

2x {∇VW,Uy “ V xW,Uy`W xV, Uy´UxV,W y´xV, rW,U sy`xW, rU, V sy`xU, rV,W sy

we apply L to the left hand term to get

Lx {∇VW,Uy “ xDL {∇VW,Uy ` x {∇VW,DLUy “ xrL, {∇VW s, Uy ` 2χp {∇VW,Uq

and to the right keeping in mind that rV,W s P EpΣq

L
´

V xW,Uy `W xV, Uy ´ UxV,W y ´ xV, rW,U sy ` xW, rU, V sy ` xU, rV,W sy
¯

“ V LxW,Uy `WLxV, Uy ´ ULxV,W y ´ 2χpV, rW,U sq

` 2χpW, rU, V sq ` 2χpU, rV,W sq

“ 2
´

V χpW,Uq `WχpV, Uq ´ UχpV,W q ´ χpV, rW,U sq

` χpW, rU, V sq ` χpU, rV,W sq
¯

“ 2
´

p {∇V χqpW,Uq ` p {∇WχqpV, Uq ´ p {∇UχqpV,W q ` 2χp {∇VW,Uq
¯

.

Equating terms according to the Koszul formula the result follows upon cancellation

of the term χp {∇VW,Uq.

Lemma 4.2.2. For S, U, V,W P EpΣq,

xrL, {RVWU s, Sy “ p {∇W {∇V χqpU, Sq ´ p {∇V {∇WχqpU, Sq ` p {∇W {∇UχqpV, Sq

´ p {∇V {∇UχqpW,Sq ` p {∇V {∇SχqpW,Uq ´ p {∇W {∇SχqpV, Uq

where {R the induced Riemann curvature tensor on Σs.

Proof. We notice any f P FpΣq can be extended to all of Ω by imposing Lpfq “ 0

along generators. As such fV P EpΣq and

rL, {RfV WU s “ rL, {RV fWU s “ rL, {RVWfU s “ rL, f {RVWU s “ f rL, {RVWU s.
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Within EpΣq we conclude that both xrL, {RVWU s, Sy and the right hand side of the

identity restricts to 4-tensors pointwise on each Σs. It therefore suffices to prove

the identity pointwise. In particular, for any v, w P TqΣs we extend to vector fields

V,W P EpΣq such that {∇VW |q “ 0. The Riemann tensor on Σs reads

x {RVWU, Sy “ x {∇rV,W sU, Sy ´ x {∇V {∇WU, Sy ` x {∇W {∇VU, Sy

“ x {∇rV,W sU, Sy ´ V x {∇WU, Sy ` x {∇WU, {∇V Sy `W x {∇VU, Sy

´ x {∇VU, {∇WSy

so applying L to the terms on the right assuming restriction to q P Σs we have

L
´

x {∇rV,W sU, Sy ´ V x {∇WU, Sy ` x {∇WU, {∇V Sy `W x {∇VU, Sy ´ x {∇VU, {∇WSy
¯

“ xrL, {∇rV,W sU s, Sy ´ V Lx {∇WU, Sy `WLx {∇VU, Sy

“ ´V xrL, {∇WU s, Sy ´ 2V χp {∇WU, Sq `W xrL, {∇VU s, Sy ` 2Wχp {∇VU, Sq

where the first term in the second line vanishes as a result of Lemma 4.2.1 since

rV,W s P EpΣq and rV,W s|q “ 0. Using Lemma 4.2.1 on the first and third terms of

the third line we get

“ ´V
´

p {∇WχqpU, Sq ` p {∇UχqpW,Sq ´ p {∇SχqpW,Uq
¯

´ 2V χp {∇WU, Sq

`W
´

p {∇V χqpU, Sq ` p {∇UχqpV, Sq ´ p {∇SχpV, Uq
¯

` 2Wχp {∇VU, Sq

“ ´p {∇V {∇WχqpU, Sq ´ p {∇V {∇UχqpW,Sq ` p {∇V {∇SχqpW,Uq ´ 2V χp {∇WU, Sq

` p {∇W {∇V χqpU, Sq ` p {∇W {∇UχqpV, Sq ´ p {∇W {∇SχqpV, Uq

` 2Wχp {∇VU, Sq.

We also note that restriction to q P Σs gives

0 “ p {∇V χqp {∇WU, Sq “ V χp {∇WU, Sq ´ χp {∇V {∇WU, Sq
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allowing us to simplify the remaining terms above

´2V χp {∇WU, Sq ` 2Wχp {∇VU, Sq “ 2
´

´ χp {∇V {∇WU, Sq ` χp {∇W {∇VU, Sq
¯

“ 2χp {RVWU, Sq.

Since

Lx {RVWU, Sy “ xrL, {RVWU s, Sy ` 2χp {RVWU, Sq

the result follows upon cancellation of 2χp {RVWU, Sq given that q was arbitrarily

chosen.

Now we’re in a position to find the structure equations that we’ll need to propa-

gate ρ. Recalling that the tensors γs, χ, χ and ζ are restrictions of associated tensors

on Ω we measure their propagation with the Lie derivative along L. The following

proposition is known ([25],[11]), we provide proof for completeness:

Proposition 4.2.1 (Structure Equations).

LK “ ´ trχK ´ 1

2
{∆ trχ` {∇ ¨ p {∇ ¨ χ̂q (4.1)

LLγ “ 2χ (4.2)

LLχ “ ´α `
1

2
|χ̂|2γ ` trχχ̂`

1

4
ptrχq2γ ` κχ (4.3)

L trχ “ ´
1

2
ptrχq2 ´ |χ̂|2 ´GpL,Lq ` κ trχ (4.4)

LLχ “
´

K ` χ̂ ¨ χ̂` 1

2
GpL,Lq

¯

γ `
1

2
trχχ̂`

1

2
trχχ̂ (4.5)

´ Ĝ´ 2Sp {∇ζq ´ 2ζ b ζ ´ κχ

L trχ “ GpL,Lq ` 2K ´ 2 {∇ ¨ ζ ´ 2|ζ|2 ´ x ~H, ~Hy ´ κ trχ (4.6)

LLζ “ GL ´ {∇ ¨ χ̂´ trχζ `
1

2
{d trχ` {dκ (4.7)

where α is the symmetric 2-tensor given by αpV,W q “ xRLVL,W y, SpT q represents

the symmetric part of a 2-tensor T , GL “ GpL, ¨q|Σs and Ĝ “ G|Σs ´
1
2
ptrγ Gqγ.
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Proof. We prove each equation in turn, when used we will assume S, U, V,W P EpΣq:

1. Since Σ is of dimension two we have

KtxV, UyxW,Sy ´ xV, SyxW,Uyu “ x {RVWU, Sy

Applying L to the left hand side of the equality we get

pLKqtxV, UyxW,Sy ´ xV, SyxW,Uyu ` 2KtxW,SyχpV, Uq ` xV, UyχpW,Sq

´ xW,UyχpV, Sq ´ xV, SyχpW,Uqu

so that a trace over V, U and then W,S gives

2LK ` 4 trχK.

Applying L to the right hand side we have

Lx {RVWU, Sy “ xrL, {RVWU s, Sy ` 2χp {RVWU, Sq

allowing us to use Lemma 4.2.2. Taking a trace over V, U and W,S we get

2 {∇ ¨ {∇ ¨ χ´ 2 {∆ trχ` 2 trχK

having used the fact that {Ric “ Kγ in obtaining the last term. Equating terms

we conclude that

LK “ {∇ ¨ {∇ ¨ χ´ {∆ trχ´ trχK “ {∇ ¨ {∇ ¨ χ̂´ 1

2
{∆ trχ´ trχK

2. Coming from Lemma 4.1.1 we have already made extensive use of this identity:

pLLγqpV,W q “ LxV,W y “ xDLV,W y ` xV,DLW y

“ xDVL,W y ` xV,DWLy

“ 2χpV,W q
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3. pLLχqpV,W q “ LχpV,W q “ LxDVL,W y

“ xDLDVL,W y ` xDVL,DLW y

“ xRV LL`DVDLL,W y ` x~χpV q ` ζpV qL, ~χpW q ` ζpW qLy

“ ´xRLVL,W y ` κχpV,W q ` x~χpV q, ~χpW qy

having used Lemma 4.1.1 to get the third line. Since ~χpV q “ ~̂χpV q ` 1
2

trχV

we see that

x~χpV q, ~χpW qy “ x~̂χpV q, ~̂χpW qy ` trχχ̂pV,W q `
1

4
ptrχq2xV,W y

“
1

2
|χ̂|2xV,W y ` trχχ̂pV,W q `

1

4
ptrχq2xV,W y

using the fact that AB`BA “ trpABqI for traceless symmetric 2ˆ 2 matrices

to get the second line. The result follows.

4. We will denote tensor contraction between the contravariant a-th and covariant

b-th slots by Ca
b . Extending a local basis off of Σ and applying Gram-Schmidt

we get an orthonormal frame field tE1, E2u allowing us to write

g´1
|Ω “ γ´1

“ E1 b E1 ` E2 b E2

and γ “ E51bE
5
1`E

5
2bE

5
2. It’s an easy exercise to show C2

1γ
´1bγ “ δ´Lbds

whereby δpη,Xq “ ηpXq for any 1-form η and vector field X. Since δ and Lbds

are Lie constant along L

0 “ LLC2
1γ
´1
b γ “ C2

1pLLγ´1
b γ ` γ´1

b 2χq

giving

´2C2
1C

2
1γ
´1
b χb γ´1

“ ´C2
1pC

2
1γ
´1
b 2χq b γ´1

“ C2
1pC

2
1LLγ´1

b γq b γ´1

“ C2
1LLγ´1

b pC1
2γ b γ

´1
q
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“ C2
1LLγ´1

b pE51 b E1 ` E
5
2 b E2q

“ LLγ´1.

As a result

L trχ “ LLC1
1C

2
2γ
´1
b χ

“ C1
1C

2
2pLLγ´1

b χ` γ´1
b LLχq

“ ´2|χ|2 ` trLLχ

“ ´2|χ|2 ´RicpL,Lq ` κ trχ` |χ|2

“ ´pχ̂`
1

2
trχγq ¨ pχ̂`

1

2
trχγq ´GpL,Lq ` κ trχ

“ ´
1

2
ptrχq2 ´ |χ̂|2 ´GpL,Lq ` κ trχ

5. pLLχqpV,W q “ LxDVL,W y “ xDLDVL,W y ` xDVL,DLW y

“ xRV LL`DVDLL,W y ` x~χpV q ´ ζpV qL, ~χpW q ` ζpW qLy

“ xRV LL,W y ` V x´2~ζ ´ κL,W y ` x2~ζ ` κL,DVW y

` x~χpV q, ~χpW qy ´ 2ζpV qζpW q

“ xRV LL,W y ´ 2p {∇V ζqpW q ´ κχpV,W q ` x~χpV q, ~χpW qy

´ 2ζpV qζpW q.

Having used Lemma 4.1.1 to get the second and third lines.

Lemma 4.2.3. The first term satisfies the identity

xRV LW,Ly “ ´
´

K ´ 1

4
x ~H, ~Hy `

1

2
χ̂ ¨ χ̂`

1

2
GpL,Lq

¯

xV,W y ` ĜpV,W q

´ pcurl ζqpV,W q `
1

2

´

x~χpV q, ~χpW qy ´ x~χpV q, ~χpW qy
¯

Proof. From the first Bianchi identity followed by the Ricci equation ([21],

pg.125)
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xRV LW,Ly`xRLWV, Ly “ xRVWL,Ly

“ x {R
K

VWL,Ly ` xĨIpV, Lq, ĨIpW,Lqy ´ xĨIpV, Lq, ĨIpW,Lqy

where using Lemma 4.1.1

x {R
K

VWL,Ly :“ xDKrV,W sL´ rD
K
V , D

K
W sL,Ly “ ´2p {∇V ζqpW q ` 2p {∇W ζqpV q

“ ´2pcurlζqpV,W q

ĨIpV, Lq :“ D
||

VL “ ~χpV q

ĨIpV, Lq :“ D
||

VL “ ~χpV q.

We conclude that the antisymmetric part satisfies

1

2

´

xRV LW,Ly ´ xRWLV, Ly
¯

“ ´pcurlζqpV,W q

`
1

2

´

x~χpV q, ~χpW qy ´ x~χpV q, ~χpW qy
¯

.

Next we find that

GpV,W q “ RicpV,W q ´
1

2
RxV,W y

“
1

2

´

xRLVL,W y ` xRLVL,W y
¯

` trγxRp¨qV p¨q,W y

`
1

2
pGpL,Lq ` trγ GqxV,W y.

Since Σ is of dimension two we must have that trγxRp¨qV p¨q,W y9xV,W y with

factor of proportionality K´ 1
4
x ~H, ~Hy ` 1

2
χ̂ ¨ χ̂ coming from Proposition 3.0.1.

We conclude therefore that the symmetric part satisfies

1

2

´

xRV LW,Ly`xRWLV, Ly
¯

“ ĜpV,W q´pK´1

4
x ~H, ~Hy`

1

2
χ̂¨χ̂`

1

2
GpL,LqqxV,W y

and the result follows as soon as we sum up the antisymmetric and symmetric

contributions.
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Combining the previous lemma with the propagation of χ we have

pLLχqpV,W q “
´

K ´ 1

4
x ~H, ~Hy `

1

2
χ̂ ¨ χ̂`

1

2
GpL,Lq

¯

xV,W y ´ ĜpV,W q

` pcurlζqpV,W q ´
1

2

´

x~χpV q, ~χpW qy ´ x~χpV q, ~χpW qy
¯

´ 2p {∇V ζqpW q ´ κχpV,W q ` x~χpV q, ~χpW qy ´ 2ζpV qζpW q

“

´

K ´ 1

4
x ~H, ~Hy `

1

2
χ̂ ¨ χ̂`

1

2
GpL,Lq

¯

xV,W y ´ ĜpV,W q

`
1

2

´

x~χpV q, ~χpW qy ` x~χpV q, ~χpW qy
¯

´ p {∇V ζqpW q ´ p {∇W ζqpV q

´ 2ζpV qζpW q ´ κχpV,W q.

Using again the fact that AB ` BA “ trpABqI for symmetric, traceless 2 ˆ 2

matrices it follows that

x~χpV q, ~χpW qy ` x~χpV q, ~χpW qy “ pχ̂ ¨ χ̂qxV,W y ` trχχ̂pV,W q ` trχχ̂pV,W q

`
1

2
x ~H, ~HyxV,W y

giving the result.

6. L trχ “ LLpC1
1C

2
2γ
´1
b χq

“ ´2χ ¨ χ` trpLLχq

“ ´2χ ¨ χ` 2K ` 2χ̂ ¨ χ̂`GpL,Lq ´ 2 {∇ ¨ ζ ´ 2|ζ|2 ´ κ trχ

“ GpL,Lq ` 2K ´ 2 {∇ ¨ ζ ´ 2|ζ|2 ´ x ~H, ~Hy ´ κ trχ

7. And finally,

pLLζqpV q “ LζpV q “
1

2
LxDVL,Ly

“
1

2
xDLDVL,Ly `

1

2
xDVL,DLLy

“
1

2
xRV LL`DVDLL,Ly `

1

2
x~χpV q ` ζpV qL,´2~ζ ´ κLy
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“
1

2
xRV LL,Ly ` V κ` κζpV q ´ χpV, ~ζq ´ κζpV q

“ ´ {∇ ¨ χ̂pV q ` 1

2
V trχ´ trχζpV q `GpV, Lq ` V κ

having used Lemma 4.1.1 to obtain the third line and the Codazzi equation

(3.2) to get the fifth.

4.3 Propagation of ρ

From Proposition 4.2.1 we have the propagation of the first two terms of ρ for the

third and forth we’ll need

Corollary 4.3.0.1. Assuming tΣsu is expanding along L we have

Lp {∇ ¨ ζq “ ´2 {∇ ¨ pχ̂ ¨ ζq ´ 2 trχ {∇ ¨ ζ ´ {∇ ¨ {∇ ¨ χ̂` 1

2
{∆ trχ´ {d trχ ¨ ζ

` {∇ ¨GL ` {∆κ

L {∆ log trχ “ ´2 {∇ ¨ pχ̂ ¨ {d log trχq ´
3

2
trχ {∆ log trχ´

1

2
trχ|{d log trχ|2

´ {∆
|χ̂|2 `GpL,Lq

trχ
` {∆κ

Proof. When used we will assume V,W P EpΣq.

For any 1-form η on Ω we have

LLp {∇ηqpV,W q “ Lp {∇V ηpW qq “ V LηpW q ´ Lηp {∇VW q

“ V pLLηqpW q ´ pLLηqp {∇VW q ´ ηprL, {∇VW sq

“ {∇V pLLηqpW q ´ ηprL, {∇VW sq

from which we find

Lp {∇ ¨ ηq “ C1
1C

2
2pLLγ´1

b {∇η ` γ´1
b LLp {∇ηqq
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“ ´2χ ¨ {∇η ` trpLL {∇ηq

“ ´2pχ̂`
1

2
trχγq ¨ {∇η ` {∇ ¨ pLLηq ´ ηp2 ~{∇ ¨ χ̂q

the last term coming from Lemma 4.2.1 after taking a trace over V,W . We conclude

that

Lp {∇ ¨ ηq “ ´ trχ {∇ ¨ η ´ 2 {∇ ¨ pχ̂ ¨ ηq ` {∇ ¨ pLLηq.

The first part of the corollary now straight forwardly follows from Proposition 4.2.1

for η “ ζ. For the second, since {∆ log trχ “ {∇ ¨ {d log trχ we have

L {∆ log trχ “ ´ trχ {∆ log trχ´ 2 {∇ ¨ pχ̂ ¨ {d log trχq ` {∇ ¨ pLL{d log trχq.

From the fact that

{∇ ¨ pLL{d log trχq “ {∇ ¨ p{dL log trχq “ {∆
´

´
1

2
trχ´

|χ̂|2 `GpL,Lq

trχ
` κ

¯

the result follows as soon as we make the substitution

{∆ trχ “ trχ
´

{∆ log trχ` |{d log trχ|2
¯

Theorem 4.3.1 (Propagation of ρ). Assuming tΣsu is expanding along the flow

vector L “ σL´ we conclude that

9ρ`
3

2
σρ “

σ

2

´1

2
x ~H, ~Hy

´

|χ̂´|2 `GpL´, L´q
¯

` |τ |2 ´
1

2
GpL´, L`q

¯

` {∆
´

σp|χ̂´|2 `GpL´, L´qq
¯

´ 2 {∇ ¨ pσχ̂´ ¨ τq ` {∇ ¨ pσGL´q

Proof. From Proposition 4.2.1 and Corollary 4.3.0.1 the proof reduces to an exercise

in algebraic manipulation

LLρ “ LLK ´
1

4
trχLL trχ´

1

4
trχLLtrχ` L {∇ ¨ ζ ´ L {∆ log trχ
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“

´

{∇ ¨ {∇ ¨ χ̂´ 1

2
{∆ trχ´ trχK

¯

´
1

4
trχ

´

´
1

2
tr2 χ´ |χ̂|2 ´GpL,Lq ` κ trχ

¯

´
1

4
trχ

´

GpL,Lq ` 2K ´ 2 {∇ ¨ ζ ´ 2|ζ|2 ´ x ~H, ~Hy ´ κ trχ
¯

´ 2 {∇ ¨ pχ̂ ¨ ζq ´ 2 trχ {∇ ¨ ζ ´ {∇ ¨ {∇ ¨ χ̂` 1

2
{∆ trχ´ {d trχ ¨ ζ ` {∇ ¨GL ` {∆κ

` 2 {∇ ¨ pχ̂ ¨ {d log trχq `
3

2
trχ {∆ log trχ`

1

2
trχ|{d log trχ|2

` {∆
|χ̂|2 `GpL,Lq

trχ
´ {∆κ

“ ´
3

2
trχK `

1

8
trχx ~H, ~Hy `

1

4
x ~H, ~Hy

´ |χ̂|2 `GpL,Lq

trχ

¯

´
1

4
trχGpL,Lq

´
3

2
trχ {∇ ¨ ζ ` 1

4
trχx ~H, ~Hy ´ 2 {∇ ¨ pχ̂ ¨ pζ ´ {d log trχqq `

3

2
trχ {∆ log trχ

`
1

2
trχ|ζ|2 ´ {d trχ ¨ ζ `

1

2
trχ|{d log trχ|2

“ ´
3

2
trχρ`

1

4
x ~H, ~Hy

´ |χ̂|2 `GpL,Lq

trχ

¯

`
1

2
trχ|ζ ´ {d log trχ|2 ´

1

4
trχGpL,Lq

` {∆
|χ̂|2 `GpL,Lq

trχ
´ 2 {∇ ¨ pχ̂ ¨ pζ ´ {d log trχqq ` {∇ ¨GL.

The result therefore follows as soon as we express all terms according to the inflation

basis tL´, L`u where tΣsu is a flow along L “ σL´ of speed σ “ trχ.

Corollary 4.3.1.1. For tΣsu expanding along the flow vector L “ σL´ and any

u P FpΣsq
ż

Σs

eu
´

9ρ`
3

2
σρ

¯

dA “

ż

Σs

σeu
´´

|χ̂´|2 `GpL´, L´q
¯´1

4
x ~H, ~Hy ` {∆u

¯

`
1

2
|2χ̂´ ¨ {du` τ |2 `GpL´, | {∇u|2L´ ´ {∇u´ 1

4
L`q

¯

dA

Proof. We start by integrating by parts on the last three terms of Theorem 4.3.1
ż

eu
´

{∆pσp|χ̂´|2 `GpL´, L´qqq ´ 2 {∇ ¨ pσχ̂´ ¨ τq ` {∇ ¨ pσGL´q

¯

dA
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“

ż

σeu
´

e´up {∆euqp|χ̂´|2 `GpL´, L´qq ` 2χ̂´p {∇u, ~τq ´GpL´, {∇uq
¯

dA

“

ż

σeu
´

p {∆u` | {∇u|2qp|χ̂´|2 `GpL´, L´qq ` 2χ̂´p {∇u, ~τq ´GpL´, {∇uq
¯

dA

“

ż

σeu
´

p|χ̂´|2 `GpL´, L´qq {∆u` |χ̂´|2| {∇u|2 ` 2χ̂p {∇u, ~τq

`GpL´, | {∇u|2L´ ´ {∇uq
¯

dA.

As a result
ż

eu
´

9ρ`
3

2
σρ

¯

dA “

ż

σeu
´

p|χ̂´|2 `GpL´, L´qq
´1

4
x ~H, ~Hy ` {∆u

¯

` |χ̂´|2| {∇u|2 ` 2χ̂´p {∇u, ~τq ` 1

2
|τ |2 `GpL´, | {∇u|2L´ ´ {∇u´ 1

4
L`q

¯

dA.

