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Introduction

We live in a geometrical world, and at least since the time of the ancient Babylonians
and Egyptians, we have tried to model our world. One of the ancient Greeks, Euclid
(ca. 300 B.C.), proposed five postulates1 that essentially define the geometry that
bears his name – Euclidean geometry. This version of geometry is the most widely
known and accepted of all geometries. In fact, for many centuries, many people
attempted to prove that it is the only geometry. More precisely, if we accept the first
four of Euclid’s postulates, is it possible to prove the fifth postulate – the parallel
postulate? This last postulate asserts that given any line and any point not on that
line, there exists a unique line through that point which never intersects the original
line – that is, the fifth postulate asserts the existence of a unique parallel. It is now
known that the fifth postulate does not follow from the first four, and if we instead
assume that through any point there exist at least two lines which do not intersect
a given line not through that point, then we get a geometry known as hyperbolic
geometry. Because it was widely believed that the fifth postulate should follow from
the first four, centuries passed before hyperbolic geometry was discovered, and after
it was discovered, it took years for it to be accepted, even by the original discoverers.
For a very intriguing and expansive history of the discovery of hyperbolic geometry,
consult Greenberg’s book Euclidean and Non-Euclidean Geometries[Gre93].

The first four of Euclid’s postulates may also be modified. There exist valid
geometries – for example spherical geometry – for which these postulates are not
all true. In this text, we will investigate several geometries, including Euclidean,
hyperbolic, and spherical geometry.

0.1. The Geometry of Our World

Since we regularly experience the geometry of our world, we already have notions
of lengths, angles, and lines. We typically define a line segment between two points

1Postulate: Something assumed without proof as being self-evident or generally accepted, espe-
cially when used as a basis for an argument. An axiom. Mathematicians sometimes make a subtle
distinction between axioms and postulates, but in this text, we will consider them to be synonyms.

1
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2 Introduction

to be the shortest path between them. Thus, a string, when pulled taut, describes a
straight line segment. For example, carpenters use chalk lines to draw straight lines.
For longer distances, though, the force required to pull a string taut enough gets
excessive, so we typically use our line of sight (or lasers) as a means of describing
a straight line. Sight, too, is limited, so we can only construct line segments. The
notion of a line of indefinite length is therefore theoretical – we can visualize them,
but cannot construct any.

Euclidean, spherical, and hyperbolic geometry are distinguished by their dif-
fering parallel postulates. In Euclidean geometry, for any line l and any point P
not on the line l, there exists exactly one line through P which does not intersect
l. In hyperbolic geometry, there exists an infinite number of lines through P which
do not intersect l. In spherical geometry, any two lines intersect – that is, there are
no parallel lines.2

An intriguing question to ask is, Which geometry do we live in? If we pull out
a piece of paper and on it draw a line l and point P , we might be able to convince
ourselves that there exists a unique parallel line through that point. But let us now
lay that piece of paper on the ground and orient the line so that it points north
and south. Now imagine ourselves as living on the equator of a perfectly spherical
world. How does our line extend? It is a line of longitude which travels through the
North and South Poles. How should we construct a line parallel to it? We draw a
line segment l2 through P and perpendicular to l. We then draw the line through
P and perpendicular to l2. It should be our parallel, but if we continue it along the
surface of the Earth, it too goes through both the North and South poles. Thus, it
intersects l. That is, there are no parallel lines.

The Earth is not our entire universe either, and a ray of light does not travel
along a line of longitude, so perhaps this model is fanciful. But it points out that our
view of the world is limited. Our view is local.3 It is like the drawing on that piece
of paper. It may look like Euclidean geometry, but the features which distinguish
Euclidean geometry from spherical and hyperbolic geometry are features which lie
beyond the piece of paper. Those features are global . We cannot tell, from our
limited experience, what the geometry of our universe really is.