Since χ̂´ is symmetric and trace-free it follows that |χ̂´ ¨ {du|2 “ 1
2
|χ̂´|2| {∇u|2 from

which the first three terms of the second line simplifies to give

|χ̂´|2| {∇u|2 ` 2χ̂´p {∇u, ~τq ` 1

2
|τ |2 “

1

2
|2χ̂´ ¨ {du` τ |2

Remark 4.3.1. An interesting consequence of the above corollary in spacetimes sat-

isfying the dominant energy condition is the fact that any u P FpΣq gives

ż

eu
´

9ρ`
3

2
σρ

¯

dA ě

ż

σeup|χ̂´|2 `GpL´, L´qq
´1

4
x ~H, ~Hy ` {∆u

¯

dA

The proof of Theorem 2.1.1 is a simple consequence of the following corollary:

Corollary 4.3.1.2. Assuming tΣsu is expanding along the flow vector L “ σL´ with

each Σs of non-zero flux (|ρpsq| ą 0) then

d

ds

ż

Σs

ρ
2
3dA “

ż

Σs

9
pρ

2
3 q ` σρ

2
3dA
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“
2

3

ż

Σ

σ

ρ
1
3

´´

|χ̂´|2 `GpL´, L´q
¯´1

4
x ~H, ~Hy ´

1

3
{∆ log |ρ|

¯

`
1

2
|
2

3
χ̂´ ¨ {d log |ρ| ´ τ |2

`GpL´,
1

9
| {∇ log |ρ||2L´ `

1

3
{∇ log |ρ| ´

1

4
L`q

¯

dA

Proof. From the first variation of Area formula

9dA “ ´x ~H,LydA “ ´σx ~H,L´ydA “ σdA

we get the first equality. For the second we apply Corollary 4.3.1.1 with eu “ 2
3
|ρ|´

1
3 ,

canceling the sign in the case that ρ ă 0.

4.3.1 Case of Equality

Lemma 4.3.1. For tΣsu expanding along L “ σL´ we have

LLτ ` στ ` {∇ ¨ pσχ̂´q “ σGL´ ` {dpσp|χ̂
´
|
2
`GpL´, L´qqq

Proof. By combining (8) and (11):

LLpζ ´ {d log trχq “ GL ´ {∇ ¨ χ̂´ trχζ `
1

2
{d trχ` {dκ

´ {d
´

´
1

2
trχ´

|χ̂|2 `GpL,Lq

trχ
` κ

¯

“ ´ trχpζ ´ {d log trχq ´ {∇ ¨ χ̂`GL ` {d
|χ̂|2 `GpL,Lq

trχ
.

The result follows as soon as we switch to the inflation basis tL´, L`u.

Theorem 4.3.2. Let Ω be a null hypersurface in a spacetime satisfying the dominant

energy condition with vector field L tangent to the null generators of Ω. Suppose tΣsu

is an expanding (SP)-foliation defined as the level sets of a function s : Ω Ñ R satis-

fying Lpsq “ 1 and achieves the case of equality dm
ds
“ 0. Then all foliations achieve
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equality, moreover, we find an affine level set function r P FpΩq with r0 :“ r|Σs0 ˝ π

such that any surface Σ :“ tr “ ω ˝ πu, for ω P FpΣs0q, has data:

γ “ ω2γ0

χ “ ωγ0

trχ “
2

ω

trχ “
2

ω
pK0 ´

r0

ω
´ ω2 {∆ logωq

ζ “ ´{d logω

ρ “
r0

ω3

where r2
0γ0 is the metric on Σs0 and K0 the Gaussian curvature associated to γ0.

In the case that trχ|Σs0 “ 0 our data corresponds with the the standard nullcone in

Schwarzschild spacetime of mass M “ r0
2

.

Proof. Without loss of generality we assume s0 “ 0. Immediately from Corollary

4.3.1.2 we conclude for this particular foliation that

|χ̂´|2 `GpL´, L´q “ 0

|
2

3
χ̂´ ¨ {d log ρ´ τ |2 “ 0

GpL´,
1

9
| {∇ log ρ|2L´ `

1

3
{∇ log ρ´

1

4
L`q “ 0.

So from the first equality we have both χ̂´ “ 0 and GpL´, L´q “ 0. Combined with

the second equality we conclude that τ “ 0 for this particular foliation and therefore

Lemma 4.3.1 ensures that GL´ “ 0 as well. Finally we may therefore utilize the

final equality to conclude also that GpL`, L´q = 0 so that, for any p P Ω and any

X P TpM , we have

GpL´, Xq “ 0.
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From this and Lemma 4.3.1 we have for any foliation off of Σ0 generated by some La

(a ą 0) that

LLaτ
a
` aστa “ 0.

Given that τa|Σ0 “ τ |Σ0 “ 0 this enforces τa “ 0 by standard uniqueness theorems.

We recognise this implies the case of equality for all foliations so without loss of

generality we assume that L is geodesic. We are now in a position to show that

the flux ρ P FpΩq is independent of the foliation from which it is constructed. In

particular, for any a ą 0, foliating off of Σ0 along the generator La will construct a

ρa which we would like to show agrees pointwise on Ω with ρ.

From Theorem 4.3.1 we have

Lρ “ ´
3

2
trχρ “ 3ρL log trχ

so for any p P Ω solving this ODE along the geodesic γLπppqpsq gives

ρ ˝ sppq

ρp0q
“

´trχppq

trχp0q

¯3

.

For the generator La Theorem 4.3.1 gives

Laρa “ ´
3

2
trχ

a
ρa “ 3ρapLa log trχ

a
´ κaq

“ 3ρaLaplog trχ
a
´ log aq

“ 3ρaLaplog trχq

where the penultimate line comes from the fact that

κaLa “ DLa
La “ aLpaqL “ Laplog aqLa

and the final line from the fact that trχ
a
“ a trχ. Solving this ODE along the

pregeodesic γ
La
πppqptq we have

ρa ˝ tppq

ρap0q
“

´trχppq

trχp0q

¯3

“
ρ ˝ sppq

ρp0q
.
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Since we’re foliating off of Σ0 in both cases and ρ|Σ0 is independent of our choice of

null basis we have ρppq “ ρappq as desired.

We therefore define the functions r0 and r according to

1

r2
0

“ ρ|Σs0 ,
r0 ˝ π

r3
“ ρ

(i.e. r|Σ0 “ r0) so that Theorem 4.3.1 gives

´3
r0

r4
Laprq “ Lapρq “ ´

3

2
trχ

a
ρ “ ´

3

2
trχ

a

r0

r3

and therefore Laprq “
1
2

trχ
a
r. It follows that if we scale L such that trχ|Σ0 “

2
r0

then Lptrχrq “ ´1
2
ptrχq2r ` trχp1

2
trχrq “ 0 implies that trχ “ 2

r
and Lprq “ 1.

So r is in fact our level set function. For r2
0γ0 the metric on Σ0, by Lie dragging γ0

along L to all of Ω we have

LLpr2γ0q “ 2rγ0 “
2

r
pr2γ0q “ trχpr2γ0q.

So from (6), LLpr2γ0´γq “ trχpr2γ0´γq and r2
0γ0´γpr0q “ 0 giving γprq “ r2γ0 by

uniqueness. We conclude that for any 0 ď ω P FpΣ0q the cross-section Σ :“ tr “ ω˝ πu

has metric γω “ γprq|Σ “ ω2γ0 with Gaussian curvature Kω “ 1
ω2K0´ {∆ logω. More-

over,

r0

ω3
“ ρω “ Kω ´

1

4
x ~H, ~Hy

“
1

ω2
K0 ´ {∆ logω ´

1

2ω
trχω

having used the fact that ρω “ ρ|Σ (from independence of foliation) in the first line

and trχ
ω
“ trχ|Σ in the second. We conclude that,

trχω “
2

ω
pK0 ´

r0

ω
´ ω2 {∆ logωq.
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In the case that trχ|Σ0 “ 0 property (SP) forces 1
r2
0
“ ρ|Σ0 to be constant by way of

the maximum principle. From our expression for trχr0 we conclude that K0 “ 1 and

therefore γ0 is a round metric on S2.

Remark 4.3.2. We bring to the attention of the reader that due the lack of infor-

mation regarding the term Ĝ in (4.5) we are unable to conclude with any knowledge

of the datum χ on Σ. In the case of vacuum this no longer poses a problem and one

is able to correlate χ|Σ with χ|Σr0 as shown by Sauter ([25], Lemma 4.3).
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5

Foliation Comparison

In this chapter we show how the flux function ρ of an arbitrary cross-section of Ω

decomposes in terms of the flux of the background foliation. With the appropriate

asymptotic decay on Ω this allows us to prove Theorem 2.1.2.

5.1 Additional Setup

We follow once again the construction of [18] starting with a background foliation

as constructed in Section 4.1 off of an initial cross-section Σs0 . As before, each Σs

allows a null basis tL, lu such that xL, ly “ 2. Also from Section 4.1 we have the

diffeomorphism p ÞÑ pπppq, sppqq of Ω onto its image. Therefore any cross-section with

associated embedding Φ : S2 Ñ Ω is equivalently realized with the map Φ̃ “ pπ, sq˝Φ.

Expressing the component functions Ψ :“ π ˝ Φ and ω :“ s ˝ Φ we recognize that

Ψ : S2 Ñ Σs0 is a diffeomorphism and therefore the embedding Φ : S2 Ñ Ω is uniquely

characterized as a graph over Σs0 with graph function ω ˝ Ψ´1. Without confusion

we will simply denote the graph function by ω and it’s associated cross-section by

Σω. We wish to compare both the intrinsic and extrinsic geometry of Σω at a point q

with the geometry of the surface Σspqq. We extend ω to all of Ω in the usual way by
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Ω

ω

Σs0

l

L

L
Σω

q ΣspqqL

Figure 5.1: Σω as a graph over Σs0

imposing it be constant along generators of L, in other words, ωppq :“ pω˝πqppq. For

the extrinsic geometry of Σω we have the null-normal basis tL,Lu whereby L is given

by the conditions xL,Ly “ 2 and xV, Ly “ 0 for any V P ΓpTΣωq. As before Σω has

second fundamental form decomposing into the null components χ (associated to L)

and χ (associated to L) with torsion ζ. For each Σs we equivalently decompose the

second fundamental form into the components K (associated to L) and Q (associated

to l) with torsion t. We will denote the induced covariant derivative on Σs by ∇ and

on Σω by {∇. The following lemma is known ([18],[25]):

Lemma 5.1.1. Given q P Σω X Σspqq the map given by

Tω : TqΣspqq Ñ TqΣω

v Ñ ṽ :“ v ` vωL

is a well defined isomorphism with natural extension EpΣs0q Ñ EpΣωq. Moreover,

• γωpṼ , W̃ q “ γspV,W q

• χpṼ , W̃ q “ KpV,W q

• ζpṼ q “ tpV q ´KpV,∇ωq ` κxV,∇ωy
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• χpṼ , W̃ q “ QpV,W q ´ 2tpV qxW,∇ωy ´ 2tpW qxV,∇ωy ´ |∇ω|2KpV,W q

´ 2Hω
pV,W q ` 2KpV,∇ωqxW,∇ωy ` 2KpW,∇ωqxV,∇ωy

´ 2κxV,∇ωyxW,∇ωy

• trχ “ trQ´ 4tp∇ωq ´ 2p∆ω ´ 2K̂p∇ω,∇ωqq ` trK|∇ω|2 ´ 2κ|∇ω|2

for Hω the Hessian of ω on Σs.

Proof. For completeness we include a similar proof as in [18] (Proposition 1). Since

Tω : TqΣspqq Ñ TqΣω is clearly injective it suffices to show ṽ P TqΣω. This follows

from the fact that ṽps ´ ωq “ vps ´ ωq ` vωLps ´ ωq “ ´vω ` vω “ 0 since

Σω is locally characterised by s|Σω “ ω. For the extension Ṽ “ V ` V ωL we

note that rL, V s “ 0 ùñ rL, Ṽ s “ 0 and it follows that Ṽ P EpΣωq (infact

ẼpΣs0q “ EpΣωq). From this and the fact that DLL “ κL the first two identities

follow straight forwardly. For the third identity we find that L “ l ´ |∇ω|2L´ 2∇ω

since

xL,Ly “ xl, Ly “ 2

xL, Ṽ y “ xl, V ωLy ´ 2x∇ω, V y “ 2V ω ´ 2V ω “ 0

giving

ζpṼ q “
1

2
xDV`V ωLL, l ´ |∇ω|2L´ 2∇ωy

“
1

2
xDVL` κV ωL, l ´ |∇ω|2L´ 2∇ωy

“ tpV q ´
1

4
|∇ω|2V xL,Ly ´ xDVL,∇ωy ` κxV,∇ωy

“ tpV q ´KpV,∇ωq ` κxV,∇ωy.

For comparison between χ and Q we calculate

χpṼ , W̃ q “ xDV`V ωLpl ´ |∇ω|2L´ 2∇ωq,W `WωLy
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in three parts:

xDV`V ωLl,W `WωLy “ QpV,W q ` V ωxDLl,W y `WωxDV l, Ly

` V ωWωxDLl, Ly

“ QpV,W q ´ V ωxl, DLW y ´Wωxl, DVLy

´ V ωWωxl, DLLy

“ QpV,W q ´ 2V ωtpW q ´ 2WωtpV q ´ 2κV ωWω

´|∇ω|2xDV`V ωLL,W `WωLy “ ´|∇ω|2xDVL,W `WωLy

“ ´|∇ω|2KpV,W q ´ 1

2
|∇ω|2WωV xL,Ly

“ ´|∇ω|2KpV,W q

´2xDV`V ωL∇ω,W `WωLy “ ´2xDV∇ω,W y ´ 2WωxDV∇ω, Ly

´ 2V ωxDL∇ω,W y ´ 2V ωWωxDL∇ω, Ly

“ ´2Hω
pV,W q ` 2WωKp∇ω, V q ´ 2V ωLWω

` 2V ωKp∇ω,W q ` 2V ωWωx∇ω,DLLy

“ ´2Hω
pV,W q ` 2WωKp∇ω, V q ` 2V ωKp∇ω,W q

the third to last line coming from

xDL∇ω,W y “ Lx∇ω,W y ´ x∇ω,DLW y “ LWω ´KpW,∇ωq

Collecting all the terms the result follows. The final identity follows upon taking a

trace.

5.2 Flux Comparison

We are now ready to prove our first main result of this section. On Σω we will

denote the flux function (2.1) by {ρ and on Σs by ρ the following theorem provides

comparison between the two
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Theorem 5.2.1 (Flux Comparison Theorem). At any q P Σω X Σs we have

{ρ “ ρ` {∇ ¨
´

|K̂|2 `GpL,Lq

trK
{∇ω

¯

`
1

2

´

|K̂|2 `GpL,Lq
¯

|∇ω|2

`∇ω |K̂|
2 `GpL,Lq

trK
`GpL,∇ωq ´ 2K̂p~t´∇ log trK,∇ωq

Remark 5.2.1. Revisiting Theorem 4.3.2 and the case that χ̂ “ GpL, ¨q “ 0, Theo-

rem 5.2.1 provides an alternative proof that {ρ agrees with ρ point wise.

Proof. When used, we assume V,W,U P EpΣs0qp ùñ Ṽ , W̃ , Ũ P EpΣωq). We will

need to know how to relate the covariant derivatives between the two surfaces so first

a lemma

Lemma 5.2.1. Tω

´

∇VW ` V ω ~KpW q `Wω ~KpV q ´KpV,W q∇ω
¯

“ {∇Ṽ W̃

Proof. Since {∇Ṽ W̃ |q “ pS`SωLq|q “ TωpS|qq for some S P ΓpTΣspqqq it follows that

x {∇Ṽ W̃ , Uy “ xS, Uy for any U P EpΣs0q. We find

x {∇Ṽ W̃ , Uy “ xDṼ W̃ `
1

2
χpṼ , W̃ qL`

1

2
χpṼ , W̃ qL,Uy

“ xDṼ W̃ , Uy `
1

2
KpV,W qxL,Uy

“ Ṽ xW,Uy ´ xW̃ ,DṼUy `
1

2
KpV,W qxl ´ |∇ω|2L´ 2∇ω, Uy

“ pV ` V ωLqxW,Uy ´ xW `WωL,DV`V ωLUy ´KpV,W qUω

“ V xW,Uy ` 2V ωKpW,Uq ´
´

xW,∇VUy ` V ωKpW,Uq ´WωKpV, Uq
¯

´KpV,W qUω

“

´

V xW,Uy ´ xW,∇VUy
¯

`KpW,UqV ω `KpV, UqWω ´KpV,W qUω

“ x∇VW ` V ω ~KpW q `Wω ~KpV q ´KpV,W q∇ω, Uy

so S “ ∇VW ` V ω ~KpW q `Wω ~KpV q ´KpV,W q∇ω since EpΣs0q|Σspqq “ ΓpTΣspqqq.
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Now we proceed with the proof of Theorem 5.2.1 in 3 parts:

Step 1 Comparison between {∇ ¨ ζ and ∇ ¨ t:

From Lemmas 5.1.1 and 5.2.1 we have

p {∇Ṽ ζqpW̃ q “ Ṽ pζpW̃ qq ´ ζp {∇Ṽ W̃ q

“ pV ` V ωLq
´

tpW q ´KpW,∇ωq ` κxW,∇ωy
¯

´ t
´

∇VW ` V ω ~KpW q `Wω ~KpV q ´KpV,W q∇ω
¯

`K
´

∇VW ` V ω ~KpW q `Wω ~KpV q ´KpV,W q∇ω,∇ω
¯

´ κx∇VW ` V ω ~KpW q `Wω ~KpV q ´KpV,W q∇ω,∇ωy.

Isolating the terms of the second line we get

pV ` V ωLqptpW q ´KpW,∇ωq ` κWωq

“ V tpW q ` V ω
´

GLpW q ´∇ ¨ K̂pW q ´ trKtpW q `
1

2
W trK `Wκ

¯

´ V KpW,∇ωq ´ V ωpLLKqpW,∇ωq ´ V ωKpW, rL,∇ωsq

` V κWω ` κVWω ` V ωLκWω

where (4.7) was used to give the first line. To continue we’ll need an expression for

rL,∇ωs and use (4.2) to get it:

2Kp∇ω, V q “ pLLγsqp∇ω, V q “ Lx∇ω, V y ´ xrL,∇ωs, V y

“ LV ω ´ xrL,∇ωs, V y

“ ´xrL,∇ωs, V y

since rL,∇ωs P ΓpTΣsq we conclude that rL,∇ωs “ ´2 ~Kp∇ωq. Substitution back

into our calculation and using (4.3) in the form

LLKpV,W q “ ´αpV,W q ` x ~KpV q, ~KpW qy ` κKpV,W q
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gives

pV ` V ωLqptpW q ´KpW,∇ωq ` κWωq “ V tpW q ´ V KpW,∇ωq

` V ω
´

GLpW q ´∇ ¨ K̂pW q ´ trKtpW q `
1

2
W trK ` αpW,∇ωq ` x ~KpW q, ~Kp∇ωqy

¯

` V ωWκ´ κV ωKpW,∇ωq ` V κWω ` κVWω ` LκV ωWω.

Collecting terms we get

p {∇Ṽ ζqpW̃ q “ V tpW q ´ tp∇VW q `Kp∇VW,∇ωq ´ V KpW,∇ωq

` V ω
´

GLpW q ´∇ ¨ K̂pW q ´ trKtpW q `
1

2
W trK ` αpW,∇ωq ` x ~KpW q, ~Kp∇ωqy

¯

´ V ωKpW,~tq ´WωKpV,~tq `KpV,W qtp∇ωq

` V ωx ~KpW q, ~Kp∇ωqy `Wωx ~KpV q, ~Kp∇ωqy ´KpV,W qKp∇ω,∇ωq

` V ωWκ´ κV ωKpW,∇ωq ` V κWω ` κVWω ` LκV ωWω

´ κ∇VWω ´ κV ωKpW,∇ωq ´ κWωKpV,∇ωq ` κKpV,W q|∇ω|2.

So taking a trace over V and W

{∇ ¨ ζ “ ∇ ¨ t´∇ ¨ p ~Kp∇ωqq

`

´

GLp∇ωq ´ p∇ ¨ K̂qp∇ωq ´ trKtp∇ωq ` 1

2
∇ω trK ` αp∇ω,∇ωq ` | ~Kp∇ωq|2

¯

´ 2Kp∇ω,~tq ` trKtp∇ωq ` 2| ~Kp∇ωq|2 ´ trKKp∇ω,∇ωq

` 2∇ωκ´ 3κKp∇ω,∇ωq ` κ∆ω ` Lκ|∇ω|2 ` κ trK|∇ω|2

“ ∇ ¨ t´
´

∇ ¨ p ~Kp∇ωqq ` p∇ ¨ K̂qp∇ωq ´ 1

2
∇ω trK

¯

´ 2
´

Kp∇ω,~tq ´ 1

2
trKtp∇ωq

¯

` 3| ~Kp∇ωq|2 ´ trKKp∇ω,∇ωq `GLp∇ωq ´ trKtp∇ωq ` αp∇ω,∇ωq

` 2∇ωκ´ 3κK̂p∇ω,∇ωq ` κ∆ω ` Lκ|∇ω|2 ´ 1

2
κ trK|∇ω|2

“ ∇ ¨ t´
´

2p∇ ¨ K̂qp∇ωq `Hω
¨K

¯

´ 2K̂p∇ω,~tq ` 3| ~Kp∇ωq|2 ´ trKKp∇ω,∇ωq

`GLp∇ωq ´ trKtp∇ωq ` αp∇ω,∇ωq
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` 2∇ωκ´ 3κK̂p∇ω,∇ωq ` κ∆ω ` Lκ|∇ω|2 ´ 1

2
κ trK|∇ω|2

“ ∇ ¨ t´ 2p∇ ¨ K̂qp∇ωq ´Hω
¨ K̂ ´

1

2
trK∆ω ´ 2K̂p∇ω,~tq ` 3

2
|K̂|2|∇ω|2

` 2 trKK̂p∇ω,∇ωq ` 1

4
ptrKq2|∇ω|2 `GLp∇ωq ´ trKtp∇ωq ` αp∇ω,∇ωq

` 2∇ωκ´ 3κK̂p∇ω,∇ωq ` κ∆ω ` Lκ|∇ω|2 ´ 1

2
κ trK|∇ω|2.