The current popular theory among physicists is that we live in a geometry
which is much more complicated than any of the geometries we will study. This
geometry, as you might imagine, is also locally indistinguishable from Euclidean
geometry.

0.2. A Review of Terminology

Right angle: An angle which measures 90◦. We will formally define right angles
later in this text.

2Euclid’s first four axioms must also be modified to generate spherical geometry. No such modifi-
cation is necessary for hyperbolic geometry.

3In mathematics, local means in a sufficiently small neighborhood. In reality, we should probably
distinguish local from microscopic. For example, light travels locally in a straight line, but at a micro-
scopic (submicroscopic?) level, we might notice that light travels like a wave. In this text, we will never
distinguish the local and microscopic levels.
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0.3. Notes on Notation 3

Obtuse angle: An angle whose angular measure is greater than 90◦.

Acute angle: An angle whose angular measure is less than 90◦.

Circle: A circle with center O and radius r is the set of points a distance r away
from O.

Chord: A chord of a circle is a line segment with endpoints on the circle.

Diameter: A diameter of a circle is a chord which passes through the center. The
diameter may also refer to the length of a diameter.

Radius: A radius is a line segment from the center of a circle to the circle. The
radius may also refer to the length of a radius.

Arc: A portion of a circle. The angular measure of an arc is the measure of the
angle created by the radii which go to the ends of the arc.

Triangle: A set of three points (vertices) together with the three line segments
joining them.

Degenerate triangle: A triangle whose three vertices are collinear.

Isosceles triangle: A triangle with two sides of equal length.

Scalene triangle: A triangle for which no two sides are equal.

Right angle triangle: A triangle with a right angle.

Quadrilateral: A set of four points joined by four nonintersecting segments.

Square: A quadrilateral whose sides have equal length and whose angles are equal.

Rhombus: A quadrilateral whose sides are equal.

Parallelogram: A quadrilateral whose opposite sides are parallel.

Supplementary angles: Two angles which together form a straight line.

Adjacent angles: Two angles which share a common ray.

Complementary angles: Two angles which together form a right angle.

Vertical angles: Two opposite angles at the intersection of two lines.

0.3. Notes on Notation

There are several notations used in this text for which there are other, possibly
more standard, notations. Below is a list of notations we use, together with some
common alternatives.

We denote the length of the segment AB with |AB|. The notation AB is common.

We denote the segment AB with ‘the segment AB.’ A common alternative is AB.

We denote the line AB with ‘the line AB.’ A common alternative is
←→
AB

We denote the ray AB with ‘the ray AB.’ A common alternative is
−→
AB.

AMS Open Math Notes: Works in Progress; Reference # OMN:202006.110830; Last Revised: 2020-07-11 09:32:23



4 Introduction

We denote the arc AB with ‘the arc AB.’ A common alternative is
_

AB.

We denote the area of ∆ABC with |∆ABC|. A common alternative is [ABC].

We denote the measure of the angle ∠ABC with ‘∠ABC’ and use the same notation
for the angle ∠ABC. We expect the distinction between the two to be obvious from
the context. The usual alternative is to denote the angle ∠ABC with ∠ABC, and
the measure of the angle ∠ABC with m∠ABC. A usual exception to this notation
is the abbreviation A for ∠BAC in a triangle ∆ABC. This abbreviation is used,
for example, in the Law of Sines and Law of Cosines (pages 38 and 34). In these
cases, it is clear that A represents an angle since it is used as the argument of a
trigonometric function.

0.4. Notes on the Exercises

The level of difficulty of the exercises is indicated with zero or more asterisks.
Exercises with no asterisk are considered normal and may range in difficulty from
trivial to moderately challenging. An exercise with one asterisk is considered to be
either hard, or very long. An exercise with two asterisks is harder, possibly at the
level of a national or international contest problem. In general, the average level of
difficulty for exercises increases as the chapter or book progresses.

Some exercises are further developments in the theory and should not be missed.
Such exercises are denoted with a dagger (†).