Step 2 Comparison between {∇ ¨ ζ ´ {∆ log trχ and ∇ ¨ t´∆ log trK:

Since trχ “ trK|Σω we start by comparing {∆ log trK with ∆ log trK

H log trχ
pṼ , W̃ q “ x {∇Ṽ

{∇ log trK, W̃ y “ Ṽ W̃ log trK ´ {∇Ṽ W̃ log trK

So isolating the first term we get

Ṽ W̃ log trK “ pV ` V ωLqpW `WωLq log trK

“ VW log trK ` pVWω ` V ωW `WωV qL log trK ` V ωWωLL log trK

and then the second

{∇Ṽ W̃ log trK “ p∇VW ` V ω ~KpW q `Wω ~KpV q ´KpV,W q∇ωq log trK

` p∇VW ` V ω ~KpW q `Wω ~KpV q ´KpV,W q∇ωqωL log trK

having used Lemma 5.2.1. Collecting terms

H log trK
pṼ , W̃ q “ VW log trK ´∇VW log trK

` pVWω ´∇VWωqL log trK ` V ωWωLL log trK

´

´

V ωKpW,∇ log trKq `WωKpV,∇ log trKq ´KpV,W qx∇ω,∇ log trKy
¯

`

´

KpV,W q|∇ω|2 ´ V ωKpW,∇ωq ´WωKpV,∇ωq ` V ωW `WωV
¯

L log trK.

So that a trace over V and W yields

{∆ log trK “ ∆ log trK `∆ωL log trK ` |∇ω|2LL log trK ´ 2K̂p∇ω,∇ log trKq
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´ 2K̂p∇ω,∇ωqL log trK ` 2∇ωL log trK.

We take the opportunity at this point of the calculation to bring to the attention

of the reader that we have not yet used any distinguishing characteristics of the

function log trK in comparison to an arbitrary f P FpΩq. In particular, we notice if

f P FpΩq satisfies Lf “ 0, switching with log trK above, yields

{∆f “ ∆f ´ 2K̂p∇ω,∇fq.

As a result,

Lemma 5.2.2.

{∆g “ ∆g ` {∇ ¨ pLg {∇ωq `∇ωLg ´ 2K̂p∇ω,∇gq

for any g P FpΩq.

Proof. We have

{∆g “ ∆g `∆ωLg ` |∇ω|2LLg ´ 2K̂p∇ω,∇gq ´ 2K̂p∇ω,∇ωqLg ` 2∇ωLg

“ ∆g ` p∆ω ´ 2K̂p∇ω,∇ωqqLg ` p∇ω ` |∇ω|2LqLg `∇ωLg ´ 2K̂p∇ω,∇gq

“ ∆g ` {∆ωLg ` {∇ωLg `∇ωLg ´ 2K̂p∇ω,∇gq

“ ∆g ` {∇ ¨ pLg {∇ωq `∇ωLg ´ 2K̂p∇ω,∇gq

having used the fact that Lω “ 0 and the comment immediately preceding the

statement of Lemma 5.2.2 to get the third equality.

Finishing up Step 2 we have

{∇ ¨ ζ ´ {∆ log trχ “ ∇ ¨ t´∆ log trK

´ 2p∇ ¨ K̂qp∇ωq ´Hω
¨ K̂ ´ 2K̂p∇ω,~t´∇ log trKq

´ trKtp∇ωq `∇ω trK `
3

2
|K̂|2|∇ω|2 `GLp∇ωq ` αp∇ω,∇ωq
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´

´1

2
trK∆ω `∆ωL log trK

¯

`

´1

4
ptrKq2 ´ LL log trK

¯

|∇ω|2

´

´

∇ω trK ` 2∇ωL log trK
¯

` 2K̂p∇ω,∇ωq
´

trK ` L log trK
¯

` 2∇ωκ´ 3κK̂p∇ω,∇ωq ` κ∆ω ` Lκ|∇ω|2 ´ 1

2
κ trK|∇ω|2

“ ∇ ¨ t´∆ log trK

´ 2p∇ ¨ K̂qp∇ωq ´Hω
¨ K̂ ´ 2K̂p∇ω,~t´∇ log trKq

´ trKtp∇ωq `∇ω trK ` |K̂|2|∇ω|2 `GLp∇ωq ` α̂p∇ω,∇ωq

`
1

2

´

|K̂|2 `GpL,Lq
¯

|∇ω|2 `
´

∆ω ´ 2K̂p∇ω,∇ωq
¯

|K̂|2 `GpL,Lq

trK

`

´

´
1

2
p|K̂|2 `GpL,Lq ´ κ trKq ` L

|K̂|2 `GpL,Lq

trK

¯

|∇ω|2

` 2∇ω |K̂|
2 `GpL,Lq

trK
` trKK̂p∇ω,∇ωq ´ κK̂p∇ω,∇ωq ´ 1

2
κ trK|∇ω|2

“ ∇ ¨ t´∆ log trK

´ 2p∇ ¨ K̂qp∇ωq ´Hω
¨ K̂ ´ 2K̂p∇ω,~t´∇ log trKq

´ trKtp∇ωq `∇ω trK ` |K̂|2|∇ω|2 `GLp∇ωq ` α̂p∇ω,∇ωq

` {∆ω
|K̂|2 `GpL,Lq

trK
` L

|K̂|2 `GpL,Lq

trK
|∇ω|2 ` 2∇ω |K̂|

2 `GpL,Lq

trK

` trKK̂p∇ω,∇ωq ´ κK̂p∇ω,∇ωq

having used (8) to get the last two lines in the second equality, Lemma 5.2.2 to get

∆ω´2K̂p∇ω,∇ωq “ {∆ω in the second equality followed by cancellation of the terms

1
2

´

|K̂|2 `GpL,Lq
¯

|∇ω|2 and 1
2
κ trK|∇ω|2.

Step 3 Comparison between {ρ and ρ:

Denoting the Gauss curvature on Σs by C and the mean curvature vector ~h we have
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from the Gauss equation (3.1)

K ´ 1

4
x ~H, ~Hy `

1

2
χ̂ ¨ χ̂ “ ´

1

2
R ´GpL,Lq ´

1

4
xRLLL,Ly

“ ´
1

2
R ´GpL, l ´ |∇ω|2L´ 2∇ωq ´ 1

4
xRL l´|∇ω|2L´2∇ωL, l ´ |∇ω|2L´ 2∇ωy

“ C ´ 1

4
x~h,~hy `

1

2
K̂ ¨ Q̂` |∇ω|2GpL,Lq ` 2GpL,∇ωq ´ xRL∇ωl, Ly

´ xRL∇ωL,∇ωy

“ C ´ 1

4
x~h,~hy `

1

2
K̂ ¨ Q̂`

1

2
|∇ω|2GpL,Lq `

´

2GpL,∇ωq ´ xRL∇ωl, Ly
¯

´ α̂p∇ω,∇ωq

from this we conclude
´

K ´ 1

4
x ~H, ~Hy ` {∇ ¨ ζ ´ {∆ log trχ

¯

´

´

C ´ 1

4
x~h,~hy `∇ ¨ t´∆ log trK

¯

“
1

2

´

K̂ ¨ Q̂´ χ̂ ¨ χ̂
¯

`
1

2
|∇ω|2GpL,Lq `

´

2GpL,∇ωq ´ xRL∇ωl, Ly
¯

´ α̂p∇ω,∇ωq

´ 2p∇ ¨ K̂qp∇ωq ´Hω
¨ K̂ ´ 2K̂p∇ω,~t´∇ log trKq

´ trKtp∇ωq `∇ω trK ` |K̂|2|∇ω|2 `GLp∇ωq ` α̂p∇ω,∇ωq

` {∆ω
|K̂|2 `GpL,Lq

trK
` L

|K̂|2 `GpL,Lq

trK
|∇ω|2 ` 2∇ω |K̂|

2 `GpL,Lq

trK

` trKK̂p∇ω,∇ωq ´ κK̂p∇ω,∇ωq

Isolating the first two terms and using Lemma 5.1.1 we get

K̂ ¨ Q̂´ χ̂ ¨ χ̂

“ K̂ ¨ Q̂´
´

K̂ ¨ Q̂´ |∇ω|2|K̂|2 ´ 4K̂p∇ω,~tq ` 2|K̂|2|∇ω|2

` 2 trKK̂p∇ω,∇ωq ´ 2K̂ ¨Hω
´ 2κK̂p∇ω,∇ωq

¯

“ ´|K̂|2|∇ω|2 ´ 2 trKK̂p∇ω,∇ωq ` 2K̂ ¨Hω
` 4K̂p∇ω,~tq ` 2κK̂p∇ω,∇ωq
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and finally we have

´

K ´ 1

4
x ~H, ~Hy ` {∇ ¨ ζ ´ {∆ log trχ

¯

´

´

C ´ 1

4
x~h,~hy `∇ ¨ t´∆ log trK

¯

“
1

2
|∇ω|2

´

|K̂|2 `GpL,Lq
¯

`GLp∇ωq ´ 2K̂p∇ω,~t´∇ log trKq

`

´

2GLp∇ωq ´ xRL∇ωl, Ly ´ 2p∇ ¨ K̂qp∇ωq ` 2K̂p∇ω,~tq ´ trKtp∇ωq `∇ω trK
¯

` {∆ω
|K̂|2 `GpL,Lq

trK
` L

|K̂|2 `GpL,Lq

trK
|∇ω|2 ` 2∇ω |K̂|

2 `GpL,Lq

trK
.

Amazingly the third line vanishes by the Codazzi equation (3.2) as well as all terms

with a factor κ giving

{ρ´ ρ “
1

2

´

|K̂|2 `GpL,Lq
¯

|∇ω|2 `GLp∇ωq ´ 2K̂p∇ω,~t´∇ log trKq

` {∆ω
|K̂|2 `GpL,Lq

trK
` L

|K̂|2 `GpL,Lq

trK
|∇ω|2 ` 2∇ω |K̂|

2 `GpL,Lq

trK

and the result then follows from the fact that {∇ω “ ∇ω ` |∇ω|2L as well as

{∇ ¨
´

|K̂|2 `GpL,Lq

trK
{∇ω

¯

“ {∆ω
|K̂|2 `GpL,Lq

trK
` {∇ω |K̂|

2 `GpL,Lq

trK
.

5.3 Asymptotic flatness

In this section we wish to study the limiting behaviour of our mass functional in

the setting of asymptotic flatness constructed by Mars and Soria [18]. Beyond the

assumption that we have a cross-section Σs0 of Ω we also assume for some (hence

any) choice of past-directed geodesic null generator L (i.e. DLL “ 0) that S` “ 8.

So all geodesics γLq are ‘past complete’ with domain ps´pqq,8q. We now take s0 “ 0

ignoring all points p satisfying sppq ď S´ and conclude that Ω – S2 ˆ pS´,8q. Al-

though the value of S´ will depend on our choice of geodesic generator L our interest
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lies only on the past of Σ0 (i.e. S2ˆp0,8q) so we ignore this subtlety. A null hyper-

surface Ω with all the above properties is called extending to past null infinity.

In order to impose decay conditions of various transversal tensors (i.e. tensors sat-

isfying T pL, ¨ ¨ ¨ q “ ¨ ¨ ¨ “ T p¨ ¨ ¨ , Lq “ 0) we choose a local basis on Σ0 and extend it

to a basis field tXiu Ă EpΣ0q. Given a transversal k-tensor T psq we say,

• T “ Op1q iff Ti1...ik :“ T pXi1 , ..., Xikq is uniformly bounded and T “ Onps
´mq

iff

sm`jpLLqjT psq “ Op1q p0 ď j ď nq

• T “ ops´mq iff lim
sÑ8

smT psqi1...ik “ 0 and T “ onps
´mq iff

sm`jpLLqjT psq “ op1q p0 ď j ď nq

• T “ oXn ps
´mq iff

smLXi1 ¨ ¨ ¨LXijT psq “ op1q p0 ď j ď nq.

Now we’re ready to define asymptotic flatness for Ω as given by the authors of

[18]:

Definition 5.3.1. We say Ω is past asymptotically flat if it extends to past null in-

finity and there exists a choice of cross-section Σ0 and null geodesic generator L with

corresponding level set function s satisfying the following:

1. There exists two symmetric 2-covariant transversal and L Lie constant tensor

fields γ̊ and γ1 such that

γ̃ :“ γ ´ s2γ̊ ´ sγ1 “ o1psq X o
X
2 psq
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2. There exists a tansversal and L Lie constant one-form t1 such that

t̃ :“ t´
t1
s
“ o1ps

´1
q

3. There exist L Lie constant functions θ0 and θ such that

θ̃ :“ trQ´
θ0

s
´
θ

s2
“ ops´2

q

4. The scalar xRXi1Xi2
Xi3 , Xi4y along Ω is such that lim

sÑ8

1

s2
xRXi1Xi2

Xi3 , Xi4y exists

while its double trace satisfies ´1
2
R ´GpL, lq ´ 1

4
xRLlL, ly “ ops´2q.

We will have the need to supplement the notion of asymptotic flatness of Ω with a

stronger version of the energy flux decay condition (GL “ ops´2q, LLγ̃ “ oX1 p1q as

given in [18]) with the following:

Definition 5.3.2. Suppose Ω is past asymptotically flat. We say Ω has strong flux decay

if

GL “ ops´2
q, t̃ “ oX1 ps

´1
q and LjLγ̃ “ oX3´jps

1´j
q for 1 ď j ď 3

and strong decay if the condition on GL is dropped.

We will also need some results from [18] (Proposition 3, Lemma 2, Section 4)

resulting directly from the asymptotically flat restriction on Ω. One particularly

valuable consequence is the ability to choose our geodesic generator L to give any

conformal change on the ‘metric at null infinity’, which turns out to be given by the

2-tensor, γ̊. By the Uniformization Theorem we conclude that this covers all possible

metrics on a Riemannian 2-sphere. We will denote the covariant derivative coming

from γ̊ by ∇̊.

89



Proposition 5.3.1. Suppose Ω is past asymptotically flat with a choice of affinely

parametrized null generator L and corresponding level set function s. Letting γpsqij

denote the inverse of γpsqij,

γpsqij “
1

s2
γ̊ij ´

1

s3
γ̊1
ij
` ops´3

q (5.1)

Kij “ s̊γij `
1

2
γ1ij ` op1q (5.2)

Kγpsq “
K̊
s2
` ops´2

q (5.3)

trQ “
2K̊
s
`
θ

s2
` ops´2

q (5.4)

trK “
2

s
`
θ

s2
` ops´2

q (5.5)

where γ̊ij is the inverse of γ̊ij, tensors with ˚ring highlight the fact that indices have

been raised with γ̊ and θ “ ´1
2
t̊rγ1.

It follows in case LLγ̃ “ oX1 p1q that

t1 “
1

2
∇̊ ¨ γ1 ` {dθ ðñ GL “ ops´2

q

Proof. We refer the reader to [18] (Proposition 3) for proof.

As promised in Remark 2.1.1 we are now able to prove the following well known

result:

Lemma 5.3.1. Suppose Ω extends to past null infinity with null geodesic generator

L. Then any cross-section Σ ãÑ Ω satisfies trK ě 0. If Ω is past asymptotically flat

then Σ is expanding along L.

Proof. For ω P FpΩq constructed by Lie dragging s|Σ along L we have Σ “ Σ1 for

the geodesic foliation tΣλu given by s “ ωλ. So it suffices to prove the result along
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an arbitrary geodesic foliation for Ω. From (8) we have, whenever trKps0q ă 0 for

some s0, that

L
´ 1

trK

¯

“
1

2
` |χ̂´|2 `GpL´, L´q ě

1

2

wherever it be defined as well as

1

trK
psq ě

1

trK
ps0q `

s´ s0

2

for any such s ě s0. So we can find an s1 ą s0 such that trKpsq
sÑs´1
ÝÝÝÑ ´8. Since

this contradicts smoothness we must have that trK ě 0 on all of Ω. If Ω is past

asymptotically flat it follows from Proposition 5.3.1 that trKpsq ą 0 for sufficiently

large s. Since (4.4) gives

LptrKq “ ´
1

2
ptrKq2 ´ |K̂|2 ´GpL,Lq ď 0

we have trKps0q ě trKps1q for all s0 ď s1. So we must have that trK ą 0 on all of

Ω.

Lemma 5.3.2. On each Σs the difference tensor

DpV,W q :“ ∇VW ´ ∇̊VW

admits the decomposition

Dkij “
1

2
p∇̊iγ̊1

k
j ` ∇̊jγ1

k
i ´ ∇̊kγ1ijq

1

s
`Ops´2

q.

Moreover, if f P FpΩq is Lie constant along L then

∆f “
1

s2
∆̊f ` p´γ̊ij1 ∇̊i∇̊jf ´ p∇̊i̊γ

ij
1 qf,j `p∇̊iθqf,i q

1

s3
` ops´3

q.

Proof. The result follows from the well known fact (see, for example, [29]) that

xDpV,W q, Uy “ 1

2
p∇̊V γpW,Uq ` ∇̊WγpV, Uq ´ ∇̊UγpV,W qq
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“
s

2
p∇̊V γ1pW,Uq ` ∇̊Wγ1pV, Uq ´ ∇̊Uγ1pV,W qq

`
1

2
p∇̊V γ̃pW,Uq ` ∇̊W γ̃pV, Uq ´ ∇̊U γ̃pV,W qq.

The second is a simple consequence of the first, we refer the reader to [18] (Lemma

2) for proof.

In the next Proposition we show that the decomposition of the metric given in

Definition 5.3.1 part 1 allows us to find Kγpsq up to Ops´4q:

Proposition 5.3.2. For a decomposition of the metric γpsq “ s2γ̊`sγ1` γ̃ for some

fixed s we have:

Kγpsq “
K̊
s2
`

1

s3
pK̊θ ` 1

2
∇̊ ¨ ∇̊ ¨ γ1 ` ∆̊θq `Ops´4

q (5.6)

Proof. First we take the opportunity to show that V,W P EpΣ0q gives ∇̊VW P

EpΣ0q. Starting with the Koszul formula

2̊γp∇̊VW,Uq “ V γ̊pW,Uq `Wγ̊pU, V q ´ Uγ̊pV,W q

´ γ̊pV, rW,U sq ` γ̊pW, rU, V sq ` γ̊pU, rV,W sq

and the fact that γ̊ is Lie constant along L we conclude that Lγ̊p∇̊VW,Uq “

γ̊prL, ∇̊VW s, Uq on the left, applying L on the right we find everything vanishes

since V,W P EpΣ0q ùñ rV,W s P EpΣ0q. Therefore γ̊prL, ∇̊VW s, Uq “ 0. Since

rL, ∇̊VW s P ΓpTΣsq and γ̊ is positive definite it follows that rL, ∇̊VW s “ 0 and

therefore ∇̊VW P EpΣ0q. To show the decomposition of Kγpsq we start by finding the

decomposition of the Riemann curvature tensor on Σs:

xRs
XiXj

Xk,Xmy “ x∇rXi,XjsXk, Xmy ´Xix∇XjXk, Xmy ` x∇XjXk,∇XiXmy

`Xjx∇XiXk, Xmy ´ x∇XiXk,∇XjXmy

“ x∇̊rXi,XjsXk, Xmy ´Xix∇̊XjXk, Xmy ` x∇̊XjXk, ∇̊XiXmy
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`Xjx∇̊XiXk, Xmy ´ x∇̊XiXk, ∇̊XjXmy

` xDprXi, Xjs, Xkq, Xmy ´XixDpXj, Xkq, Xmy ` xDpXj, Xkq, ∇̊XiXmy

` x∇̊XjXk,DpXi, Xmqy `XjxDpXi, Xkq, Xmy ´ xDpXi, Xkq, ∇̊XjXmy

´ x∇̊XiXk,DpXj, Xmqy

` xDpXj, Xkq,DpXi, Xmqy ´ xDpXi, Xkq,DpXj, Xmqy.

Using the decomposition γs “ s2γ̊ `Opsq we recognize the leading order term, com-

bining lines 3 and 4, is s2γ̊pR̊XiXjXk, Xmq. In order to find the next to leading order

term the fact that xRs
XiXj

Xk, Xmy´s
2γ̊pR̊XiXjXk, Xmq defines a 4-tensor on each Σs

allows us to search independently of our choice of basis tX1, X2u. In particular we

may assume that ∇̊XiXj “ 0 at q P Σs (hence on all of γLq , since ∇̊XiXj P EpΣ0q).

So assuming restriction to the generator through q and using Lemma 5.3.2 we have

xRs
XiXj

Xk,Xmy ´ s
2γ̊pR̊XiXjXk, Xmq

“ ´sXiγ1p∇̊XjXk, Xmq ` sXjγ1p∇̊XiXk, Xmq

´
s

2
Xip∇̊Xjγ1pXk, Xmq ` ∇̊Xkγ1pXj, Xmq ´ ∇̊Xmγ1pXj, Xkqq

`
s

2
Xjp∇̊Xiγ1pXk, Xmq ` ∇̊Xkγ1pXi, Xmq ´ ∇̊Xmγ1pXi, Xkqq

`Op1q

“ ´sXiγ1p∇̊XjXk, Xmq ` sXjγ1p∇̊XiXk, Xmq

s

2

´

∇̊Xj∇̊Xiγ1pXk, Xmq ` ∇̊Xj∇̊Xkγ1pXi, Xmq ´ ∇̊Xj∇̊Xmγ1pXi, Xkq

´ ∇̊Xi∇̊Xjγ1pXk, Xmq ´ ∇̊Xi∇̊Xkγ1pXj, Xmq ` ∇̊Xi∇̊Xmγ1pXj, Xkq

¯

`Op1q.

It remains to simplify the two terms of the first line in the second equality. Since

Xiγ1p∇̊XjXk, Xmq “ ∇̊Xiγ1p∇̊XjXk, Xmq ` γ1p∇̊Xi∇̊XjXk, Xmq
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we conclude that

´Xiγ1p∇̊XjXk, Xmq `Xjγ1p∇̊XiXk, Xmq “ γ1pR̊XiXjXk, Xmq.

Moreover, it is easily shown using our choice of basis extension that

1

2
∇̊Xj∇̊Xiγ1pXk, Xmq ´

1

2
∇̊Xi∇̊Xjγ1pXk, Xmq ` γ1pR̊XiXjXk, Xmq

“
1

2
pγ1pR̊XiXjXk, Xmq ´ γ1pR̊XiXjXm, Xkqq.

So we finally have from the fact that Σs is of dimension 2 that

xRs
XiXj

Xk, Xmy “ s2K̊p̊γikγ̊jm ´ γ̊imγ̊jkq

`
s

2
K̊p̊γikγ1jm ´ γ̊imγ1jk ` γ̊jmγ1ik ´ γ̊jkγ1imq

`
s

2
p∇̊j∇̊kγ1im ´ ∇̊j∇̊mγ1ik ´ ∇̊i∇̊kγ1jm ` ∇̊i∇̊mγ1jkq `Op1q.

Using (12) to take a trace over i, k:

pRicsqjm “ K̊γ̊jm ´
1

s
K̊θγ̊jm

`
1

2s
p∇̊jp∇̊ ¨ γ1qm ` 2∇̊j∇̊mθ ´ p∇̊2γ1qjm ` p∇̊ ¨ p∇̊γ1qqmjq `

K̊
s
p2θγ̊jm ` γ1jmq

`Ops´2
q

“ K̊γ̊jm

`
1

s

´

K̊θγ̊jm ` K̊γ1jm `
1

2
∇̊jp∇̊ ¨ γ1qm `

1

2
p∇̊ ¨ p∇̊γ1qqmj ` ∇̊j∇̊mθ ´

1

2
p∇̊2γ1qjm

¯

`Ops´4
q

and then over j,m:

2Kγpsq “
2

s2
K̊ ` 1

s3

´

2K̊θ ´ 2K̊θ ` ∇̊ ¨ ∇̊ ¨ γ1 ` 2∆̊θ
¯

`
2

s3
K̊θ `Ops´4

q

giving the result.
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Remark 5.3.1. Interestingly, in the case that Ω is asymptotically flat satisfying the

energy flux decay condition we conclude that

Kγpsq “
K̊
s2
`

1

s3
pK̊θ ` ∇̊ ¨ t1q `Ops´4

q

according to Proposition 5.3.2.

Definition 5.3.3. For Ω past asymptotically flat with background geodesic foliation

tΣsu we say a foliation tΣs‹u is asymptotically geodesic provided

s “ φs‹ ` ξ

with scale factor φ ą 0 a Lie constant function along L and Liξ “ oX2´ips
1´iq for

0 ď i ď 2. In addition (similarly to [18]), we will say tΣs‹u approaches large spheres

provided the class of geodesic foliations measuring φ “ 1 also induce γ̊ to be the

round metric on S2.

Remark 5.3.2. Given a basis extension tXiu Ă EpΣ0q (on tΣsu) and a foliation

tΣs‹u as in Definition 5.3.3, Lie dragging s|Σs‹ along L to give ω P FpΩq we see at

q P Σs‹:

ωi “ φis‹ ` ξsωi ` ξi

ωij “ φijs‹ ` ξssωiωj ` ξsjωi ` ξsωij ` ξij

where ωi :“ Xiω, ωij :“ XjXiω, ξs :“ Lξ, ξss :“ LLξ, ξi :“ Xipξ|Σspqqq, ξsi “ Xipξs|Σsq

and ξij “ XjXipξ|Σsq. The decay on ξ therefore gives us that:

ωi “
φis‹ ` ξi

1´ ξs
“ φis‹ ` ops‹q

ωij “
1

1´ ξs

´

φijs‹ ` ξss

´ξi ` φis‹
1´ ξs

¯´ξj ` φjs‹
1´ ξs

¯

` ξsj

´ξi ` φis‹
1´ ξs

¯

` ξij

¯

“ φijs‹ ` ops‹q.
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From (12) and Lemma 5.3.2 we conclude that

dω|Σs‹ “ ps‹φq
2
p
´1

s‹
dφ´1

|Σs‹ ` ops
´1
‹ qq

∆ω|Σs‹ “
1

φ2s‹
∆̊φ` ops´1

‹ q.

5.3.1 Asymptotic Mass and Energy

Using Theorem 5.2.1 we prove a slightly weakened version of the beautiful result

found by the authors of [18] (Theorem 1):

Proposition 5.3.3. Suppose Ω is past asymptotically flat and tΣs‹u is an asymptot-

ically geodesic foliation with scale factor φ ą 0. Assuming LLγ̃ “ oX1 p1q we have

lim
s‹Ñ8

EHpΣs‹q “
1

16π

d

ş

φ2d̊A

4π

ż

1

φ

´

K̊θ ´ θ ´ ∆̊θ ` 4∇̊ ¨ t1
¯

d̊A

with γ̊, K̊, θ, θ and t1 associated with the background geodesic foliation.

Proof. Given any fixed s‹ we define ω P FpΩq by Lie dragging along L:

s|Σs‹ “ pφs‹ ` ξq|Σs‹

as before. From the decomposition γs “ s2γ̊ ` sγ1 ` γ̃ and the standard identity for

any invertible matrix M :

detpM ` sBq “ detMp1` s trpM´1Bq `Ops2
qq

we have
a

detpγsq “ s2
a

detp̊γqp1´
1

s
θ ` ops´1

qq.

From the first identity of Lemma 5.1.1 we therefore conclude that

dAs‹ “ dAs|Σs‹ “ s2
‹φ

2fd̊A
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where f “ 1` ops0
‹q.

In Theorem 5.2.1, denoting the sum of all but the first two terms by ηωp∇ωq we see

ηωp∇ωq “
1

2
p|K̂|2 `GpL,Lqq|∇ω|2 `GpL,∇ωq `∇ω |K̂|

2 `GpL,Lq

trK

´ 2K̂p~t´∇ log trK,∇ωq

“
1

2
p|K̂|2 `GpL,Lqq|∇ω|2 `GpL,∇ωq ´∇ωpL log trK `

1

2
trKq

´ 2K̂p~t´∇ log trK,∇ωq

giving from Propositions 5.3.1 and 5.3.2

4π
EHpΣs‹q
b

|Σs‹ |
16π

“

ż

{ρdAω “

ż

ρ` {∇ ¨
´

|K̂|2 `GpL,Lq

trK
{∇ω

¯

` ηωp∇ωqdAs‹

“

ż

ρ` ηωp∇ωqdAs‹

“

ż

´ K̊
ω2
`

1

ω3

´

K̊θ ` 1

2
∇̊ ¨ ∇̊ ¨ γ1 ` ∆̊θ

¯

´
1

4
p

2

ω
`

θ

ω2
qp

2K̊
ω
`

θ

ω2
q

`∇ ¨ t`GLp∇ωq

`
1

2
p|K̂|2 `GpL,Lqq|∇ω|2

´∆ log trK ´∇ωpL log trK `
1

2
trKq ´ 2K̂p~t´∇ log trK,∇ωq

¯

dAs‹

` ops´1
‹ q

“

ż

´ 1

ω3

´1

2
K̊θ ´ 1

2
θ `

1

2
∇̊ ¨ ∇̊ ¨ γ1 ` ∆̊θ

¯

`∇ ¨ t`GLp∇ωq ´
1

2
∇ω trK ´ 2K̂p~t,∇ωq

`
1

2
p|K̂|2 `GpL,Lqq|∇ω|2

´∆ log trK ´∇ωL log trK ` 2K̂p∇ log trK,∇ωq
¯

dAs‹
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` ops´1
‹ q

having used the Divergence Theorem to get the second line. From Lemma 5.2.2 we

have

´∆ log trK´∇ωL log trK`2K̂p∇ log trK,∇ωq “ ´ {∆ log trK` {∇ ¨ pL log trK {∇ωq

and therefore integrates to zero on Σs‹ by the Divergence Theorem. We also notice

from the fact that L is geodesic and {∇ω “ ∇ω ` |∇ω|2L that

KpV,∇ωq “ KpṼ , {∇ωq “ χpṼ , {∇ωq

for V P EpΣ0q. Lemma 5.1.1 and 5.2.1 therefore gives

{∇Ṽ ζpW̃ q ` p {∇Ṽ pχ ¨ {dωqqpW̃ q “ Ṽ pζpW̃ q ` χpW̃ , {∇ωqq ´ ζp {∇Ṽ W̃ q ´ χp {∇Ṽ W̃ , {∇ωq

“ pV ` V ωLqtpW q ´
´

tp∇VW ` V ω ~KpW q `Wω ~KpV q ´KpV,W q∇ωq

´Kp∇VW ` V ω ~KpW q `Wω ~KpV q ´KpV,W q∇ω,∇ωq
¯

´ χp {∇Ṽ W̃ , {∇ωq

“ ∇V tpW q ` V ωLLtpW q ´ V ωKp~t,∇ωq ´WωKp~t,∇ωq `KpV,W qtp∇ωq

where all terms in the penultimate line canceled from Lemma 5.2.1. Taking a trace

over V,W

{∇ ¨ ζ ´ {∇ ¨ p~χp {∇ωqq “ ∇ ¨ t` LLtp∇ωq ´ 2K̂p~t,∇ωq

“ ∇ ¨ t`GLp∇ωq ´
1

2
∇ω trK ´ 2K̂p~t,∇ωq ´∇ ¨ K̂p∇ωq `∇ω trK ´ trKtp∇ωq

having used (11) to get the last line. We conclude that

ż

∇¨t`GLp∇ωq´
1

2
∇ω trK´2K̂p~t,∇ωqdAs‹ “

ż

∇¨K̂p∇ωq´∇ω trK`trKtp∇ωqdAs‹

giving

4π
EHpΣs‹q
b

|Σs‹ |
16π

“

ż

´ 1

ω3

´1

2
K̊θ ´ 1

2
θ `

1

2
∇̊ ¨ ∇̊ ¨ γ1 ` ∆̊θ

¯
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`∇ ¨ K̂p∇ωq ´∇ω trK ` trKtp∇ωq ` 1

2
p|K̂|2 `GpL,Lqq|∇ω|2

¯

dAs‹

` ops´1
‹ q.

Now we turn to simplifying the final term in the integrand

p|K̂|2 `GpL,Lqq|∇ω|2 “ p∇ω ´ {∇ωq trK ´
1

2
ptrKq2|∇ω|2.

Denoting g :“ trK ´ 2
s
´

θ
s2

we conclude from the hypothesis LLγ̃ “ oX1 p1q that

g “ oX1 ps
´2q. So denoting gω :“ g|Σs‹ we have from Remark 5.3.2 (regarding the

decay) that

∇ω trK|Σs‹ “ ∇ωg|Σs‹ `
1

s2
∇ωθ|Σs‹

“
1

ω2
{∇ωθ ` ops´3

‹ q

{∇ω trK “ {∇ωgω ` {∇ωp 2

ω
`

θ

ω2
q

“ {∇ ¨ pgω {∇ωq ´ {∆ωgω ´
2

ω2
| {∇ω|2 ` {∇ωp θ

ω2
q

“ {∇ ¨ pgω {∇ωq ´ p∆ω ´ 2K̂p∇ω,∇ωqqgω ´
2

ω2
| {∇ω|2 ` {∇ωp θ

ω2
q

“ {∇ ¨ pgω {∇ωq ´
2

ω2
| {∇ω|2 ` {∇ωp θ

ω2
q ` ops´3

‹ q

1

2
ptrKq2|∇ω|2|Σs‹ “

1

2
p

2

ω
`

θ

ω2
q
2
| {∇ω|2 ` ops´3

‹ q

“
2

ω2
| {∇ω|2 ` 2θ

ω3
| {∇ω|2 ` ops´3

‹ q.

Combining terms we conclude

p|K̂|2 `GpL,Lqq|∇ω|2
ˇ

ˇ

ˇ

Σs‹

“ ´ {∇ ¨ pgω {∇ωq ` ops´3
‹ q.

It’s a simple exercise to show K̂ “ ´1
2
pγ1 ` θγ̊q ` o

X
1 p1q, so for dω|Σs‹
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“ ps2
‹φ

2qp´ 1
s‹
dφ´1|Σs‹ ` ops

´1
‹ qq we have from Lemma 5.3.2

∇ ¨ K̂p∇ωq|Σs‹ “
1

s3
‹

1

2φ2
∇̊ ¨ pγ1 ` θγ̊qp∇̊φ´1

q ` ops´3
‹ q

∇ω trK|Σs‹ “ ´
1

s3
‹

1

φ2
∇̊φ´1θ ` ops´3

‹ q

trKtp∇ωq|Σs‹ “ ´
1

s3
‹

2

φ2
t1p∇̊φ´1

q ` ops´3
‹ q.

Therefore

EHpΣs‹q “
1

8π

d

ş

φ2fd̊A

4π

ż

´f

φ

´1

2
K̊θ ` 1

2
∇̊ ¨ ∇̊ ¨ γ1 ` ∆̊θ ´

1

2
θ
¯

`
f

2
∇̊ ¨ pγ1 ` θγ̊qp∇̊φ´1

q ` f∇̊φ´1θ ´ 2ft1p∇̊φ´1
q

¯

d̊A` ops0
‹q

giving

lim
s‹Ñ8

EHpΣs‹q “
1

8π

d

ş

φ2d̊A

4π

ż

´1

φ

´1

2
K̊θ ` 1

2
∇̊ ¨ ∇̊ ¨ γ1 ` ∆̊θ ´

1

2
θ
¯

`
1

2
∇̊ ¨ pγ1 ` θγ̊qp∇̊φ´1

q ` ∇̊φ´1θ ´ 2t1p∇̊φ´1
q

¯

d̊A

“
1

8π

d

ş

φ2d̊A

4π

ż

´1

φ

´1

2
K̊θ ` 1

2
∇̊ ¨ ∇̊ ¨ γ1 ` ∆̊θ ´

1

2
θ
¯

´
1

2
φ´1∇̊ ¨ ∇̊ ¨ pγ1 ` θγ̊q ´ φ

´1∆̊θ `
2

φ
∇̊ ¨ t1

¯

d̊A

“
1

16π

d

ş

φ2d̊A

4π

ż

1

φ

´

K̊θ ´ θ ´ ∆̊θ ` 4∇̊ ¨ t1
¯

d̊A

having integrated by parts to get the second equality.

Remark 5.3.3. Suppose Ω is a past asymptotically flat null hypersurface with a back-

ground geodesic foliation tΣsu approaching large spheres (i.e γ̊ is the round metric
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at infinity). Then for any other geodesic foliation of scale factor ψ it follows that the

metric at infinity is ψ2γ̊ (see [18], Section 4) approaching large spheres if and only

if ψ solves the equation

1´ ψ2
“ ∆̊ logψ. (5.7)

Proposition 5.3.3 shows all asymptotically geodesic foliations tΣs‹u of the same scale

factor φ share the limit

Epφq “ lim
s‹Ñ8

EHpΣs‹q

which measures a Bondi energy EBpψq if ψ solves (5.7). The Bondi mass is therefore

given by

mB “ inftEBpψq|1´ ψ
2
“ ∆̊ logψu.

Theorem 5.3.4. Suppose Ω is a past asymptotically flat null hypersurface inside a

spacetime satisfying the dominant energy condition. Then given the existence of an

asymptotically geodesic (P)-foliation tΣs‹u approaching large spheres we have

mp0q ď EB

for EB the Bondi energy of Ω associated to tΣs‹u. If equality is achieved on an

(SP)-foliation then EB “ mB the Bondi mass of Ω. In the case that trχ|Σ0 “ 0 we

conclude instead with the weak Null Penrose inequality

c

|Σ0|

16π
ď EB

where equality along an (SP)-foliation enforces that any foliation of Ω shares its

data (γ, χ, trχ and ζ) with some foliation of the standard nullcone of Schwarzschild

spacetime.

Proof. Since any asymptotically geodesic (P)-foliation has non-decreasing mass from

Theorem 2.1.1 and mpΣs‹q ď EHpΣs‹q from Lemma 3.2.2, it follows from [18] (The-
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orem 1) that mpΣs‹q converges since EHpΣs‹q does. Moreover,

lim
s‹Ñ8

mpΣs‹q ď lim
s‹Ñ8

EHpΣs‹q

and from [18] (Corollary 3) it follows that lims‹Ñ8EHpΣs‹q is the Bondi energy

associated to the abstract reference frame coupled to the foliation tΣs‹u. Given

the case of equality, Theorem 2.1.1 enforces that mp0q “ mpΣs‹q for all s‹. So

Theorem 4.3.2 applies and we conclude that mpΣq “ 1
2

´

1
4π

ş

r
2
3
0 dA0

¯
3
2

(for some

positive function r0 on Σ0 of area form r2
0dA0) irrespective of the cross-section Σ Ă Ω.

This gives, according to Remark 5.3.3 and Lemma 3.2.2,

lim
s‹Ñ8

mpΣs‹q “
1

2

´ 1

4π

ż

r
2
3
0 dA0

¯
3
2
“ EB ď inf

φą0
Epφq ď mB.

Since EB ď inf Epφq ď mB ď EB all must be equal.

If trχ|Σ0 “ 0 property (P) gives

0 ě {∆ log {ρ|Σ0

and the maximum principle implies {ρ|Σ0 “ K ` {∇ ¨ τ is constant. From the Gauss-

Bonnet and Divergence Theorems we conclude that {ρ|Σ0 “
4π
|Σ0|

from which it follows

that mp0q “
b

|Σ0|

16π
. Under this restriction Theorem 4.3.2 enforces that any foliation

of Ω corresponds with a foliation of the standard nullcone in Schwarzschild with

respect to the data γ, χ, trχ and ζ.

From Proposition 5.3.3 and Lemma 3.2.2

inf
φą0

Epφq “
1

4

´ 1

4π

ż

pKθ ´ θ ´ ∆̊θ ` 4∇̊ ¨ t1q
2
3 d̊A

¯
3
2

provided Kθ ´ θ ´ ∆̊θ ` 4∇̊ ¨ t1 ě 0. We show, given that Ω satisfies the strong

flux decay condition, this quantity is infact lim
s‹Ñ8

mpΣs‹q. We will need the following

proposition to do so:
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Proposition 5.3.5. Suppose Ω is past asymptotically flat with strong decay. Given a

choice of affinely parametrized null generator L and corresponding level set function,

s, we have

∇ ¨∇ ¨K “ ´
1

2s4
∇̊ ¨ ∇̊ ¨ γ1 ` ops

´4
q (5.8)

∆ trK “
∆̊θ

s4
` ops´4

q (5.9)

∇ ¨ t “ 1

s3
∇̊ ¨ t1 ` ops´3

q (5.10)

Proof. From Lemma 5.3.2 and (5.2)

∇iKjm “ ∇̊ips̊γjm `
1

2
γ1jmq ´DkijKkm ´DkimKjk ` o

X
1 p1q

“
1

2
∇̊iγ1jm ´ ∇̊iγ1jm ` o

X
1 p1q

“ ´
1

2
∇̊iγ1jm ` o

X
1 p1q.

where the first term of the second line comes from the fact that ∇̊γ̊ “ 0. Next we

compute

∇i∇jKmn “ ∇̊i∇jKmn ´Dkij∇kKmn ´Dkim∇jKkn ´Dkin∇jKmk

“ ´
1

2
∇̊i∇̊jγ1mn ` op1q

So contracting with (5.1) over j,m followed by i, n we get (5.8) and contracting

instead over m,n and then i, j (5.9) follows. For (5.10)

∇itj “ ∇̊itj ´Dkijtk

“
1

s
∇̊it1j ` ops

´1
q

and the result follows as soon as we contract with (5.1) over i, j.
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Remark 5.3.4. As soon as we impose that Ω has strong decay it follows from the

fact that rLX ,LY s “ LrX,Y s that LXi γ̃, and LXiLXj γ̃ “ o1psq, since, for example,

LLLXi γ̃ “ LrL,Xisγ̃ ` LXiLLγ̃ “ op1q.

As a result its not hard to see early in the proof of Proposition 7 that

Kγpsq “
K̊
s2
`
K1

s3
`O1ps

´4
q

for some Lie constant function K1. We may therefore provide a simpler proof using

Proposition 5.3.5 and the propogation equation (4.1)

LK “ ´ trKK ´∆ trK `∇ ¨∇ ¨K

in order to find K1.

Theorem 5.3.6. Suppose Ω is past asymptotically flat with strong flux decay and

tΣsu is some background geodesic foliation. Then for any asymptotically geodesic

foliation tΣs‹u with scale factor φ ą 0 we have

s3
‹{ρps‹q “

1

2φ3

´

K̊θ ´ θ ´ ∆̊θ ` 4∇̊ ¨ t1
¯

` ops0
‹q

Proof. First let us remind ourselves of Theorem 5.2.1

{ρ “ ρ` {∇ ¨
´

|K̂|2 `GpL,Lq

trK
{∇ω

¯

`
1

2

´

|K̂|2 `GpL,Lq
¯

|∇ω|2

`∇ω |K̂|
2 `GpL,Lq

trK
`GLp∇ωq ´ 2K̂p~t´∇ log trK,∇ωq.

Denoting the exterior derivative on Σs by ds, since trK “ 2
s
`

θ
s2
`ops´2q, we conclude

that ds log trK “ 1
2s
dθ|Σs ` ops

´1q giving

K̂p~t´∇ log trK,∇ωq|Σs‹ “ ops´3
‹ q.
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Since L2
Lγ̃ “ oX1 ps

´1q X o1ps
´1q we also see that

|K̂|2 `GpL,Lq “ ´L trK ´
1

2
ptrKq2 “ ´p´

2

s2
´

2

s3
θq ´

1

2
p
2

s
`
θ

s2
q
2

` oX1 ps
´3
q X o1ps

´3
q

“ oX1 ps
´3
q X o1ps

´3
q

and therefore, from Remark 5.3.2:

{∇ ¨
´

|K̂|2 `GpL,Lq

trK
{∇ω

¯

“ {∇ω |K̂|
2 `GpL,Lq

trK
` {∆ω

|K̂|2 `GpL,Lq

trK

“

´

∇ω |K̂|
2 `GpL,Lq

trK
` |∇ω|2L |K̂|

2 `GpL,Lq

trK

` p∆ω ´ 2K̂p∇ω,∇ωqq |K̂|
2 `GpL,Lq

trK

¯
ˇ

ˇ

ˇ

Σs‹

“ ops´3
‹ q.

From the strong flux decay condition we have GLp∇ωq|Σs‹ “ ops´3
‹ q also. From (5.9)

we have

∆ log trK “
∆ trK

trK
´
|∇ trK|2

ptrKq2

“
∆̊θ

2s3
` ops´3

q

and combining this with Propositions 5.3.2 and 5.3.5:

{ρ “ ρ|Σs‹ ` ops
´3
‹ q

“
1

ω3

´1

2
K̊θ ` 1

2
∇̊ ¨ ∇̊ ¨ γ1 ` ∆̊θ ´

1

2
θ
¯

`
1

ω3
∇̊ ¨ t1 ´

1

2ω3
∆̊θ ` ops´3

‹ q

“
1

2ω3

´

K̊θ ´ θ ´ ∆̊θ ` 4∇̊ ¨ t1
¯

` ops´3
‹ q

having used Proposition 5.3.1 in the final line to substitute 1
2
∇̊ ¨ ∇̊ ¨ γ1` ∆̊θ “ ∇̊ ¨ t1

and the result follows.
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Remark 5.3.5. We would like to bring to the attention of the reader our use of

(5.4) in the second to last equality in the proof of Theorem 5.3.6. Assuming tΣs‹u is

infact a geodesic foliation, running a parallel argument to decompose {ρ as we did for

ρ allows us to conclude that (5.4) must also hold for tΣs‹u. We refer the reader to

[18] (Proposition 3) to observe that under the additional decay of Theorem 5.3.6, part

4 from Definition 5.3.1 is no longer necessary to give (5.4) for an arbitrary geodesic

foliation provided it holds for at least one. We will exploit this fact in Section 6.2.

Corollary 5.3.6.1. With the same hypotheses as in Theorem 5.3.6 we have

lim
s‹Ñ8

mpΣs‹q “
1

4

´ 1

4π

ż

pK̊θ ´ θ ´ ∆̊θ ` 4∇̊ ¨ t1q
2
3 d̊A

¯
3
2

Proof. From Theorem 5.3.6 we directly conclude

4πp4mpΣs‹qq
2
3 “

ż

p2{ρq
2
3dAω “

ż

1

ω2

´

K̊θ ´ θ ´ ∆̊θ ` 4∇̊ ¨ t1 ` op1q
¯

2
3
fω2d̊A

giving

4πp4 lim
s‹Ñ8

mpΣs‹qq
2
3 “

ż

´

K̊θ ´ θ ´ ∆̊θ ` 4∇̊ ¨ t1
¯

2
3
d̊A

by the Dominated Convergence Theorem.