Most exercises are placed at the end of the section, but some are not. These
are often questions which naturally arise from the current discussion. They are
usually no more important than those at the end of the section, but often either
the question or the result is illuminating and relevant to the current discussion.
These exercises should therefore be read as part of the text, even if there is no
intent to solve them.

Some exercises are followed by one or more of the symbols [H], [A], or [S]. These
symbols mean that there is, respectively, a hint, answer, or solution in Appendix
B.
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Chapter 1

Euclidean Geometry

The geometry which we will first study is known as Euclidean geometry, named after
the Greek mathematician Euclid (ca. 300 B.C.), who proposed a set of postulates
which (essentially) define the geometry. It is the geometry taught in schools in
America, and we tend to think of it as the geometry we live in.

We will take the point of view that geometry is entirely theoretical and is meant
to interpret the world we live in. We will construct it from scratch – making several
assumptions which are inspired by our experiences, and from them we will derive
the truths of our geometry. Since our view of the world is local, and our artificial
geometry is supposed to mimic reality, the assumptions we make which are least
likely to be debated are those that are local in nature. Our global assumptions
will be more contentious, and by varying these assumptions, we will construct
several different geometries. Each geometry will be equally valid. That is, they
will all model our perception of reality in a satisfactory way (so locally, they will
all look alike) and they will all be coherent (that is, in each geometry, there are no
statements which can be proved to be both true and false).

Since locally each geometry looks alike, one might wonder why we should care
to develop the different geometries. After all, our experience is merely local. The
reason is, of course, curiosity. We have an insatiable desire to ask and answer
questions. Some questions, though, can only be answered by making some global
assumptions. Sometimes, those assumptions seem so obvious that we do not even
notice we are making them. The assumption that we live in a world that globally
follows the laws of Euclidean geometry is an example of one of those assumptions.
For example, consider the following question asked by many through the ages:
Imagine yourself out in the nighttime desert, lying under the stars. You fix your
gaze on one star in particular and wonder just how far away it is. Such questions
have occurred to many people in the past, and a rather simple experiment can be
devised to answer it.

Measure the angle between the sun, you, and the star. Half a year later, make
the same measurement. The two angles should sum to less than 180◦. We now

5
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6 1. Euclidean Geometry

have a triangle for which we know all three angles, and the length of one side. We
should therefore be able to compute the length of the other two sides.

Exercise 1.1. Suppose that at the spring solstice the angle between a star, the
Earth, and the sun measures 79.1◦, and at the fall solstice the angle measures
100.8◦. How far away is the star from the Earth? (The Earth is 93 million miles
from the sun.)

Solution. The star, Earth during the fall, and Earth in springtime form a very
long and narrow triangle (see Figure 1).

(Spring) Sun (Fall)

Star

↑

Earth Earth

Figure 1.

We know two angles and the side between in this triangle, so by ASA, we should
be able to solve for the other two sides. We do this using the Law of Sines (proved
in Theorem 1.122 in Section 1.11), which says, for a triangle ∆ABC with side a
opposite angle A, b opposite angle B, and c opposite angle C, we have

a

sinA
=

b

sinB
=

c

sinC
.

Let A be the angle at the star. Since the angles in a triangle sum to 180◦, we know
A = .1◦. We can now solve for b and c, and find that, up to two significant digits
(which is the degree of accuracy implied by the measurement from the sun to the
Earth), the two are equal:

b ∼= c ∼= 100, 000, 000, 000 miles

Note that, as one would expect, the difference in the distance between the Earth
and the star during the two seasons is insignificant. �

In the above calculation, we made a very strong assumption. We assumed that
our universe is Euclidean. This assumption was made first when we assumed that
the angles in a triangle sum to 180◦, and again when we used the Law of Sines. If
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1. Euclidean Geometry 7

the universe is spherical,1 then the star is in fact closer. If the universe is hyperbolic,
then the star is in fact further away. To answer the question truthfully, we must
decide which geometry most closely models our universe. Notice that we are not a
priori2 considering the star-Earth-sun triangle to be local – which is why to answer
this question we must use some of the global assumptions of our geometry.