Finally we’re ready to prove Theorem 2.1.2:

Proof. (Theorem 2.1.2) The first claim of Theorem 2.1.2 is a simple consequence of

Theorem 2.1.1. Property (P) and Theorem 5.3.6 enforces that

0 ď lim
s‹Ñ8

s3
‹{ρ “

1

2φ3
pK̊θ ´ θ ´ ∆̊θ ` 4∇̊ ¨ t1q

therefore, Theorem 2.1.1, Corollary 5.3.6.1, Lemma 3.2.2 and Proposition 5.3.3 gives

mpΣ0q ď lim
s‹Ñ8

mpΣs‹q “
1

4

´ 1

4π

ż

pK̊θ ´ θ ´ ∆̊θ ` 4∇̊ ¨ t1q
2
3 d̊A

¯
3
2
“ inf

φą0
Epφq ď mB.

The rest of the proof is settled identically as in Theorem 5.3.4.
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6

Perturbing Spherical Symmetry

6.1 Spherical Symmetry

For the known null Penrose inequality in spherical symmetry (see [14]) we provide

proof within our context in order to motivate a class of perturbations on the black

hole exterior that maintain both the asymptotically flat and strong flux decay con-

ditions. We also show the existence of an asymptotically geodesic (SP)-foliation for

a subclass of these perturbations toward a proof of the null Penrose conjecture.

6.1.1 The metric

In polar areal coordinates [22] the metric takes the form

g “ ´apt, rq2dtb dt` bpt, rq2dr b dr ` r2γ̊

for γ̊ the standard round metric on S2. From which the change in coordinates

pt, rq Ñ pv, rq given by

dv “ dt`
b

a
dr

produces the metric and metric inverse given by

g “ ´he2βdv b dv ` eβpdv b dr ` dr b dvq ` r2γ̊
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g´1
“ e´βpBv b Br ` Br b Bvq ` hBr b Br `

1

r2
γ̊´1

for h “ p1´ 2Mpt,rq
r
q where Mpt, rq :“ r

2
p1´ 1

b2
q and apt, rq2 “ he2β.

It’s a well known fact that assigning Mpt, rq “ m0 ą 0 and βpt, rq “ 0 for m0 a

constant the above metric covers the region given by v ą 0 in Kruskal spacetime

or Schwarzschild geometry in an ‘Eddington-Finkelstein’ coordinate chart. We will

therefore refer to the null hypersurfaces Ω :“ tv “ v0u as the standard nullcones (of

spherically symmetric spacetime) as they agree with the similarly named hypersur-

faces in the Schwarzschild case.

6.1.2 Calculating ρ

We approach the calculation similarly to the case of Schwarzschild. Denoting the

gradient of v by Dv we use the identity DDvDv “
1
2
D|Dv|2 to see L :“ Dv “ e´βBr

satisfies DLL “ 0 providing us our choice of geodesic generator for Ω and level

set function s (as in Section 4.1). For convenience we will choose our background

foliation tΣru of Ω to be the level sets of the coordinate r. An arbitrary cross-section

Σ of Ω is therefore given as a graph over Σr0 (for some r0) which we Lie drag along

Br to the rest of Ω giving some ω P FpΩq. On Σ we therefore have the linearly

independent normal vector fields

L “ e´βBr

Dpr ´ ωq “ e´βBv ` hBr ´∇ω

where in this subsection (6.1.2) ∇ will temporarily denote the induced covariant

derivative on Σr. We wish to find the null section L P ΓpTKΣq satisfying xL,Ly “ 2.

Since L “ c1L` c2Dpr ´ ωq we have

2 “ xL,Ly “ c2e
´β
Brpr ´ ωq

“ c2e
´β
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0 “ xL,Ly “ 2c1c2xL,Dpr ´ ωqy ` c
2
2xDpr ´ ωq, Dpr ´ ωqy

“ 2c1c2e
´β
` c2

2pe
´2β
xBv, Bvy ` |∇ω|2 ` 2e´βhxBv, Bryq

“ 2c1c2e
´β
` c2

2ph` |∇ω|2q

giving c2 “ 2eβ and c1 “ ´e
2βph` |∇ω|2q so that

L “ ´eβph` |∇ω|2qBr ` 2Bv ` 2heβBr ´ 2eβ∇ω

“ 2Bv ` e
β
ph´ |∇ω|2qBr ´ 2eβ∇ω

“ 2Bv ` e
β
ph´ | {∇ω|2qBr ´ 2eβp {∇ω ´ | {∇ω|2Brq

“ 2Bv ` e
β
ph` | {∇ω|2qBr ´ 2eβ {∇ω

having used the fact that {∇ω “ ∇ω`|∇ω|2Br to get the third equality. We note from

the warped product structure (as for Kruskal spacetime) that EBrpΣr0q “ LpS2q|Ω

where LpS2q is the set of lifted vector fields from the S2 factor of the spacetime

product manifold. As a result we may globally extend V P EBrpΣr0q to satisfy

rBv, V s “ 0. The following facts are a direct application of the Koszul formula, we

refer the reader to [21] (pg.206) for the details:

DBrBv “ ´
1

2
Brphe

2β
qe´βBr (6.1)

DV Bv “ 0 (6.2)

DBrBr “ BrβBr (6.3)

DV Br “
1

r
V. (6.4)

Lemma 6.1.1. Suppose Ω “ tv “ v0u is the standard null cone in a spherically

symmetric spacetime of metric

g “ ´he2βpv,rqdv b dv ` eβpv, rqpdv b dr ` dr b dvq ` r2γ̊

where h “ p1´ 2Mpv,rq
r

q and γ̊ is the round metric on S2. Then for some cross-section

Σr0 Ă Ω and ω P FpΣr0q, Σ :“ tr “ ω ˝ πu produces the data (writing ω ˝ π as ω):

γ “ ω2γ̊
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χ “
e´βpv0,ωq

ω
γ

trχ “
2e´βpv0,ωq

ω

χ “ eβpv0,ωq
´

ph` | {∇ω|2qγ
ω
´ 2H̃ω

´ 2βr{dω b {dω
¯

trχ “
2eβpv0, ωq

ω
ph´ ω2 {∆ logω ´ ωβr| {∇ω|2q

ζ “ ´{d logω

ρ “
2Mpv0, ωq

ω3
` {∆ω `

βr
ω
| {∇ω|2

Proof. For any V P EBrpΣr0q we have from Lemma 5.1.1 that Ṽ :“ V`V ωBr|Σ P ΓpTΣq

so that the first identity follows directly from the metric restriction. From (25):

DṼL “ e´βDV pBrq ` e
βV ωDLL “

e´β

r
V

so the second identity is given by

χpṼ , W̃ q “ xDṼL, W̃ y

“
e´β

r
xV,W y

and a trace over V,W gives the third so that {∆ log trχ “ ´ {∆β ´ {∆ logω. For the

forth identity:

χpṼ , W̃ q “ 2xDṼ Bv, W̃ y ` e
β
ph` | {∇ω|2qxDṼ Br, W̃ y ´ 2eβxDṼ

{∇ω, W̃ y ´ 2βre
βṼ ωW̃ω

“ eβph` | {∇ω|2q 1

ω
xṼ , W̃ y ´ 2eβH̃ω

pṼ , W̃ q ´ 2βre
β
p{dω b {dωqpṼ , W̃ q

where xDṼ Bv, W̃ y “ 0 from (6.1) and (6.2) to give the second equality. Taking a

trace over Ṽ , W̃ we conclude with the fifth identity:

trχ|Σ “
2eβpv0,ωq

ω
ph` | {∇ω|2 ´ ω {∆ωq ´ 2βre

βpv0,ωq| {∇ω|2
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“
2eβ

ω
ph´ ω2

p
{∆ω

ω
´
| {∇ω|2

ω2
qq ´ 2βre

β
| {∇ω|2

“
2eβ

ω
ph´ ω2 {∆ logω ´ ωβr| {∇ω|2q.

As a result we have that

x ~H, ~Hy “ trχ trχ “
4

ω2
ph´ ω2 {∆ logω ´ ωβr| {∇ω|2q.

Since the metric on Σ is given by ω2γ̊ we conclude that it has Gaussian curvature

K “ 1

ω2
p1´ ∆̊ logωq “

1

ω2
´ {∆ logω

and therefore

K ´ 1

4
x ~H, ~Hy “

2Mpv0, ωq

ω3
`
βr
ω
| {∇ω|2.

Moreover, the torsion is given by

ζpṼ q “
1

2
xDṼL,Ly

“
e´β

2r
xV, Ly

“ ´
1

r
V ω

“ ´
1

r
Ṽ ω

from which we conclude ζpṼ q|Σ “ ´Ṽ logω and {∇ ¨ ζ “ ´ {∆ logω, giving

ρ “
2Mpv0, ωq

ω3
` {∆β `

βr
ω
| {∇ω|2.

Remark 6.1.1. We recover the data of Lemma 3.2.1 as soon as we set m0 “ M ,

β “ 0 and r0 “ 2m0 as expected.
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In comparison to the Schwarzschild spacetime, we have the two additional terms

{∆β ` βr
ω
| {∇ω|2 in the flux function ρ. It turns out that a non-trivial GpL,Lq is

responsible. Since {∆β “ βrr| {∇ω|2 ` βr {∆ω and

GpL,Lq “ ´L trK ´
1

2
ptrKq2 ´ |K̂|2

“ ´e´βBrp
2e´β

r
q ´

1

2

4e´2β

r2

“
2βr
r
e´2β

it follows, for arbitrary ω, that {∆βpωq ` βr
ω
| {∇ω|2 “ 0 if and only if β is independent

of the r-coordinate and therefore GpL,Lq “ 0. For the function Mpv0, rq we look to

GpL,Lq along the foliation tΣru since:

GpL,Lq “ L trχ´ 2Ks ` 2∇ ¨ t` 2|~t|2 ` x ~H, ~Hy

“ e´βBrp
2eβ

r
p1´

2M

r
qq ´

2

r2
`

4

r2
p1´

2M

r
q

“
2βr
r
p1´

2M

r
q ´

4Mr

r2
.

It follows from Lemma 4.3.1, on Σr, that

GL “ 0.

Since these components are all that contribute to the monotonicity of (2.2) for the

foliation tΣru we see that our need of the dominant energy condition reduces to

0 ď hβr ď
2Mr

r

on th ě 0u X Ω. Next we show that tΣru is a re-parametrization of a geodesic

(SP)-foliation:
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6.1.3 Asymptotic flatness

We now wish to choose the necessary decay on β and M in order to employ Theorem

2.1.2. For L “ e´βBr the geodesic foliation tΣsu has level set function given by

sprq “

ż r

r0

eβptqdt

for which ω “ const. ðñ s “ const. and therefore

ρpsq “
2Mprpsqq

rpsq3
.

It follows from Lemma 6.1.1 that 1
4
x ~H, ~Hy ´ 1

3
{∆ log ρ “ h

rpsq2
ą 0 ðñ rpsq ą r0 “

2Mpv0, r0q as in Schwarzschild.

Lemma 6.1.2. Choosing |βpv0, rq| “ o2pr
´1q integrable and Mpv0, rq “ m0 ` opr0q

for some constant m0, Ω is asymptotically flat with strong flux decay.

Proof. We’ve already verified that GL “ 0. Since ds
dr
“ eβprq “ p1 ` β e

β´1
β
q, |β| is

integrable and eβ´1
β

is bounded it follows that ds
dr
“ 1 ` f where |f | “ o2pr

´1q is

integrable. As a result

s “ r ´ r0 `

ż 8

r0

fptqdt´

ż 8

r

fptqdt “ r ´ c0 ` o3pr
0
q

where β0 “
ş8

r0
fptqdt and c0 “ r0´β0. We conclude that rpsq “ s` c0` o3ps

0q since

our assumptions on β imply that
ş8

rpsq
fptqdt “ o3ps

0q. From the fact that

γs “ r2γ̊|Σs “ ps` c0 ` o3p1qq
2γ̊ “ s2

p1`
c0

s
` o3ps

´1
qq

2γ̊ “ s2γ̊ ` 2c0s̊γ ` o3psq̊γ

we see γ̃ “ o3psq̊γ ensuring condition 1 of Definition 5.3.1 holds up to strong decay

given that all dependence on tangential derivatives falls on the L Lie constant tensor
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γ̊. Since ~t “ 0 for this foliation condition 2 follows trivially up to strong decay. If we

assume that Mpv0, rq “ m0`op1q for some constant m0 we see directly from Lemma

6.1.1

trQ “ trχ|Σs

“
2

r
p1´

2M

r
q|Σs ` ops

´2
q

“
2

s
p1´

c0

s
qp1´

2m0

s
q ` ops´2

q

“
2

s
´ 2

c0 ` 2m0

s2
` ops´2

q

giving us the third condition of Definition 5.3.1.

We refer the reader to [18] to observe the use of the forth condition of Definition

5.3.1 in proving (5.4) for an arbitrary geodesic foliation. As mentioned in Remark

5.3.5, strong flux decay bypasses our need of this condition since trQ “ 2K̊
s
` ops´1q

is verified above.

From Lemma 6.1.2, Theorem 2.1.2, Theorem 4.3.2 and the comments immediately

proceeding Remark 6.1.1 we have the following proof of the known (see [14]) null

Penrose conjecture in spherical symmetry:

Theorem 6.1.1. Suppose Ω :“ tv “ v0u is a standard null cone of a spherically

symmetric spacetime of metric

ds2
“ ´

´

1´
2Mpv, rq

r

¯

e2βpv,rqdv2
` 2eβpv,rqdvdr ` r2

´

dϑ2
` sinϑ2dϕ2

¯

where

1. |βpv0, rq| “ o2pr
´1q is integrable

2. Mpv0, rq “ m0 ` opr
0q for some constant m0 ą 0
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3. 0 ď hβr ď
2Mr

r

Then,
c

|Σ|

16π
ď m0

for m0 the Bondi mass of Ω and Σ :“ tr0 “ 2Mpv0, r0qu. In the case of equality

we have β “ 0 and M “ m0 so that Ω is a standard null cone of Schwarzschild

spacetime.

6.2 Perturbing Spherical Symmetry

We wish to study perturbations off of the spherically symmetric metric given in

Theorem 6.1.1 for the coordinate chart pv, r, ϑ, ϕq. We start by choosing a 1-form η

such that ηpBrpBvqq “ LBvη “ 0 and a 2-tensor γ satisfying γpBrpBvq, ¨q “ LBvγ “ 0

with restriction γ|pv,rqˆS2 positive definite. Finally we choose smooth functions M ,

β and α. Defining ~η to be the unique vector field satisfying γp~η,Xq “ ηpXq for

arbitrary X P ΓpTMq and r2|~η|2 :“ γp~η, ~ηq the spacetime metric and its inverse are

given by

g “ ´ph` αqe2βdv b dv ` eβpdv b pdr ` ηq ` pdr ` ηq b dvq ` r2γ

g´1
“ e´βpBv b Br ` Br b Bvq ` ph` α ` |~η|

2
qBr b Br ´ p~η b Br ` Br b ~ηq `

1

r2
γ´1.

We see that Ω :“ tv “ v0u remains a null hypersurface with Lp“ Dvq “ e´βBr P

ΓpTΩqXΓpTKΩq. Our metric resembles the perturbed metric used by Alexakis [1] to

successfully verify the Penrose inequality for vacuum perturbations of the standard

null cone of Schwarzschild spacetime. We’ll need the following to specify our decay

conditions:

Definition 6.2.1. Suppose Ω extends to past null infinity with level set function, s,

for some null generator L. For a transversal k-tensor T
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• We say T ps, δq “ δoXn ps
´mq if T “ oXn ps

´mq and

lim sup
δÑ0

sup
Ω

1

δ
|smpLXi1 ...LXijT qps, δq| ă 8 for 0 ď j ď n

• We define

|T |2
H̊m “ |T |

2
γ̊ ` |∇̊T |2γ̊ ` ¨ ¨ ¨ ` |∇̊mT |2γ̊.

Decay Conditions on Ω:

1. r2γ “ r2γ̊ ` rδγ1 ` γ̃ where:

(a) γ̊ is the Br-Lie constant, transversal standard round metric on S2 inde-

pendent of δ

(b) γ1 is a Br-Lie constant, transversal 2-tensor independent of δ

(c) γ̃ is a transversal 2-tensor satisfying pLBrqiγ̃ “ δoX5´ipr
1´iq for 0 ď i ď 3

2. α “ δ α0

r
` α̃ where α0 is a Br-Lie constant function independent of δ and

|α̃|H̊2 ď δh1prq for h1 “ opr´1q

3. β satisfies:

(a) |β| “ o2pr
´1q is r-integrable

(b) |∇̊β|H̊3 ď δh2prq for some integrable h2 “ opr´1q

(c) |∇̊βr|H̊2 “ Opr´1q

4. M “ m0 ` m̃ where m0 ą 0 is constant independent of δ and |m̃|H̊2 ď δh3prq

for h3 “ op1q

5. η is a transversal 1-form satisfying:

(a) η “ o2p1q

(b) |η|H̊3 ` r|LBr η̃|H̊3 ď δh4prq for h4 “ op1q.
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6.2.1 A geodesic foliation

As in the spherically symmetric case we identify the null geodesic generator Dv “

e´βBr. We will again for convenience take the background foliation to be level sets

of the coordinate r. We wish therefore to relate the given decay in r to the geodesic

foliation given by the generator L :“ Dv in order to show Ω is asymptotically flat

with strong flux decay.

Once again ds
dr
“ eβ “ 1` f where f “ β e

β´1
β

is r-integrable due to decay condition

3. Taking local coordinates pϑ, ϕq on Σr0 (for some r0) we have

s “ r ´ c0pϑ, ϕq ´ β1pr, ϑ, ϕq (6.5)

for β0pϑ, ϕq :“
ş8

r0
fpt, ϑ, ϕqdt, c0 “ r0 ´ β0 and β1pr, ϑ, ϕq “

ş8

r
fpt, ϑ, ϕqdt. Since

each Σr is compact, an m-th order partial derivative of f is bounded by C|∇̊f |H̊m´1

for some constant C independent of r (from decay condition 3). From decay condition

3, provided m ď 4, derivatives in ϑ, ϕ of β0 and β1 pass into the integral (for fixed

r) onto f and are bounded. On any Σs (i.e fixed s) it follows from (6.5) that

Bϑpϕqr “ ´

şr

r0
Bϑpϕqfpt, ϑ, ϕqdt

1` f
“ ´e´β

ż r

r0

βϑpϕqe
βdt

with bounded derivatives up to third order. It’s a simple verification in local coordi-

nates, from

rps, ϑ, ϕq “ s` c0pϑ, ϕq ` β1prps, ϑ, ϕq, ϑ, ϕq,

that Bisβ1 “ oX3´ips
´iq for 0 ď i ď 3. Coupled with the fact that LL “ e´βLBr on

transversal tensors we conclude that pLLqiγ̃ “ oX3´ips
1´iq for 0 ď i ď 3 and therefore

γs “ r2γ|Σs “ s2γ̊ ` sΓ1 ` Γ̃ (6.6)

where

Γ1 “ 2c0γ̊ ` δγ1
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Γ̃ “ γ̃ ` 2sβ1γ̊ ` c
2
0γ̊ ` c0δγ1 ` β

2
1 γ̊ ` 2c0β1γ̊ ` β1δγ1

satisfies the requirements towards strong decay.

6.2.2 Calculating ρ

Since we will compare computations for the foliation tΣru with the geodesic foliation

of 5.4.1 we will revert back to denoting the covariant derivative on Σs by ∇ and

the covariant derivative on Σr by {∇. For the foliation tΣru we have the linearly

independent normal vector fields

L “ e´βBr

Dr “ e´βBv ` ph` α ` |~η|
2
qBr ´ ~η

from which similar calculations as in spherical symmetry yield the unique null normal

satisfying xL,Ly “ 2 to be given by

L “ 2Bv ` e
β
ph` α ` |~η|2qBr ´ 2eβ~η.

Lemma 6.2.1. We have

χ “ e´βprγ̊ `
δ

2
γ1 `

1

2
pLBr γ̃qq

trχ “ e´βp
2

r
`
δθ

r2
q ` δoX4 pr

´2
q

for θ :“ ´1
2
t̊rγ1. Moreover,

{∇m
χ “ ´e´β

δ

2
∇̊mγ1 ` δo

X
4´mp1q, 0 ď m ď 4.

Proof. First we extend V,W P EBrpΣr0q off of Ω such that rBv, V pW qs “ 0. Then for

χ:

χpV,W q “ xDV pe
´β
Brq,W y

“ e´βxDV Br,W y
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“ e´β
1

2
BrxV,W y

“ e´βprγ̊pV,W q `
δ

2
γ1pV,W q `

1

2
LBr γ̃pV,W qq

having used the Koszul formula to get the third line. So using a basis extension

tX1, X2u Ă EBrpΣr0q Proposition 5.3.1 provides the inverse metric

γprqij “
1

r2
γ̊ij ´

δ

r3
γ̊1
ij
` δoX5 pr

´3
q

and trχ follows by contracting γprq´1 with χ. For the final identity we note from

Lemma 5.3.2 we have for the decomposition γr “ r2γ̊` rδγ1` γ̃ the difference tensor

xDpV,W q, Uy “ x {∇VW ´ ∇̊VW,Uy

“
rδ

2

´

∇̊V γ1pW,Uq ` ∇̊Wγ1pV, Uq ´ ∇̊Uγ1pV,W q
¯

`
1

2

´

∇̊V γ̃pW,Uq ` ∇̊W γ̃pV, Uq ´ ∇̊U γ̃pV,W q
¯

for V,W,U P EpΣr0q. So proceeding as in Proposition 5.3.5

{∇iχjk “ ∇̊iχjk ´D
m
ijχmk ´D

m
ikχjm

“ ∇̊ipre
´βγ̊jk ` e

´β δ

2
γ1jk ` e

´β 1

2
pLBr γ̃qjkq ´ e´βδ∇̊ipγ1jkq ` δo

X
4 p1q

“ rγ̊jk∇̊ipe
´β
q ´ e´β

δ

2
∇̊iγ1jk `

δ

2
γ1jk∇̊ipe

´β
q ` δoX3 p1q

“ ´e´β
δ

2
∇̊iγ1jk ` δo

X
3 p1q.

Iteration provides our result

{∇m
χ “ ´e´β

δ

2
∇̊mγ1jk ` δo

X
4´mp1q, 1 ď m ď 4

from decay condition 3.
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For χ we have

χpV,W q “ 2xDV Bv,W y ` e
β
ph` α ` |~η|2qxDV Br,W y ´ 2xDV e

β~η,W y

“ 2xDV Bv,W y ` e
2β
ph` α ` |~η|2qχpV,W q ´ 2 {∇V pe

βηqpW q

and using the Koszul formula on the first term we see

2xDV Bv,W y

“ V peβηpW qq ` BvxV,W y ´W pe
βηpV qq ´ xV, rBv,W sy ` xBv, rW,V sy ` xW, rV, Bvsy

“ {∇V pe
βηqpW q ´ {∇W pe

βηqpV q

“ curlpeβηqpV,W q

so that a trace over V,W yields trχ “ e2βph`α`|~η|2q trχ´2 {∇ ¨ peβηq and therefore

x ~H, ~Hy “ e2β
ph` α ` |~η|2qptrχq2 ´ 2 {∇ ¨ peβηq trχ

“

´

1´
2M

r
` δ

α0

r

¯´2

r
`
δθ

r2

¯2

` δoX2 pr
´3
q

“

´

1´
2M

r
` δ

α0

r

¯´ 4

r2
`

4δθ

r3

¯

` δoX2 pr
´3
q

“
4

r2

´

1´
2m0

r
` δ

θ

r
` δ

α0

r

¯

` δoX2 pr
´3
q

from decay conditions 2-5. For ζ we have

ζpV q “ xDV pe
´β
Brq, Bvy ´ e

β
xDV pe

´β
Brq, ~ηy

“ ´V β ` e´βxDV Br, Bvy ´ xDV Br, ~ηy

“ ´V β ` e´βxDV Br, Bvy ´ e
βχpV, ~ηq.

From the Koszul formula

2xDV Br, Bvy

“ V xBr, Bvy ` BrxV, Bvy ´ BvxV, Bry ´ xV, rBr, Bvsy ` xBr, rBv, V sy ` xBv, rV, Brsy

“ eβV β ` Brpe
βηpV qq
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“ eβV β ` LBrpeβηqpV q

from which we conclude that ζpV q “ ´1
2
V pβq ` e´β

2
LBrpeβηqpV q ´ eβχpV, ~ηq and

{∇ ¨ ζ “ ´1

2
{∆β `

1

2
{∇ ¨ pe´βLBrpeβηqq ´ {∇ ¨ peβχp~ηqq

“ ´
1

2
{∆β `

1

2
{∇ ¨ pβrηq `

1

2
{∇ ¨ pLBrηq ´ eβχp {∇β, ~ηq ´ eβ {∇ ¨ pχp~ηqq

“ δoX2 pr
´3
q

having used decay conditions 3, 5 and Lemma 6.2.1 for the final line.

Lemma 6.2.2. Ω satisfies conditions 1, 2 and 3 of Definition 5.3.1. Ω additionally

satisfies strong flux decay if and only if

1

2
∇̊ ¨ γ1 ` dθ “ 0

for θ “ ´1
2
t̊rγ1 and is subsequently past asymptotically flat.

Proof. Having already verified condition 1 up to strong decay for γs of our geodesic

foliation tΣsu we continue to show conditions 2 and 3.

Given V P EBrpΣr0q Lemma 5.1.1 ensures V ´ V sL|Σs P ΓpTΣsq and we see that

rV ´ V sL, Ls “ rV, Ls ` LV sL

“ eβV pe´βqL` e´βV pBrsqL

“ peβV pe´βq ` e´βV peβqqL

“ 0.

So V ´ V sL P EpΣ0q and Lemma 5.1.1 gives

tpV ´ V sLq “ tpV q “ ζpV q ` χpV, {∇sq

“ ´
1

2
V pβq `

1

2
βrηpV q `

1

2
pLBrηqpV q ´ eβχpV, ~ηq ` χpV, {∇sq

“ pδoX3 pr
´1
q X o1pr

´1
qqpV q ` χpV, {∇sq
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“ pδoX3 pr
´1
q X o1pr

´1
qqpV q ` re´βγ̊pV,

1

r2
∇̊sq

“
e´β

r
V β0 ` pδo

X
3 pr

´1
q X o1pr

´1
qqpV q

having used decay conditions 3 and 5 to get the second line, Lemma 6.2.1 for the

third and (6.5) for the last. Moreover,

pLV´V sLtqpW ´WsLq “ pV ´ V sLqptpW ´WsLqq ´ tprV,W sq

“ pLV tqpW q ´ V sLptpW qq

“ pLV ´ e´βV sLBrqp
dβ0

r
qpW q ` opr´1

q

“
1

r
LV pdβ0qpW q ` opr

´1
q

“
1

r
pLV´V sLdβ0qpW ´WsLq ` opr´1

q

where the last line follows since β0 is L-Lie constant. With a basis extension

tXiu Ă EpΣ0q we therefore conclude that LXit “ 1
s
LXidβ0 ` ops´1q so that con-

dition 2 for asymptotic flatness is satisfied up to strong decay with t1 “ dβ0. From

Proposition 5.3.1 and (6.6):

trK “
2

s
´

1

2s2
t̊rΓ1 ` ops

´2
q

“
2

s
´

1

2s2
t̊rp2c0γ̊ ` δγ1q ` ops

´2
q

“
2

s
`
δθ ´ 2c0

s2
` ops´2

q

and

K̂ “ K ´
1

2
trKγs

“ s̊γ `
1

2
Γ1 ´

1

2

´2

s
`
δθ ´ 2c0

s2
` ops´2

q

¯

γs ` op1q

“ s̊γ `
1

2
p2c0γ̊ ` δγ1q ´

1

2
p
2

s
`
δθ ´ 2c0

s2
qps2γ̊ ` sp2c0γ̊ ` δγ1qq ` op1q
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“ ´
δ

2
pγ1 ` θγ̊q ` op1q.

For condition 3 we take r|Σs P FpΣsq and Lie drag it to the the rest of Ω along

Br (hence L) to give rs P FpΩq. Using Lemma 5.1.1 from the vantage point of the

cross-section Σs amongst the background foliation tΣru:

e´β trQ “ e´β trχ´ 4pζ ` {d log eβqp {∇rsq ´ 2∆rs ` | {∇rs|2eβ trχ´ 2βr| {∇rs|2

From the expression of rpsq in 5.4.1, recalling Remark 5.3.2, we see drs “ ´dβ0`op1q

from which Lemma 5.3.2 implies that ∆rs “ ´
1
s2

∆̊β0`ops
´2q. From decay conditions

3, 5 and Lemma 6.2.1 we have

trQ “ trχ|Σs ` 2
∆̊β0

s2
` ops´2

q

“

´

e2β
ph` α ` |~η|2q trχ´ 2 {∇ ¨ peβηq

¯

|Σs ` 2
∆̊β0

s2
` ops´2

q

“ p
2

s
`
δθ ´ 2c0

s2
qp1´

2M

s
` δ

α0

s
q ` 2

∆̊β0

s2
` ops´2

q

“
2

s
`
δθ ´ 2c0 ´ 4M ` 2δα0

s2
` 2

∆̊β0

s2
` ops´2

q

“
2

s
´ 2

c0 ` 2M

s2
`

1

s2
pδθ ` 2∆̊β0 ` 2δα0q ` ops

´2
q

and condition 3 follows as soon as we set M “ m0 ` δoX2 p1q. As in the spherically

symmetric case the highest order term for trQ agrees with 2K̊
s

where K̊ “ 1 is the

Gaussian curvature of γ̊. We recall that our use of condition 4 depends on whether

Ω has strong flux decay (Remark 5.3.5). From Proposition 5.3.1 and (6.6) we will

have strong flux decay if and only if

dβ0 “ t1 “
1

2
∇̊ ¨ Γ1 ´

1

2
{dt̊rΓ1

“
1

2
∇̊ ¨ p2c0γ̊ ` δγ1q ` {dpδθ ´ 2c0q
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“
1

2
dp´2β0q `

δ

2
∇̊ ¨ γ1 ` δdθ ` 2dβ0

“ dβ0 ` δp
1

2
∇̊ ¨ γ1 ` dθq

which in turn holds if and only if 1
2
∇̊ ¨ γ1 ` dθ “ 0.

Henceforth we will adopt the conditions of Lemma 6.2.2 for Ω. From Proposition

5.3.2

Kr2γ “
1

r2
`

δ

r3

´

θ `
1

2
∇̊ ¨ ∇̊ ¨ γ1 ` ∆̊θ

¯

` δoX4 pr
´3
q

“
1

r2
`

δ

r3
θ ` δoX4 pr

´3
q.

From Lemma 6.2.1 we have

{∇i {∇jχmn “ ´
δ

2
∇̊i∇̊jγ1mn ` δo

X
2 p1q

so that contraction with γprq´1 first in mn then ij gives

{∆ trχ “
δ

r4
∆̊θ ` δoX2 pr

´4
q

which we use in {∆ log trχ “
{∆ trχ

trχ
´
| {∇ trχ|2

ptrχq2
to conclude

{∆ log trχ “
δ

2r3
∆̊θ ` δoX2 pr

´3
q.

Finally we have ρ

ρ “ Kr2γ ´
1

4
x ~H, ~Hy ` {∇ ¨ ζ ´ {∆ log trχ

“
1

r2
`

δ

r3
θ ´

1

r2
`

2m0

r3
´ δ

θ

r3
´ δ

α0

r3
´

δ

2r3
∆̊θ ` δoX2 pr

´3
q

“
2m0

r3
´

δ

r3
p
1

2
∆̊θ ` α0q ` δo

X
2 pr

´3
q
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“
2m0

r3
´

δ

r3
p
1

2
∆̊θ ` α0q ` δo

X
2 pr

´3
q

and

1

4
x ~H, ~Hy ´

1

3
{∆ log ρ “

1

r2

´

1´
2m0

r
` δ

θ

r
` δ

α0

r

¯

´
1

3
{∆ log

´2m0

r3
´

δ

r3
p
1

2
∆̊θ ` α0q ` δo

X
2 pr

´3
q

¯

` δoX2 pr
´3
q.

We may now use Lemma 5.3.2 to decompose the last term

{∆ log
´2m0

r3
´

δ

r3
p
5

2
∆̊θ ` α0q ` δo

X
2 pr

´3
q

¯

“
1

r2
∆̊ log

´

1´
δ

2m0

p
1

2
∆̊θ ` α0q ` δo

X
2 p1q

¯

` δopr´2
q

“
1

r2
∆̊ log

´

1´
δ

2m0

p
1

2
∆̊θ ` α0q

¯

` δopr´2
q

giving

1

4
x ~H, ~Hy ´

1

3
{∆ log ρ “

1

r2

´

1´
2m0

r
´

1

3
∆̊ log

´

1´
δ

2m0

p
1

2
∆̊θ ` α0q

¯¯

` δopr´2
q.

Since m0 ą 0 we notice for sufficiently small δ our perturbation ensures ρ ą 0 for

all r ą 0. However, from our construction so far it’s not yet possible to conclude

that some δ ą 0 will enforce 1
4
x ~H, ~Hy ě 1

3
{∆ log ρ along the foliation. Moreover, the

existence of a horizon (trχ “ 0) is equally questionable.

6.2.3 Smoothing to Spherical Symmetry

We will solve this difficulty by ‘smoothing’ away all perturbations in a neighborhood

of the (desired) horizon in order to obtain spherical symmetry on r ă r1 for some

r1 ą 0 yet to be chosen. The resulting spherical symmetry will uncover the horizon

at r “ r0 ă r1 and will also provide a choice of δ ą 0 so that 1
4
x ~H, ~Hy ą 1

3
{∆ log ρ

away from it, causing the foliation tΣru to be an (SP)-foliation.
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We will use a smooth step function 0 ď Sδprq ď 1 such that Sδprq “ 0 for

r ă r1 and Sδprq “ 1 for r ą r2 for some finite r2pδq chosen to ensure |S 1δprq| ď δ.

By first choosing parameter functions for the desired spherically symmetric region;

β̃pv, rq and 0 ă M̃pv, rq “ m0 ` op1q such that r0 “ 2M̃pv0, r0q and 2M̃pv0, rq ă r

for r ą r0 we induce spherical symmetry on r ă r1 with the following substitutions:

γ̃ Ñ δrpSδprq ´ 1qγ1 ` Sδprqγ̃

βpr, ϑ, ϕq Ñ Sδprqβpr, ϑ, ϕq ` p1´ Sδprqqβ̃pv0, rq

Mpr, ϑ, ϕq Ñ SδprqMpr, ϑ, ϕq ` p1´ SδprqqM̃pv0, rq

α̃Ñ Sδprqα̃ ´ p1´ Sδprqq
δα0

r

η Ñ Sδprqη.

We leave the reader the simple verification that these changes to our perturbation

tensors γ̃, β, M , α̃ and η maintain the decay conditions 1-5. Clearly for r ą r2

our substitutions leave the metric unchanged while inducing spherical symmetry on

r ă r1 with the spherical parameter functions β̃ , M̃ :
r0 “ 2M̃pv0, r0q

r “ r1

r ą r1

Figure 6.1: Perturbing Spherical Symmetry

An example Sδprq is given by the function

Sδprq “

$

’

’

&

’

’

%

0 r ď r1

e
k

r1´r

e
k

r1´r`e
k

r´r2

r1 ă r ă r2

1 r2 ď r
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where k “ 4e4

δ
and r2pδq “ r1 ` k. Since Sδprq “ P p 1

r1´r
` 1

r2´r
q for P prq “ ekr

1`ekr

satisfying the logistic equation

P 1prq “ kP p1´ P q

we have

S 1δprq “ kSδprqp1´ Sδprqqp
1

pr ´ r1q
2
`

1

pr ´ r2q
2
q

“ k
Sδprq

pr ´ r1q
2
p1´ Sδprqq ` kSδprq

1´ Sδprq

pr ´ r2q
2

ď k
´ Sδprq

pr ´ r1q
2
`

1´ Sδprq

pr ´ r2q
2

¯

.

Elementary analysis reveals on the interval r1 ă r ă r2 that

0 ď
e

k
r1´r

pr ´ r1q
2
ď

4e2

k2

0 ď
1

e
k

r1´r ` e
k

r´r2

ď
1

2
e2

yielding from simple symmetry arguments that both Sδprq
pr´r1q2

, 1´Sδprq
pr´r2q2

ď 2e4

k2 and there-

fore

0 ď S 1δprq ď k
4e4

k2
“ δ

as desired. Denoting mpr, δq :“ Sδprqm0 ` p1´ SδprqqM̃prq the new metric gives

ρ “

$

’

&

’

%

2M̃pv0,rq
r3 , r ă r1

2mpr,δq
r3 ´ δ

r3 p
1
2
∆̊θ ` α0q ` δo

X
2 pr

´3q, r1 ď r ď r2

2m0

r3 ´
δ
r3 p

1
2
∆̊θ ` α0q ` δo

X
2 pr

´3q, r2 ă r

and 1
4
x ~H, ~Hy ´ 1

3
{∆ log ρ “

$

’

’

&

’

’

%

1
r2 p1´

2M̃pv0,rq
r

q, r ă r1

1
r2

´

1´ 2mpr,δq
r

´ 1
3
∆̊ log

´

1´ δ
2mpr,δq

p1
2
∆̊θ ` α0q

¯¯

` δopr´2q, r1 ď r ď r2

1
r2

´

1´ 2m0

r
´ 1

3
∆̊ log

´

1´ δ
2m0
p1

2
∆̊θ ` α0q

¯¯

` δopr´2q, r2 ă r.
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Since Cpr1q ě mpr, δq ě m0 for Cpr1q :“ supr0ărăr1 M̃ we see for any choice of

r1 ą Cpr1q (which is possible since M̃ “ m0` op1q) and sufficiently small δ the foli-

ation tΣru satisfies property (SP). If we therefore restrict to perturbations satisfying

the dominant energy condition on Ω then Theorem 2.1.2 implies the following:

Theorem 6.2.1. Let gδ be a metric perturbation off of spherical symmetry given by

gδ “ ´ph` αqe
2βdv b dv ` eβpdv b pdr ` ηq ` pdr ` ηq b dvq ` r2γ

where

1. r2γ “ r2γ̊ ` rδγ1 ` γ̃ is trasversal with γ̊ the transversal Br-Lie constant round

metric on S2 independent of δ, γ1 a transversal Br-Lie constant 2-tensor inde-

pendent of δ satisfying ∇̊ ¨γ1 “ dpt̊rγ1q and pLBrqiγ̃ “ δoX5´ipr
1´iq for 0 ď i ď 3.

2. α “ δ α0

r
` α̃ where α0 is Br-constant, independent of δ and |α̃|H̊2 ď δh1prq for

h1 “ opr´1q

3. β satisfies:

(a) |β| “ o2pr
´1q is r-integrable

(b) |∇̊β|H̊3 ď δh2prq for some integrable h2 “ opr´1q

(c) |∇̊βr|H̊2 “ Opr´1q

4. M “ m0 ` m̃ where m0 ą 0 is constant, independent of δ and |m̃|H̊2 ď δh3prq

for h3 “ op1q

5. η is a transversal 1-form satisfying:

(a) η “ o2p1q

(b) |η|H̊3 ` r|LBr η̃|H̊3 ď δh4prq for h4 “ op1q.
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Then for sufficiently small δ, Ω :“ tv “ v0u is past asymptotically flat with strong

flux decay. In addition, for any choice of spherical parameters β̃pv, rq and M̃pv, rq

such that 0 ă M̃pv0, rq “ m0 ` op1q, r0 “ 2M̃pv0, r0q and 2M̃pv0, rq ă r for r ą r0,

smoothing to spherical symmetry with the step function Sδprq (as above) according

to:

γ̃ Ñ δrpSδprq ´ 1qγ1 ` Sδprqγ̃

βpr, ϑ, ϕq Ñ Sδprqβpr, ϑ, ϕq ` p1´ Sδprqqβ̃prq

Mpr, ϑ, ϕq Ñ SδprqMpr, ϑ, ϕq ` p1´ SδprqqM̃prq

α̃Ñ Sδprqα̃ ´ p1´ Sδprqq
δα0

r

η Ñ Sδprqη

we have that Σ :“ tr0 “ 2M̃pv0, r0qu is marginally outer trapped and the coordinate

spheres tΣrurěr0 form an (SP)-foliation. Moreover, if gδ respects the dominant energy

condition on Ω we have the Penrose inequality:

c

|Σ|

16π
ď mB

where mB is the Bondi mass of Ω.
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Appendix A

Bartnik data of coordinate spheres in boosted
Schwarzschild

The Schwarzschild metric in isotropic coordinates is given by,

ds2
“ ´

´α

β

¯2

dt2 ` β4
pdx2

` dy2
` dz2

q

where α “ 1´ M
2R

and β “ 1` M
2R

for R “
a

x2 ` y2 ` z2.

Alternatively making a change to spherical coordinates,

x “ R sinϑ cosϕ

y “ R sinϑ sinϕ

z “ R cosϑ

transforms the metric to

ds2
“ ´

´α

β

¯2

dt2 ` β4
´

dR2
`R2

pdϑ2
` psinϑq2dϕ2

q

¯

.

Definition A.0.1. For semi-Riemannian manifolds pB, gBq and pF, gF q, given f ą 0

a smooth function on B the warped product M “ B ˆf F is the product manifold
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B ˆ F furnished with the metric tensor,

g “ π‹1pgBq ` pf ˝ π1q
2π‹2pgF q

where π1 and π2 represent the canonical projections onto B and F respectively.

For Warped Products we have a pointwise decomposition of each tangent space

into orthogonal compliments TpM “ kerpdpπ2qpq ‘ kerpdpπ1qpq known as normal

and tangent vectors (i.e. TpM “ norpTpMq ‘ tanpTpMq) respectively. We also in

the case of product manifolds recall the submodules LpBq, LpF q Ă ΓpTMq of lifted

vector fields, whereby X P LpBq Ă kerpdπ2q is the canonical representative of some

X̃ P ΓpTBq such that dπ1pXq “ X̃. For every pp, qq P B ˆf F we refer to the semi-

Riemanian submanifold B ˆ q as a leaf and pˆ F as a fibre.

Therefore, returning to Schwarzschild geometry, we recognize a Warped Product

structure PˆRβ2 S2 with leaves isometric to P “
´

RˆpM
2
,8q,

`

α
β

˘2
dt2`β4dR2

¯

and

fibres homothetic to the standard round sphere via the function Rβ2 on P.

Introducing the boosted coordinates,

ˆ

coshψ ´ sinhψ
´ sinhψ coshψ

˙ˆ

t
z

˙

“

ˆ

t̄
z̄

˙

it is easily shown that the standard boosted slice tt̄ “ 0u (or tt ´ tanhpψqz “ 0u)

inherits the induced metric:

ds2
“ β4

´

dx̄2
` dȳ2

` pcosh2 ψ ´
´ α

β3

¯2

sinh2 ψqdz̄2
¯

for r̄ :“
a

x̄2 ` ȳ2 ` z̄2 “ R
b

p1´ tanh2 ψ cos2 ϑq. It is also easy to show that

the boosted time slice is asymptotically flat with the metric clearly displaying the

required asymptotic behaviour for large r̄.

Using the ambient Warped Product structure our goal is to study the geometry

of the coordinate spheres, S2
r̄, given by constant r̄ “

a

x̄2 ` ȳ2 ` z̄2 that foliates this
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boosted slice. We start by realizing S2
r̄ as the intersection of the slices:

t “ tanhψR cosϑ (A.2a)

R2
´ t2 “ r̄2 (A.2b)

yielding the equations

tpϑq “
r̄ tanhψ cosϑ

a

1´ tanh2 ψ cos2 ϑ
(A.3a)

Rpϑq “
r̄

a

1´ tanh2 ψ cos2 ϑ
(A.3b)

or equivalently, for tanh η :“ tanhψ cosϑ “ t
R

,

t “ r̄ sinh η (A.4a)

R “ r̄ cosh η (A.4b)

(for constant r̄).

From these equations we recognize a family of embeddings, jr̄ : S2 Ñ S2
r̄:

S2 fr̄ //

id
$$

PˆRβ2S2

σ
��
S2

pϑ, ϕq
fr̄ //ptpϑq, Rpϑq, ϑ, ϕq σ //pϑ, ϕq

As such, given any V P ηpTS2q, by denoting djr̄pV q as V̄ , we have (assuming restric-

tion to S2
r̄ throughout):

V̄ “ V ptqBt ` V pRqBR ` VS2

“ V ηX ` VS2

for X “ RBt ` tBR and VS2 P LpS2q.

Henceforth we will drop the subscript VS2 and will refer interchangably between

elements of LpS2q and ΓpTS2q as the meaning should remain clear from the context.

Our use of the Warped Product structure will be extensively due to, ([21],pg.206)
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Proposition A.0.1. On a Warped Product M “ B ˆf F , if X, Y P LpBq and

V, W P LpF q then

1. DXY P LpBq is the lift of DXY on B.

2. DXV “ DVX “
Xf
f
V

3. norDVW “ ´
xV,W y
f

Df

4. tanDVW P LpF q is the lift of ∇VW on F .