To calculate the actual distance in a spherical or hyperbolic world, we would
also need to know the curvature of the universe. In a spherical universe, this
quantity is positive and is the inverse of the square of the radius of the sphere. In
a hyperbolic universe, it is negative. The curvature of Euclidean space is zero.

Suppose we could measure the distance between the star and the Earth by
some other concrete means. If this distance is greater or less than the calculated
distance, we will know which model is best, and we will know the curvature of the
universe. However, if the actual and calculated distances differ by less than the
errors in our measurements, then we will be exactly where we started – we will still
not know.

This example also illustrates a need and desire to come up with experiments
which can decide which model best describes reality. As of this date, no definitive
experiment has been performed. However, if we do assume our world is either
spherical, hyperbolic, or Euclidean, then by observing distant stars and galaxies,
we can find bounds on the curvature. These bounds are so close to zero that,
for near stars, we might as well assume our universe is Euclidean. Keep in mind,
though, that these three geometries are not the only geometries that exist, and our
universe may be different from all three.

Exercise 1.2. The numbers in Exercise 1.1 were cooked up. From your general
knowledge, are these numbers reasonable? Explain.

Trivia. The speed of light is 186, 000 miles/sec.

Exercise 1.3. What order of magnitude is the difference between 180◦ and the
sum of the angles for the summer and winter observations of Alpha Centauri? (See
Figure 2.)

Trivia. The number found in Exercise 1.3 is very small – so small that it is unlikely
that an experiment as described above could actually be successfully implemented.
The measurements are instead done by taking pictures of the star and its back-
ground stars both in summer and winter. The astronomer then compares how
much Alpha Centauri moves with respect to the background stars (this assumes
the background stars are much further away – a reasonable assumption given that
they move very little with respect to each other when compared with the amount
Alpha Centauri moves).

Exercise 1.4 (*). In Figure 2, how much does Alpha Centauri move (use units of
length) between the summer and winter observations?

1In this text, we will only study two-dimensional versions of spherical and hyperbolic geometry.
The universe, of course, is (at least) three-dimensional. There are three-dimensional versions of both
spherical and hyperbolic geometry.

2a priori – at first. That is, without any prior assumptions.
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8 1. Euclidean Geometry

α 

15hrs 14hrs 13hrs 12hrs

−60
❜

−50
❜

−40
❜

−30
❜

Figure 2. The nearest star (other than the sun) is Alpha Centauri, also
known as Rigil Kentaurus, which is 4.3 light years away. This star is the α or

brightest star in the Centaurus constellation, which is just south of Libra. It is

visible from June to December in the nighttime sky of the southern hemisphere.
It briefly appears above the southern horizon in parts of Florida and southern

Texas.

1.1. The Pythagorean Theorem

Let us begin with a familiar theorem.

Theorem 1.5 (The Pythagorean Theorem). Suppose a right angle triangle ∆ABC
has a right angle at C, hypotenuse c, and sides a and b. Then

c2 = a2 + b2.

Proof. On the side AB of ∆ABC, construct a square of side c. Draw congruent
triangles on each of the other three sides of this square, as in Figure 3.

c c

cc

ba

b

a

b a

b

a

B

A

C C ′

Figure 3.
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1.1. The Pythagorean Theorem 9

Since the angles at A and B sum to 90◦, the angle CBC ′ is 180◦. That is, it is
a straight line. Thus, the resulting figure is a square. The area of the larger square
can be calculated in two different ways – first by considering it as a square with
side a + b, and second by summing the area of the four triangles with the area of
the interior square. Equating the two, we get

(a+ b)2 = 4

(
1

2
ab

)
+ c2

a2 + 2ab+ b2 = 2ab+ c2

a2 + b2 = c2

as desired. �

In this proof, we accepted several assumptions as fact. We assumed that squares
exist, that the area of a square of side s is s2, and that the interior angles in a triangle
sum to 180◦. All of these assumptions are valid in Euclidean geometry, but not
in either spherical or hyperbolic geometry. In fact, the Pythagorean theorem is a
theorem in Euclidean geometry, and not in either of the other two.