Armed with this Proposition we extract some necessary results from the ambient

spacetime

Corollary A.0.1.1. For X “ RBt ` tBR P LpPq and V,W P LpS2
q,

1. (a) DBRBR “ ´
M

R2

1

β
BR

(b) DBRBt “ DBtBR “
M

R2

1

αβ
Bt

(c) DBtBt “ p
α

β3
q
M

R2

1

β4
BR

2. DXX “ pR `
M

β4

α

β3
´
M

β
p
t

R
q
2
qBR ` pt`

2M

αβ

t

R
qBt

3. DVW “ ∇VW ´
xV,W y

Rβ2
DpRβ2

q “ ∇VW ´R
α

β
pV,W q

Where x¨, ¨y denotes the ambient metric tensor, p¨, ¨q and ∇ the standard round

metric and corresponding covariant derivative on the sphere S2.

Proof. We recall that, xBR, BRy “ β4 and xBt, Bty “ ´p
α
β
q2:

1. • xDBRBR, BRy “ 1
2
BRxBR, BRy “ 2β3p´ M

2R2 q “ ´
Mβ3

R2
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• xDBRBR, Bty “ ´xBR, DBRBty “ ´1
2
BtxBR, BRy “ 0

• xDBRBt, BRy “ 1
2
BtxBR, BRy “ 0

• xDBRBt, Bty “ 1
2
BRp´p

α
β
q2q “ ´ α

β3
M
R2

• xDBtBt, BRy “ ´1
2
BRxBt, Bty “

α
β3

M
R2

• xDBtBt, Bty “ 1
2
BtxBt, Bty “ 0

Giving DBRBR “
xDBRBR,BRy

xBR,BRy
BR `

xDBRBR,Bty

xBt,Bty
Bt “ ´

M
R2β
BR, b) and c) follow simi-

larly.

2. Since DXX “ t2DBRBR ` tBt ` 2tRDBRBt ` RBR ` R2DBtBt the result follows

from 1.

3. Given DVW “ tanDVW `norDVW , this is a simple application of Proposition

A.0.1. and the fact that

xV,W y “ R2β4
pdπ2V, dπ2W q ˝ π2

With all these tools in place we finally direct our attention towards S2
r̄.

A.1 The Fundamental Forms of S2
r̄

Proposition A.1.1.

DV̄ W̄ “ rV ηWηtR `
M

β4

α

β3
´
M

β
p
t

R
q
2
u ` tV Wη ´R

α

β
pV,W qsBR

` rV ηWηtt`
2M

αβ

t

R
u `RVWηsBt

`∇VW `
α

β

t

R
tV ηW `WηV u
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Proof.

DV̄ W̄ “ DV ηX`V pWηX `W q

“ V ηWηDXX ` V ηDXW ` VWηX `WηDVX `DVW

“ V ηWηDXX `
XpRβ2q

Rβ2
pV ηW `WηV q

` VWηX ´
xV,W y

Rβ2
DpRβ2

q `∇VW

the final equality following from Proposition A.0.1. Now using Corollary A.0.1.1 we

have,

“ V ηWηtpR `
M

β4

α

β3
´
M

β
p
t

R
q
2
qBR ` pt`

2M

αβ

t

R
qBtu

`
tBRpRβ

2q

Rβ2
pV ηW `WηV q ` VWηttBR `RBtu ´

xV,W y

Rβ2
DpRβ2

q `∇VW

“ V ηWηtpR `
M

β4

α

β3
´
M

β

t

R
qBR ` pt`

2M

αβ

t

R
qBtu `

α

β

t

R
pV ηW `WηV q

` VWηttBR `RBtu ´R
α

β
pV,W q `∇VW

collecting up all the terms the result follows.

In order to extract the extrinsic geometry of S2
r̄ from Proposition A.1.1 we’ll be

needing an orthonormal basis tν, ν‹u for the normal bundle. Recalling equations

(A.4a) and (A.4b) we obtain a normal frame field,

tDpR ´ r̄ cosh ηq, Dpt´ r̄ sinh ηqu “ t
1

β4
BR ´ r̄ sinh η

∇η
R2β4

,´p
β

α
q
2
Bt ´ r̄ cosh η

∇η
R2β4

u

“ t
1

β2
p
BR

β2
q ´

1

β2

t

R

∇η
Rβ2

,´
β

α
p
β

α
Btq ´

1

β2

∇η
Rβ2

u

where ∇η :“ gradS2η.

Thus, we may construct a normal vector field in LpPq from the linear combination
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given by DpR ´ r̄ cosh ηq ´ t
R
Dpt ´ r̄ sinh ηq “ β

α
p α
β3 p

BR
β2 q `

t
R
p
β
α
Btqq. By denoting

Γ “ p α
β3 q

2 ´ p t
R
q2 and Λ “ 1´ Γ|∇η|2 we find our orthonormal frame field from

Lemma A.1.1. For sufficiently large r̄, S2
r̄ inherits an orthonormal frame field

tν, ν‹u given by:

Γ
1
2ν “

α

β3
p
BR

β2
q `

t

R
p
β

α
Btq

Γ
1
2 Λ

1
2ν‹ “

t

R
p
BR

β2
q `

α

β3
p
β

α
Btq ` Γ

∇η
Rβ2

Proof. It’s clear that xν‹, ν‹y “ ´1 and xν, ν‹y “ 0 so it suffices to show that

xν‹, V̄ y “ 0 for any V P ηpTS2q. So we calculate,

Γ
1
2 Λ

1
2 xν‹, V̄ y “ V ηx

t

R
p
BR

β2
q `

α

β3
p
β

α
Btq, tBR `RBty ` Γx

∇η
Rβ2

, V y

“ V ηt
t2

R
β2
´R

α

β3

α

β
u `Rβ2Γp∇η, V q

“ Rβ2V ηtp
t

R
q
2
´ p

α

β3
q
2
u `Rβ2ΓV η

“ 0

Remark A.1.1. Here ‘sufficiently large r̄’ serves to ensure that Γ ą 0 on S2
r̄ and as

a consequence Λ ą 0.

Denoting the second fundamental form of S2
r̄ by IIr̄ we have,

Proposition A.1.2.

1. Γ
1
2 xν, IIr̄pV,W qy “ V ηWηrR

α

β
t1´ p

t

R
q
2
u `

M

β2
tp
α

β3
q
2
´ pα ` 2qp

t

R
q
2
us

´Rp
α

β
q
2
pV,W q

136



2. Γ
1
2 Λ

1
2 xν‹, IIr̄pV,W qy “ V ηWηrtβ2

t1´ p
α

β3
q
2
u `Mβ

t

R
tp
t

R
q
2
´ p

α

β3
q
2 1` 2α

α
us

` tβ2
tp
R

r̄
q
2η ´

α

β
upV,W q

Proof.

1. Since xDV̄ W̄ , νy “ xIIr̄pV,W q, νy the result follows from Proposition A.1.1 and

Lemma A.1.1 following a tedious yet straight forward calculation.

2. As in the proof of 1., after the use of Proposition A.1.1 and Lemma A.1.1 the

expression eventually simplifies to,

Γ
1
2 Λ

1
2 xν‹, IIr̄pV,W qy “ V ηWηrtβ2

t1´ p
α

β3
q
2
u ´Mβp

t

R
q
3
´M

β

α
p
α

β3
q
2 t

R
s

´Rβ2ΓVWη `Rβ2Γp∇VW,∇ηq ´ tαβpV,W q

` 2tαβΓV ηWη

at which point the third term admits the substitution p∇VW,∇ηq “ V pW,∇ηq´

pW,∇V∇ηq “ VWη ´ pW,∇V∇ηq. This in turn removes VWη from the ex-

pression and pW,∇V∇ηq satisfies the following identity:

Lemma A.1.2. As a function on round S2, the Hessian of η satisfies

Hη
S2pV,W q “ ´

´tR

r̄2
˝ fr̄

¯

pV,W q ` 2
´ t

R
˝ fr̄

¯

V ηWη.

Proof. From the identity ∇η “ pR
r̄
q2∇p t

R
q we have V η “ pR

r̄
q2V p t

R
q for any

V P ΓpTS2q as well as

pW,∇V∇ηq “ W p
t

R
qV pp

r̄

R
q
´2
q ` p

R

r̄
q
2
pW,∇V∇p

t

R
qq

“ W p
t

R
qV pp1´ p

t

R
q
2
q
´1
q ` p

R

r̄
q
2
pW,∇V∇p

t

R
qq

“ 2
t

R
p1´ p

t

R
q
2
q
´2W p

t

R
qV p

t

R
q ` p

R

r̄
q
2
pW,∇V∇p

t

R
qq

137



“ 2
t

R
p
R

r̄
q
4W p

t

R
qV p

t

R
q ` p

R

r̄
q
2
pW,∇V∇p

t

R
qq.

So proving the Lemma is equivalent to showing that

pW,∇V∇p
t

R
qq “ ´

t

R
pV,W q

and since t
R
“ tanhψ cosϑ this is, in turn, equivalent to

Hcosϑ
S2 ` cosϑγ̊ ” 0

for γ̊ the standard round metric. This is easily verified for the basis tBϑ, Bϕu.

After substituting the identity of Lemma A.1.2 the expression simplifies to the

result.

In order to find the mean curvature ~H of S2
r̄ we will need the induced metric and

its inverse. The metric we find from

xV̄ , W̄ y “ V ηWηxX,Xy ` xV,W y “ V ηWηtt2β4
´R2

p
α

β
q
2
u ` xV,W y

“ R2β4
tpV,W q ´ ΓV ηWηu

So in a coordinate basis the induced metric and it’s inverse take the form

gij “ R2β4
t̊γij ´ Γηiηju

gij “
1

R2β4
t̊γij `

Γ

Λ
ηiηju

for ηi “ γ̊ijηj.
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Corollary A.1.2.1.

1. R2β4Γ
1
2 Λxν, ~Hy “ ´Rp

α

β
q
2
r2´ tΓ`

β

α
p1´ p

t

R
q
2
u|∇η|2s

`
M

β2
tp
α

β3
q
2
´ p2` αqp

t

R
q
2
u|∇η|2

2. R2β4Γ
1
2 Λ

3
2 xν‹, ~Hy “ |∇η|2rtβ2

t1´ p
α

β3
q
2
u `Mβ

t

R
tp
t

R
q
2
´ p

α

β3
q
2 1` 2α

α
us

` tβ2
tp
R

r̄
q
2Γ´

α

β
up2´ Γ|∇η|2q

Proof. We make the following observations:

gijηiηj “
1

R2β4
p|∇η|2 ` Γ

Λ
|∇η|4q “ |∇η|2

ΛR2β4

gij γ̊ij “
1

R2β4
p2`

Γ

Λ
|∇η|2q “ 2´ Γ|∇η|2

ΛR2β4

In either expression of Proposition A.1.1 taking a trace with gij yields the above

factors. A straight forward simplification yields the result.

Remark A.1.2. We notice that lim
r̄Ñ8

pRβ4Γ
1
2 xν, ~Hyq “ ´2, lim

r̄Ñ8
Γ

1
2 “

r̄

R
and lim

r̄Ñ8
β “ 1.

As a result we deduce that xν, ~Hy “ ´
2

r̄
`Op

1

r̄2
q and similarly that xν‹, ~Hy “ Op

1

r̄2
q.

This is to be expected since, for large r̄, the spacelike normal Rν approaches the po-

sition vector field P “ tBt ` RBR in Minkowski (or R4
1) and it’s a well known fact

that the coordinate sphere of radius r̄ in any boosted R3 Ă R4
1 has mean curvature

~H “ ´2
r̄
P
r̄

.

A.2 Curvature and Energy

Letting λ “ lim
r̄Ñ8

Λpr̄q we refine our estimate of xν, ~Hy
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Corollary A.2.0.1.

1. xν, ~Hy “ ´
2

r̄
`
f

r̄2
`Op

1

r̄3
q, where

f “ 2M
R

r̄
tp1` λ´1

qp2p
r̄

R
q
2
` 1q ´ 4u

2. xν‹, ~Hy “
g

r̄2
`Op

1

r̄3
q, where

g “ ´2M
t

r̄
λ´

1
2 t3` λ´1

´ p
r̄

R
q
2
u

Proof. 1. We start by approximating Γ,

Γ “ p
α

β3
q
2
´ p

t

R
q
2

“ p
α

β3
q
2
´ 1` 1´ p

t

R
q
2

“ p
r̄

R
q
2
t1´ p

R

r̄
q
2
p1´ p

α

β3
q
2
qu

“ p
r̄

R
q
2
t1´ 4M

R

r̄

1

r̄
u `Op

1

r̄2
q

giving,

Γ
1
2 “

r̄

R
t1´ 2M

R

r̄

1

r̄
u `Op

1

r̄2
q

and,

RΓ
1
2 “ r̄t1´ 2M

R

r̄

1

r̄
u `Op

1

r̄
q.

From this we conclude that,

RΓ
1
2 xν, ~Hy “ p1´ 2M

R

r̄

1

r̄
qp´2`

f

r̄
q `Op

1

r̄2
q

“ ´2` p4M
R

r̄
` fq

1

r̄
`Op

1

r̄2
q.
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Now,

Λp2`RΓ
1
2 xν, ~Hyq “ 2Λ´ p

α

β3
q
2
r2´ pη `

β

α
p1´ p

t

R
q
2
q|∇η|2s ` M

Rβ4
pp
α

β3
q
2

´ p2` αqp
t

R
q
2
q|∇η|2

“ 2
´

1´ p
α

β3
q
2
¯

` p
α

β3
q
2
|∇η|2t

´

p
α

β3
q
2
´ 1

¯

`

´β

α
´ 1

¯

u

` p
t

R
q
2
|∇η|2t

´

1´ p
α

β3
q
2
¯

`

´

1´
β

α
p
α

β3
q
2
¯

u

`
M

Rβ4
pp
α

β3
q
2
´ p2` αqp

t

R
q
2
q|∇η|2

where we’ve isolated with
´

¨

¯

all terms of magnitude Op1
r̄
q. As r̄ Ñ 8,

λp4M
R

r̄
` fq “ lim

r̄Ñ8
Λr̄p2`RΓ

1
2 xν, ~Hyq

“ 8M
r̄

R
` |∇η|2t´4M

r̄

R
`M

r̄

R
u ` |∇η|2p t

R
q
2
t4M

r̄

R
` 3M

r̄

R
u

`M
r̄

R
t1´ 3p

t

R
q
2
u|∇η|2

“ 8M
r̄

R
´ 2M

r̄

R
p1´ 2p

t

R
q
2
q|∇η|2

making the substitutions |∇η|2 “ pR
r̄
q2p1 ´ λq and p t

R
q2 “ 1 ´ p r̄

R
q2 the result

follows.

2. From our approximation of Γ in 1. we see

p
R

r̄
q
2Γ´ 1 “ ´4M

R

r̄

1

r̄
`Op

1

r̄2
q

so that

p
R

r̄
q
2Γ´

α

β
“ p

R

r̄
q
2Γ´ 1`

β ´ α

β

“Mp
r̄

R
´ 4

R

r̄
q
1

r̄
`Op

1

r̄2
q
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“Mp1´ 4p
R

r̄
q
2
q

1

R
`Op

1

r̄2
q.

Using this we see directly from Corollary A.1.2.1

R

r̄
λ

3
2 lim
r̄Ñ8

r̄2
xν‹, ~Hy “ lim

r̄Ñ8
R2β4Γ

1
2 Λ

3
2 xν‹, ~Hy

“ |∇η|2t4M t

R
`M

t

R
pp
t

R
q
2
´ 3qu

`M
t

R
p1´ 4p

R

r̄
q
2
qp2´ p

r̄

R
q
2
|∇η|2q

“M
t

R
t6|∇η|2 ` 2λ´ 8p

R

r̄
q
2
u

“ ´2M
t

R
t3p

R

r̄
q
2λ` p

R

r̄
q
2
´ λu

“ ´2Mλ
tR

r̄2
t3` λ´1

´ p
r̄

R
q
2
u

Definition A.2.1. The Hawking Energy of a closed surface Σ is given by;

EH “

c

|Σ|

16π

´

1´
1

16π

ż

Σ

x ~H, ~HydA
¯

It’s a well known fact that the Hawking Energy for coordinate spheres in an

asymptotically flat hypersurface approach the ADM energy as r̄ Ñ 8. In Schwarzschild

we see therefore that coordinate spheres in the cononical time slice tt “ 0u are

round (of radius r̄ “ Rβ2) and satisfy t “ η “ 0 so that Corollary 2 gives us

x ~H, ~Hy “ xν, ~Hy2 “ 4
R2 p

α
β3 q

2. Therefore

EH “

c

4πR2β4

16π
p1´

1

16π
4πR2β4 4

R2
p
α

β3
q
2
q “

Rβ2

2
p1´p

α

β
q
2
q “

R

2
pα`βqpα´βq “M.

As a result of boosting this slice to the rapidity ψ we expect the ADM energy to

boost to M coshψ. We are now in a position to verify this expectation.
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Proposition A.2.1. For the boosted time slice tt̄ “ 0u the Hawking Energy EHpr̄q

of the coordinate sphere S2
r̄ satisfies

lim
r̄Ñ8

EHpr̄q “M coshψ

Proof. From the change ϑÑ ϑ̄ given by,

sin ϑ̄ “
sinϑ

a

1´ tanh2 ψ cos2 ϑ

cos ϑ̄ “
sechψ cosϑ

a

1´ tanh2 ψ cos2 ϑ

it’s easily shown that

dϑ̄2
` psin ϑ̄q2dϕ2

“ p
R

r̄
q
2
tλdϑ2

` psinϑq2dϕ2
u “ lim

r̄Ñ8

1

r̄2
ds2

S2
r̄
.

We conclude for large r̄, S2
r̄ approaches round S2 and therefore,

|S2
r̄|

r̄2
“

ż

?
detg

r̄2
dϑdϕ “

ż

Λ
1
2 p
R

r̄
q
2β4 sinϑdϑdϕ r̄Ñ8 //

ż

λ
1
2 p
R

r̄
q
2 sinϑdϑdϕ “ 4π.

From our refined decomposition of ~H

x ~H, ~Hy “
´

´
2

r̄
`
f

r̄2

¯2

`Op
1

r̄4
q “

4

r̄2
´ 4

f

r̄3
`Op

1

r̄4
q

we are able to approximate EHpr̄q,

EHpr̄q “
1

4π

c

|S2
r̄|

16πr̄2

´

ż

p
R

r̄
q
2
rr̄pλ

1
2 ´ Λ

1
2β4
q ` fΛ

1
2β4
s sinϑdϑdϕ

¯

`Op
1

r̄
q

giving,

lim
r̄Ñ8

EHpr̄q “
1

4π

1

2

ż

p
R

r̄
q
2
r lim
r̄Ñ8

pr̄pλ
1
2 ´ Λ

1
2β4
qq ` fλ

1
2 s sinϑλϑdϕ.
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So in order to calculate the limit, we will also need next to leading order information

about
?

detg. We find this next order term by noting that since

Λ “ 1´ Γ|∇η|2 “ λ` p1´ p
α

β3
q
2
q|∇η|2 “ λ`

4M

R
|∇η|2 `Op 1

r̄2
q

we have that

Λ
1
2β4

“ λ
1
2 p1`

2M

λR
|∇η|2qp1` M

2R
q
4
`Op

1

r̄2
q “ λ

1
2 `

2M

R
pλ

1
2 `

|∇η|2

λ
1
2

q `Op
1

r̄2
q

giving

lim
r̄Ñ8

pr̄pλ
1
2 ´ Λ

1
2β4
qq “ ´2M

r̄

R
λ

1
2 p1`

|∇η|2

λ
q.

so that

lim
r̄Ñ8

EHpr̄q “
1

8π

ż

S2

f ´ 2M
r̄

R
p1`

|∇η|2

λ
qdA.

Using Corollary A.2.0.1 it’s an easy calculation to show that

tf ´ 2M
r̄

R
p1`

|∇η|2

λ
quλ

1
2 p
R

r̄
q
2
“ 2Mt

2

λ
1
2

R

r̄
` λ

1
2
r̄

R
pp
R

r̄
q
2
´ 2p

R

r̄
q
4
qu

“ 2Mt2 coshψ ` sechψpp
R

r̄
q
2
´ 2p

R

r̄
q
4
qu

so that finally we calculate

lim
r̄Ñ8

EHpr̄q “
M

4π

ż π

0

ż 2π

0

t2 coshψ ` sechψpp
R

r̄
q
2
´ 2p

R

r̄
q
4
qu sinϑdϑdϕ

“ 2M coshψ `
M

2
sechψ

ż 1

´1

1

1´ tanh2 ψx2
´ 2

1

p1´ tanh2 ψx2q2
dx

“ 2M coshψ `
M

2
sechψ

”

´ p1` c
B

Bc
q

ż 1

´1

1

1´ c2x2
dx

ıˇ

ˇ

ˇ

c“tanhψ

“ 2M coshψ `
M

2
sechψ

”

´
2

c
tanh´1 c´ cp´

2

c2
tanh´1 c`

2

c

1

1´ c2
q

ı
ˇ

ˇ

ˇ

c“tanhψ

“M coshψ.

144



We will now work towards a stronger result from which we can deduce Proposition

A.2.1. Specifically, we calculate KS2
r̄
´ 1

4
x ~H, ~Hy from the Gauss equation:

Lemma A.2.1. In the case of Schwarzschild, PˆRβ2 S2, we have,

1. xRBRBtBR, Bty “ ´
2M
R2

1
Rβ2 p

α
β
q2

2. (a) HRβ2
pBR, BRq “

M
R2

(b) HRβ2
pBR, Btq “ 0

(c) HRβ2
pBt, Btq “ ´

M
R2 p

α
β3 q

2

Proof. Using Corollary A.0.1.1 thoughout:

1. xRBRBtBR,Bty “ xDBtDBRBR, Bty ´ xDBRDBtBR, Bty

“ BtxDBRBR, Bty ´ xDBRBR, DBtBty ´ BRxDBtBR, Bty ` xDBtBR, DBRBty

“ 0`
M

R2β

α

β3

1

β4

M

R2
xBR, BRy ´ BRp

M

αβR2
xBt, Btyq ` p

M

αβR2
q
2
xBt, Bty

“ BRp
Mα

R2β3
q `

M2α

R4β4
´

M2

R4β4

“ ´
2Mα

R3β3
`
M

R2
pBRp

α

β3
q ´M

1` α

R2β4
q `

2M2α

R4β4

“ ´
2Mα

R3β3
p1´

M

Rβ
q

“ ´
2Mα2

R3β4

where we used the fact that BRp
α

β3
q “

M

R2

1` α

β4
in the sixth line.
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2. (a) xBR, DBRDpRβ
2
qy “ B

2
RpRβ

2
q ´ xDBRBR, DpRβ

2
qy

“ B
2
RpRβ

2
q `

M

R2β
BRpRβ

2
q

“ BRpβ
2
´ β

M

R
q `

M

R2β
pβ2

´ β
M

R
q “ BRpαβq `

Mα

R2

“ αBRβ ` βBRα `
Mα

R2
“
M

R2
p
β ´ α

2
` αq

“
M

R2

(b) xBR, DBtDpRβ
2qy “

BRpRβ
2q

β4
1
2
BtxBR, BRy “ 0

(c) xBt, DBtDpRβ
2
qy “

BRpRβ
2q

β4
xBt, DBtBRy “

αβ

β4

1

2
BRxBt, Bty

“
α

β3
p´

α

β3

m

R2
q.