I hear you thinking to yourself, Isn’t this evidence that our world exists in a
Euclidean geometry? Think of the diagram in Figure 3 drawn on a piece of paper
and laid flat on the surface of the Earth. Our proof still looks valid – we have
drawn a figure that looks like a square, and the sum of the angles in these triangles
look like they sum up to 180◦. But in fact, as a figure in spherical geometry, where
the sphere is the surface of the Earth, the angles in the ‘square’ are a little more
than 90◦ and the angles in the triangles sum up to a little more than 180◦ – it only
looks right because the error is so small as to be undetectable.

This is analogous to the differences between Newtonian and Einstein mechanics.
We now know that Einstein’s model of the universe is more accurate than Newton’s
model. But for objects traveling at slow speeds compared to the speed of light (the
analogue of a small triangle in spherical or hyperbolic geometry), Newton’s model is
perfectly adequate. That is, the two models are indistinguishable when describing
slow moving objects.

An important consequence of the Pythagorean theorem (in a geometry where
the Pythagorean theorem is valid) is its converse:

Theorem 1.6 (The Converse of the Pythagorean Theorem). Suppose we are in a
geometry where the Pythagorean theorem is valid. Suppose in triangle ∆ABC we
have

a2 + b2 = c2.

Then the angle at C is a right angle.

Proof. Let the perpendicular at A intersect the line BC at D, (see Figure 4). Let
r = |AD| and s = |DC|. Then, by the Pythagorean theorem, r2 +s2 = b2. Also, by
the Pythagorean theorem, r2 + (a± s)2 = c2 (the choice of ± depends on whether
the angle C is acute or obtuse). Combining these two equations, we get

a2 ± 2sa+ b2 = c2,
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10 1. Euclidean Geometry

r

c

s

b

D BC

A

Figure 4.

and hence, since c2 = a2 + b2, we get 2sa = 0. Thus, s = 0 and D = C. That is, C
is a right angle. �

Trivia. The converse of the Pythagorean theorem is frequently used by carpenters.
When framing a house, a carpenter will build each wall on the ground first. This
frame is a quadrilateral so is not stable. Before erecting the wall, the carpenter will
measure points three feet and four feet from a corner in different directions. If the
wall is square, then these points should be five feet apart (since 32 + 42 = 52). If
they are not, the carpenter will nudge the appropriate corner until it is square. He
will then nail a temporary stud diagonally across the wall so that it will not go out
of square when he erects it.

Exercise 1.7. The diagram in Figure 5(a) suggests a different proof of the Pytha-
gorean theorem. Fill in the details.

c

c

c

c

C

BA

D

B ′

C ′A

BC

(a) (b)

Figure 5. See Exercises 1.7 and 1.8.
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1.2. The Axioms of Euclidean Geometry 11

Exercise 1.8. The diagram in Figure 5(b) suggests another proof of the Pythago-
rean theorem. Fill in the details. [H]

Exercise 1.9 ( (Pappus’ Variation on the Pythagorean Theorem)). Let ∆ABC be
a triangle (not necessarily right). Let ACDE and BCFG be parallelograms whose
sides DE and FG intersect at H (see Figure 6). Let ABIJ be a parallelogram with

D

E

F G

I 

J

H

A

C

B

Figure 6. See Exercise 1.9

sides AJ and BI parallel to and with the same length as CH. Prove that the area
of ABIJ is equal to the sum of the areas of the other two parallelograms.

1.2. The Axioms of Euclidean Geometry

After our proof of the Pythagorean theorem, we questioned the validity of some
of the assumptions we made. It is clear that we cannot continue in this fashion.
If we are to successfully prove results in geometry, we must do so without making
questionable assumptions. We must therefore first agree on which facts we should
accept as absolute or unquestionable. Such facts are called axioms or postulates.
Euclid proposed that the geometry which bears his name be defined by the following
five postulates:

(1) We can draw a unique3 line segment between any two points.

(2) Any line segment can be continued indefinitely.

(3) A circle of any radius and any center can be drawn.

(4) Any two right angles are congruent.

(5) Given a line l and a point P not on l, there exists a unique line l2 through P
which does not intersect l.4

3Euclid’s version did not include the word unique. Proclus (410 – 485 A.D.) notes that Euclid
must have intended that segments be unique, since he uses this later in his text.

4This is actually Playfair’s version of the fifth postulate. We will investigate Euclid’s version in
Section 1.4 and show that his statement is equivalent to the one given here.
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12 1. Euclidean Geometry

These axioms already presuppose several notions. They first of all presuppose
the existence of a set of points which we call the Euclidean plane. In this set, there
exists a notion of length, of lines, of circles, of angular measure, and of congruence.
Euclid also presupposed that the plane is two-dimensional. This can be expressed
axiomatically, as we do with the ‘separation axiom’ in Chapter 9, but in this chapter,
we will assume an intuitive understanding of two dimensions.

Definition 1.10 (Distance). Let d(P,Q) be a function which assigns a positive
real number to any pair of points in the plane. We say d is a distance function (or
metric) if it satisfies the following three properties for any three points P , Q and
R in the plane:

d(P,Q) = d(Q,P )

d(P,Q) ≥ 0 With equality if and only if P = Q,

d(P,R) ≤ d(P,Q) + d(Q,R). (The triangle inequality.)

We say the distance between P and Q is d(P,Q) and usually denote this dis-
tance by |PQ|.

We will think of a line segment as the shortest path between two points. A line
is an indefinite continuation of a line segment.

Exercise 1.11. How should we measure the length of a path?

The circle CP (r) centered at P with radius r is the set

CP (r) = {Q : |PQ| = r}.

We introduce the notion of congruence axiomatically via a notion of isometries:

Definition 1.12 (Isometry). An isometry of the plane is a map from the plane to
itself which preserves distances. That is, f is an isometry if for any P and Q in the
plane, we have

d(f(P ), f(Q)) = d(P,Q).

We are familiar with several isometries – namely the translations, rotations and
reflections. We will formally define these isometries at the end of Section 1.3.

Definition 1.13 (Congruence). Two sets of points (defining a triangle, angle, or
some other figure) are congruent if there exists an isometry which maps one set to
the other.

In particular, two angles are congruent if there exists an isometry which sends
one angle to the other. We will write ∆ABC ≡ ∆A′B′C ′ if there exists an isometry
f such that f(A) = A′, f(B) = B′, and f(C) = C ′. For angles, we will write
∠BAC = ∠B′A′C ′. This notation is a bit unusual but is consistent with the
notion that congruent angles have equal measures.

Our notion of congruence is completed by the following axioms which guarantee
the existence of the isometries we desire:

(6) Given any points P and Q, there exists an isometry f so that f(P ) = Q (e.g.,
translations).
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1.2. The Axioms of Euclidean Geometry 13

(7) Given a point P and any two points Q and R which are equidistant from P ,
there exists an isometry which fixes P and sends Q to R (e.g., rotations, but
also reflections).

(8) Given any line l, there exists an isometry which fixes every point in l but fixes
no other points in the plane (the reflection through l).

Note that Axiom 6 does not explicitly guarantee the existence of translations.
In fact (depending on how translations are defined), translations do not exist in
spherical geometry, yet Axiom 6 is valid in spherical geometry.