Proposition A.2.2. Let M “ Bˆf F be a warped product with Riemannian curva-

ture tensor R. If X, Y, Z P LpBq and U, V,W P LpF q, then

1. RXYZ P LpBq is the lift of BRXYZ on B.

2. RV XY “
Hf pX,Y q

f
V , where Hf is the Hessian of f .

3. RXY V “ RVWX “ 0

4. RXVW “
xV,W y
f

DXDf

5. RVWU “
F RVWU ´

xDf,Dfy
f2 txV, UyW ´ xW,UyV u

Proof. see [21] pg.210.

Proposition A.2.3. For Σ “ S2
r̄

KΣ ´
1

4
x ~H, ~Hy `

1

2
xÎI, ÎIy “

M

ΛpRβ2q3
p2` Γ|∇η|2q
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Proof. Knowing that Gp¨, ¨q vanishes identically in Schwarzschild our task is to cal-

culate the quantity xRνν‹ν, ν
‹y “ 1

4
xRLLL,Ly (for L “ ν´ν‹ and L “ ν`ν‹) so that

the result follows from the Gauss equation (Proposition 3.0.1). We use our standard

choice for tν, ν‹u and break ν‹ into the components Λ
1
2ν‹ “ ν‹1 ` ν2 where:

ν‹1 “

t
R
r
BR
β2 s `

α
β3 r

β
α
Bts

Γ
1
2

and

ν2 “ Γ
1
2
∇η
Rβ2

(we temporarily denote also ν1 “ ν).

We will need to find the determinant of the linear map

˜

t
R

1
β2

α
β3

β
α

α
β3

1
β2

t
R
β
α

¸

ˆ

Bt

BR

˙

“ Γ
1
2

ˆ

ν‹1
ν1

˙

which is easily seen to give

p t
R
q2 1
αβ
´ p α

β3 q
2 1
αβ

Γ
“ ´

1

αβ
.

Thus Proposition A.2.2 gives

ΛxRνν‹ν, ν
‹
y “ xRν1 ν‹1`ν2ν1, ν

‹
1 ` ν2y “ xRν1 ν‹1

ν1, ν
‹
1y ´ xRν2 ν1ν1, ν2y

“
1

α2β2
xRBRBtBR, Bty ´

xν2, ν2y

Rβ2
HRβ2

pν1, ν1q

“ ´
2M

pRβ2q3
´

Γ|∇η|2

Rβ2
r
1

Γ
tp
α

β3
q
2 1

β4
HRβ2

pBR, BRq ` p
t

R
q
2
p
β

α
q
2HRβ2

pBt, Btqus

“ ´
2M

pRβ2q3
´
|∇η|2

Rβ2
rp
α

β3
q
2 1

β4

M

R2
´ p

t

R
q
2
p
β

α
q
2M

R2
p
α

β3
q
2
s

“ ´
2M

pRβ2q3
´
|∇η|2

Rβ2
p
α

β3
q
2M

R2
p
β

α
q
2Γ
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“ ´
M

pRβ2q3
p2` Γ|∇η|2q

Having used Lemma A.2.1 in the forth.

Lemma A.2.2. S2
r̄ satisfies

xÎI, ÎIy “ Op
1

r̄4
q.

Proof. From Proposition A.1.2 and Corollary A.1.2.1 we conclude that the quantities

xÎIpV,W q, νy “ xIIpV,W q, νy ´
1

2
xV,W yx ~H, νy

xÎIpV,W q, ν‹y “ xIIpV,W q, ν‹y ´
1

2
xV,W yx ~H, ν‹y

converge as r̄ Ñ 8 for any V,W P ΓpTS2q. Therefore, from the choice of orthonormal

frame

te1 “
Bϑ

Λ
1
2Rβ2

, e2 “
Bϕ

sinϑRβ2
u

we conclude that

xÎI, ÎIy “
ÿ

i,j

´

xÎIpei, ejq, νy
2
´ xÎIpei, ejq, ν

‹
y

2
¯

“ Op
1

r̄4
q

Proposition A.2.2 therefore allows us to directly conclude that

lim
r̄Ñ8

r̄3
tKΣ ´

1

4
x ~H, ~Hy `

1

2
xÎI, ÎIyu “

M

λ
p
r̄

R
q
3
p2` p

r̄

R
q
2
|∇η|2q.

Moreover, from Lemma A.2.2

lim
r̄Ñ8

EHpr̄q “ lim
r̄Ñ8

1

4π

c

|S2
r̄|

16π

ż

S2
r̄

KS2
r̄
´

1

4
x ~H, ~Hy `

1

2
xÎI, ÎIydA

“
1

4

ż π

0

M

λ
1
2

r̄

R
p2` p

r̄

R
q
2
|∇η|2q sinϑdϑ
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“
1

4
M coshψ

ż π

0

p1´ tanh2 ψ cos2 ϑqp2`
tanh2 ψ sin2 ϑ

1´ tanh2 ψ cos2 ϑ
q sinϑdϑ

“
1

4
M coshψ

ż 1

´1

2´ 2 tanh2 ψx2
` tanh2 ψp1´ x2

qdx

“
1

4
M coshψp4´

4

3
tanh2 ψ ` tanh2 ψp2´

2

3
qq

“M coshψ

as expected.

A.3 Normal Connection and Momentum

Finally, we finish our study of S2
r̄ with its connection 1-form. From this we are able

to deduce the ADM-momentum of our boosted slice.

Definition A.3.1. Given a normal frame field tν, ν‹u for S2
r̄ and V P ΓpTS2q, the

connection 1-form associated to this frame is given by:

ανpV q “ xDV̄ ν, ν
‹
y.

Proposition A.3.1. In our standard normal frame tν, ν‹u we have,

ΓΛ
1
2ανpV q “ V ηr

α

β3
t
α

β
p
α

β3
q
2
´ 1u `

M

R

1

β4
t2p1` αqp

t

R
q
2
´ p

α

β3
q
2
us

Proof.

DV̄ pΓ
1
2νq “ V ηDXpΓ

1
2νq `DV pΓ

1
2νq

“ V ηttDBRpΓ
1
2νq `RDBtpΓ

1
2νqu `

Γ
1
2νpRβ2q

Rβ2
V

Now

1. tDBRpΓ
1
2νq “

t

R
t
M

R

1` α

β6
BR ´

t

R

β

α
Btu :

DBRpΓ
1
2νq “ BRp

α

β3

1

β2
qBR `

α

β3

1

β2
DBRBR ` BRp

t

R

β

α
qBt `

t

R

β

α
DBRBt
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“ t
M

R2

1` α

β4

1

β2
`
α

β3

M

R2

1

β3
uBR ´

α

β3

1

β2

M

R2

1

β
BR

` t´
t

R2

β

α
´

t

R

M

R2

1

α2
uBt `

t

R

β

α

M

R2

1

αβ
Bt

“
M

R2

1` α

β6
BR ´

t

R2

β

α
Bt

2. RDBtpΓ
1
2νq “ p

β

α
`
M

R

1

β6
qBt `

M

R

t

R

1

β6
BR :

DBtpΓ
1
2νq “

α

β3

1

β2
DBtBR `

1

R

β

α
Bt `

t

R

β

α
DBtBt

“ t
α

β3

1

β2

M

R2

1

αβ
`

1

R

β

α
uBt `

t

R

β

α

α

β3

1

β4

M

R2
BR

3.
Γ

1
2νpRβ2q

Rβ2
“

1

R
p
α

β3
q
2 :

Γ
1
2νpRβ2q

Rβ2
“

α

β3

1

β2

BRpRβ
2q

Rβ2
“

α

β3

1

β2
p

1

R
´
M

R2

1

β
q

Giving

DV̄ pΓ
1
2νq “ V ηrt

β

α
p1´ p

t

R
q
2
q `

M

R

1

β6
uBt `

t

R

M

R

2` α

β6
BRs `

1

R
p
α

β3
q
2V.

As a result,

xDV̄ pΓ
1
2νq,Γ

1
2 Λ

1
2ν‹y “ ΓΛ

1
2 xDV̄ ν, ν

‹
y

“ V ηxt
β

α
p1´ p

t

R
q
2
q `

M

R

1

β6
uBt `

t

R

M

R

2` α

β6
BR,

t

R
p
BR

β2
q `

α

β3
p
β

α
Btqy

` V η
α2

β4
Γ

“ V ηr
α

β3
t
α

β
Γ´ p1´ p

t

R
q
2
qu `

M

R
tp
t

R
q
2 2` α

β4
´ p

α

β3
q
2 1

β4
us

“ V ηr
α

β3
t
α

β
p
α

β3
q
2
´ 1u `

M

R

1

β4
t2p1` αqp

t

R
q
2
´ p

α

β3
q
2
us
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It now easily follows that

Corollary A.3.1.1. ανpV q “ V ηth
r̄
`Op 1

r̄2 qu for,

h “ ´2M
R

r̄
λ´

1
2 t1` 2p

r̄

R
q
2
u

Proof.

In order to get hold of the second fundamental from K of our slice tt̄ “ 0u we

will need to find the unit timelike normal ~N9Dt̄ which we now work towards.

Lemma A.3.1.

Dt̄ “ ´ coshψt
t

R
DpR ´ r̄ cosh ηq ´Dpt´ r̄ sinh ηqu

“ ´ coshψt
t

R

1

β2
p
BR

β2
q `

β

α
p
β

α
Btq `

1

β2
p1´ p

t

R
q
2
q
∇η
Rβ2

u

Proof. We recall that t̄ “ coshψt´ sinhψz “ coshψt´ sinhψR cosϑ so that,

Dt̄ “ coshψt´p
β

α
q
2
Bt ´ tanhψp

1

β4
cosϑBR ´

R

R2β4
sinϑBϑqu.

We also recall that ∇η “ ´ tanhψ sinϑ

1´ tanh2 ψ cos2 ϑ
Bϑ allowing for the above expression to

be written as

Dt̄ “ ´ coshψtp
β

α
q
2
Bt `

1

β4

t

R
BR `

R

R2β4
p1´ p

t

R
q
2
q∇ηu

and the result follows.

Remark A.3.1. We notice that xDt̄,Dt̄y “ cosh2 ψtp t
R
q2 1
β4´p

β
α
q2` 1

β4 p1´p
t
R
q2q|∇η|2u

has the same limit for large r̄ as ´ cosh2 ψΓΛ.
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Since Dt̄ is the timelike normal to our boosted slice tt̄ “ 0u and therefore normal

to S2
r̄ we must have some function ϕn P FpS2q such that,

~N :“ ´
Dt̄

|Dt̄|
“ coshφnν

‹
` sinhφnν.

It’s an easy calculation to show that

sinhφn “ x ~N, νy “ ´
xDt̄,Γ

1
2νy

|Dt̄|Γ
1
2

“
t

R

β

α

p α
β3 q

2 ´ 1

|Dt̄|Γ
1
2

which has magnitude Op1
r̄
q indicating that ~N approaches ν‹ for large r̄. Since

lim
r̄Ñ8

sinhφn
φn

“ 1:

lim
r̄Ñ8

r̄ϕn “ ´
t

R
lim
r̄Ñ8

r̄p1´ p α
β3 q

2q

|Dt̄|η
1
2

“ ´
t

R

4M r̄
R

p r̄
R
q2λ

1
2

or equivalently,

Lemma A.3.2. Given φn P FpS2q such that ~N “ coshφnν
‹ ` sinhφnν we have,

ϕn “
k
r̄
`Op 1

r̄2 q for,

k “ ´4m
t

r̄
d´

1
2 .

Proof.

Corollary A.3.1.2. For the orthonormal frame field t ~N,~nu in the normal bundle

of S2
r̄ such that xBr̄, ~ny ą 0:

1. x ~N, ~Hy “ l
r̄2 `Op

1
r̄3 q for,

l “ 2M
t

r̄
λ´

1
2 t1´ λ´1

` p
r̄

R
q
2
u
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2. α~npV q “ V ηt s
r̄
`Op 1

r̄2 qu for,

s “ ´2m
R

r̄
λ´

1
2

Proof. 1. Since

x ~N, ~Hy “ coshφnxν
‹, ~Hy ` sinhφnxν, ~Hy

according to Corollary A.2.0.1 and Lemma A.3.2,

lim
r̄Ñ8

r̄2
x ~N, ~Hy “ ´2M

t

r̄
λ´

1
2 t3` λ´1

´ p
r̄

R
q
2
u ´ 4M

t

r̄
λ´

1
2 p´2q

“ 2M
t

r̄
λ´

1
2 t1´ λ´1

` p
r̄

R
q
2
u.

2. From

~n “ coshφnν ` sinhφnν
‹

it’s an easy exercise to show that α~n “ αν ´ dφn giving

lim
r̄Ñ8

r̄α~npV q “ V ηr´2M
R

r̄
λ´

1
2 t1` 2p

r̄

R
q
2
us ´ V p´4M

t

r̄
λ´

1
2 q

“ p
R

r̄
q
2V p

t

R
qr´2M

R

r̄
λ´

1
2 t1` 2p

r̄

R
q
2
us ` 4MV p

t

R

R

r̄
λ´

1
2 q

“ V p
t

R
qr´2Mp

R

r̄
q
3λ´

1
2 t1` 2p

R

r̄
q
2
u ` 4M

R

r̄
λ´

1
2 s

“ V p
t

R
qp2M

R

r̄
λ´

1
2 qr2´ tp

R

r̄
q
2
` 2us

“ ´2M
R

r̄
λ´

1
2V η

having used the fact that coshψ “ R
r̄
λ´

1
2 in the second line.

We are now in a position to verify that the ADM-momentum of our boosted slice

is given by ~P “ p0, 0,M sinhψq,
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Proposition A.3.2. In the boosted isotropic coordinates px1, x2, x3q “ px̄, ȳ, z̄q,

Pi :“ lim
r̄Ñ8

1

8π

ż

S2
r̄

tKij ´Kḡiju~n
jdA “M sinhψδi3

where Kp¨, ¨q “ ´xIIt̄p¨, ¨q, ~Ny is the scalar second fundamental form of our boosted

slice (K “ ḡijKij) and ~n is the outward unit normal to S2
r̄.

Proof. From the induced metric on our boosted slice we read off,

Bx̄ “ β4Dx̄

Bȳ “ β4Dȳ

Bz̄ “ β4
tcosh2 ψ ´ p

α

β3
q
2 sinh2 ψuDz̄

giving

|Dpr̄2
q|~n “ Dpr̄2

q

“ 2x̄Dx̄` 2ȳDȳ ` 2z̄Dz̄

“
2x̄

β4
Bx̄ `

2ȳ

β4
Bȳ `

2z̄

cosh2 ψ ´ p α
β3 q

2 sinh2 ψ
Bz̄.

Thus, under restriction to S2
r̄ we see |Dpr̄2q| “ 2r̄ `Op1q so that,

x~n, Bx̄y “
x̄

r̄
`Op

1

r̄
q “

R

r̄
sinϑ cosϕ`Op

1

r̄
q “ sin ϑ̄ cosϕ`Op

1

r̄
q

x~n, Bȳy “
ȳ

r̄
`Op

1

r̄
q “

R

r̄
sinϑ sinϕ`Op

1

r̄
q “ sin ϑ̄ sinϕ`Op

1

r̄
q

x~n, Bz̄y “
z̄

r̄
`Op

1

r̄
q “ sechψ

R

r̄
cosϑ`Op

1

r̄
q “ cos ϑ̄`Op

1

r̄
q.

For the orthonormal frame field te1 “
Bϑ

Rβ2D
1
2
, e2 “

Bϕ

Rβ2 sinϑ
, ~n “ Dr̄2

|Dr̄2|
u we have

xe1, Bx̄y “ β4
xe1, Dx̄y “ β2 r̄

R
Λ´

1
2Bϑp

x̄

r̄
q “ β2 r̄

R
Λ´

1
2Bϑp

R

r̄
sinϑq cosϕ

“ sechψβ2R

r̄
p
λ

Λ
q

1
2 cosϑ cosϕ “ cos ϑ̄ cosϕ`Op

1

r̄
q
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xe2, Bx̄y “ β2 sin´1 ϑp´ sinϑ sinϕq “ ´β2 sinϕ “ ´ sinϕ`Op
1

r̄
q,

xe1, Bȳy “ β4
xe1, Dȳy “ β2 r̄

R
Λ´

1
2Bϑp

ȳ

r̄
q “ β2 r̄

R
Λ´

1
2Bϑp

R

r̄
sinϑq sinϕ

“ sechψβ2R

r̄
p
λ

Λ
q

1
2 cosϑ sinϕ “ cos ϑ̄ sinϕ`Op

1

r̄
q

xe2, Bȳy “ β2 sin´1 ϑpsinϑ cosϕq “ β2 cosϕ “ cosϕ`Op
1

r̄
q

and finally

xe1, Bz̄y “ β2 r̄

R
Λ´

1
2 tcosh2 ψ ´ p

α

β3
q
2 sinh2 ψuBϑp

z̄

r̄
q

“ β2 r̄

R
Λ´

1
2 tcosh2 ψ ´ p

α

β3
q
2 sinh2 ψuBϑpsechψ

R

r̄
cosϑq

“ ´β2R

r̄
p
λ

Λ
q

1
2 tcosh2 ψ ´ p

α

β3
q
2 sinh2 ψu sinϑ

“ ´ sin ϑ̄`Op
1

r̄
q

xe2, Bz̄y “ 0.

Now given any ambient vector field X restricted to S2
r̄,

KpX,~nq ´KxX,~ny “ xX,~nypKp~n, ~nq ´Kq `
ÿ

i

xX, eiyKpei, ~nq

“ xX,~nyx ~H, ~Ny ´
ÿ

i

xX, eiyα~npeiq

“ xX,~nyx ~H, ~Ny ´ xX, e1yα~npe1q

where we used
ÿ

i

xIIr̄pei, eiq, ~Ny “ ´K `Kp~n, ~nq in the second line and α~n9dϑ in

the third line (following from Proposition A.3.1 given that φn is independent of ϕ).

From our calculations so far we recognize that KpBx̄, ~nq ´KxBx̄, ~ny “ F1psinϑq cosϕ

and KpBȳ, ~nq´KxBȳ, ~ny “ F2psinϑq sinϕ for some F1 and F2. So given that
a

detgS2
r̄

is independent of ϕ we have P1 “ P2 “ 0. For P3 we see
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xBz̄, ~nyx ~H, ~Ny ´ xe1, Bz̄yα~npe1q

“ r2M
t

r̄
λ´

1
2 t1´ λ´1

` p
r̄

R
q
2
u cos ϑ̄´ 2M

R

r̄
λ´

1
2 sin ϑ̄

r̄

R
λ´

1
2ηϑs

1

r̄2
`Op

1

r̄3
q

“ 2M
sinhψ

cosh2 ψ
p
R

r̄
q
2λ´

1
2 rcos2 ϑt1´ sinh2 ψp1´ tanh2 ψ cos2 ϑqu

` cosh2 ψ sin2 ϑs
1

r̄2
`Op

1

r̄3
q

“ 2M
sinhψ

cosh2 ψ
p
R

r̄
q
2λ´

1
2 rcosh2 ψ ´ 2 sinh2 ψ cos2 ϑ` sinh2 ψ tanh2 ψ cos4 ϑs

1

r̄2

`Op
1

r̄3
q

“ 2M sinhψp
r̄

R
q
2λ´

1
2

1

r̄2
`Op

1

r̄3
q

giving

1

8π

ż

S2
r̄

xBz̄, ~nyx ~H, ~Ny ´ xe1, Bz̄yα~npe1qdA

“
M

2
sinhψ

ż π

0

p
r̄

R
q
2λ´

1
2 p
R

r̄
q
2Λ

1
2 sinϑdϑ`Op

1

r̄
q

“
M

2
sinhψ

ż π

0

p
Λ

λ
q

1
2 sinϑdϑ`Op

1

r̄
q

“M sinhψ `Op
1

r̄
q

the result follows.

Remark A.3.2. (see [31]) In Proposition A.3.2 we recall for X “ Bz̄ that xBz̄, ~ny “

cos ϑ̄ ` Op1
r̄
q giving for large r̄, xBz̄, e1ye1 « ´ sin ϑ̄

Bϑ̄
r̄
« 1

r̄
∇̄ cos ϑ̄. So for any α‹ “

α~n ´ dφ‹ where φ‹ “ φ0
‹ `Op

1
r̄
q and φ0

‹ P FpS2q
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lim
r̄Ñ8

ż

S2
r̄

xBz̄, ~nyx ~H, ~Ny ´ α~npxBz̄, e1ye1qdA

“

ż

S̄2

cos ϑ̄ limpr̄2
x ~H, ~Nyq ´ limpr̄α~nqp∇̄ cos ϑ̄qdσ

“

ż

S̄2

cos ϑ̄ limpr̄2
x ~H, ~Nyq ` ∇̄ ¨ plimpr̄α~nqq cos ϑ̄dσ

“

ż

S̄2

cos ϑ̄plimpr̄2
x ~H, ~Nyq ` limpr̄3∇S2

r̄
¨ α~nqqdσ

“

ż

S̄2

cos ϑ̄plimpr̄2
x ~H, ~Nyq ` limpr̄3∇S2

r̄
¨ α‹q ` limpr̄2∆S2

r̄
r̄φ‹qqdσ

“

ż

S̄2

cos ϑ̄plimpr̄2
x ~H, ~Nyq ` limpr̄3∇ ¨ α‹q ´ 2 limpr̄φ‹qqdσ

having used ∆̄S2 cos ϑ̄ “ ´2 cos ϑ̄ after an integration by parts twice to obtain the final

term of the final line.

From this remark we see that the momentum (at least in the limit) is completely

encoded within the connection 1-form provided we choose an orthonormal frame that

yields lim
r̄Ñ8

r̄ϕ‹ “ lim
r̄Ñ8

r̄2

2
x ~H, ~Ny. Noticing that ~H “ x ~H, νyν´x ~H, ν‹yν‹ is dominated

by x ~H, νyν « ´2
r̄
ν for large r̄ we may choose the orthonormal frame field tνH , ν

‹
Hu

whereby,

νH :“ ´
~H

H
“ coshϕH~n` sinhϕH ~N

ν‹H :“ sinhϕH~n` coshϕH ~N

with associated connection 1-form given by αH “ αn ´ dϕH .
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