We can now define right angles:

Definition 1.14 (Right Angle). Two lines l1 and l2 intersect at right angles if
any two adjacent angles at the point of intersection are congruent. That is, they
intersect at right angles if there exists an isometry which sends an angle to one of
its adjacent angles.

There is a final notion, which was not considered by Euclid, that should be
introduced in the axioms. These are the axioms of completeness. We will not deal
with these axioms here either. For a careful treatment, see Chapter 9.

There are also some issues concerning the independence and coherence of these
axioms which we will not deal with. For example, how do we know that there
does not exist a statement that can be proved from these axioms to be both true
and false? If no such statement exists, then we call the set of statements coherent
(if such a statement does exist, we call our system incoherent, contradictory, or
just plain garbage). We say the set of statements is independent if none of these
statements can be derived from the others. This set is in fact not independent,
since Euclid’s fourth axiom can be derived from the definition of right angle and
Axioms 6 through 8. Can we further pare the list?

Exercise 1.15. The Cartesian plane R2 is a model of Euclidean geometry. In
this model, explicitly describe an isometry which has no fixed points and is not a
translation.

Exercise 1.16. Which of Axioms 1 – 8 are local in nature, and which are global?
It may help to ask yourself if any of these properties are true on a sphere.

Exercise 1.17. The triangle inequality states

|PQ|+ |QR| ≥ |PR|.
Show that we can have equality if and only if Q is a point on the line segment PR.

Exercise 1.18. It is sometimes possible to ‘define away’ an axiom by choosing
a suitable definition. For example, with our definition of a circle, Euclid’s third
axiom is vacuous – all circles exist by definition, though some may be empty sets.
Euclid’s first axiom can also be defined away by making the following definition for
a line segment:

PQ = {R : |PQ| = |PR|+ |RQ|}.
With this definition, between any two points P and Q there exists a unique line
segment PQ. Find an example of a familiar geometry where this definition for a
line segment does not correspond with our intuitive notion of what a line segment
should be.
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14 1. Euclidean Geometry

1.3. SSS, SAS, and ASA

You will probably recall from high school geometry that two triangles are congruent
if their three sides are equal (SSS or side-side-side); or if two sides and the angle
between them are equal (SAS or side-angle-side); or if two angles and the side
between are equal (ASA or angle-side-angle). In this section, we will prove SSS
and leave the proofs of SAS and ASA as exercises. None of these proofs require
the parallel postulate. This means that the proofs are equally valid for hyperbolic
geometry.

Theorem 1.19 (SSS). If the corresponding sides of two triangles ∆ABC and
∆A′B′C ′ have equal lengths, then the two triangles are congruent.

To prove this, we will need a very believable lemma with a rather difficult proof.
This result is proved in Chapter 9:

Lemma 1.20. Two distinct circles intersect in zero, one, or two points. If there
is exactly one point of intersection, then that point lies on the line joining the two
centers.

Proof of SSS. Let us assume these triangles are not degenerate. That is, let us
assume that C does not lie on the line AB, and that C ′ does not lie on A′B′. We
leave this degenerate case to the reader.

To show that two figures are congruent, we must show that there exists an
isometry which sends one to the other. By Axiom 6, there exists an isometry f1

such that f1(A) = A′. Since f1 is an isometry, and |AB| = |A′B′|, we have that

|A′f1(B)| = |f1(A)f1(B)| = |AB| = |A′B′|,

so by Axiom 7, there exists an isometry f2 such that f2(A′) = A′ and f2(f1(B)) =
B′. If f2(f1(C)) = C ′, then there is nothing more to do.

If f2(f1(C)) 6= C ′, then consider the circle centered at A′ with radius |AC| and
the circle centered at B′ with radius |BC|. These two circles intersect in at most
two points (by the previous lemma), one of which is C ′ and the other of which must
be f2(f1(C)). By Axiom 8, there exists an isometry f3 which fixes every point on
A′B′ but fixes no other points. Since this map is an isometry, and since C ′ is not
on A′B′, the point C ′ must get mapped to f2(f1(C)), and vice versa. Composing
these three isometries, we get

f3(f2(f1(A))) = A′

f3(f2(f1(B))) = B′

f3(f2(f1(C))) = C ′,

and hence the two triangles are congruent. �

By definition, two triangles are congruent if there exists an isometry which
sends one to the other. We will write

∆ABC ≡ ∆A′B′C ′
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1.3. SSS, SAS, and ASA 15

if there exists an isometry f such that f(A) = A′, f(B) = B′, and f(C) = C ′. Note
that our notation is more informative than the statement that the two triangles are
congruent – it also says which pairs of vertices correspond to each other.

Remark 1.21. The rigidity of a triangle is guaranteed by SSS. This is why the
triangle is used so often in engineering, for example in trusses. A quadrilateral is
not a rigid structure. That is, two quadrilaterals with equal-length sides might not
have equal angles. Four timbers bolted together at the corners can easily collapse.
On the other hand, three timbers bolted together at the corners will not collapse
unless something breaks.

Exercise 1.22. Prove SAS.

Exercise 1.23. Prove ASA.

Let us now formally categorize the isometries. We begin by defining the orien-
tation of a triangle. We say a nondegenerate triangle ∆ABC is oriented clockwise
if the path from A to B to C is oriented clockwise. If a nondegenerate triangle is
not oriented clockwise, then we say the it is oriented counterclockwise. We are re-
lying on an intuitive understanding of clockwise and counterclockwise orientation.
The concept of same orientation can be made exact in Euclidean, spherical, and
hyperbolic geometry (see Exercise 9.16), and even in projective geometry, though
in projective geometry, all triangles have the same orientation.

Definition 1.24 (Direct Isometry). We call an isometry a direct isometry or proper
isometry if the image of every clockwise oriented triangle is oriented clockwise.
We call an isometry which is not direct an improper isometry. Another common
terminology is to classify isometries as orientation preserving or reversing isometries.

Definition 1.25 (Translation). We call an isometry f a translation if f is a direct
isometry and either f is the identity or f has no fixed points.

Definition 1.26 (Rotation). We call an isometry f a rotation if f is a direct
isometry and if either f is the identity or there exists exactly one point P such that
f(P ) = P . We call P the center of rotation for f .

Definition 1.27 (Reflection). We call an isometry f a reflection through the line
l if f(P ) = P for every point P on l and if f(P ) 6= P for every point P not on l.

Exercise 1.28. Suppose f is an isometry and suppose there exist two distinct
points P and Q such that f(P ) = P and f(Q) = Q. Show that f is either the
identity or a reflection.

Exercise 1.29. Suppose f is a reflection. Prove that f is not a direct isometry.

Exercise 1.30. Prove that if a line l1 6= l is sent to itself under a reflection through
l, then l1 and l intersect at right angles.

Exercise 1.31. Suppose that f is an isometry for which there exists exactly one
point P such that f(P ) = P . Prove that f is a rotation. That is, prove that f is a
direct isometry.

Exercise 1.32 (†). Suppose f and g are two isometries such that f(A) = g(A),
f(B) = g(B), and f(C) = g(C) for some nondegenerate triangle ∆ABC. Show
that f = g. That is, show that f(P ) = g(P ) for any point P .
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16 1. Euclidean Geometry

Exercise 1.33 (*). Suppose P and Q are two distinct points. Prove that there
exists exactly one translation which sends P to Q. [H]

1.4. Parallel Lines

Euclid stated his fifth postulate in this form:

(5) Suppose a line meets two other lines so that the sum of the angles on one side
is less than two right angles. Then the two other lines meet at a point on that
side.

This is equivalent to our Axiom 5, but on occasion, this statement will be more
useful. So let us begin by showing that Euclid’s version follows from our version.

Theorem 1.34. Let P be a point not on l, and let Q lie on l so that PQ is
perpendicular to l. Let l2 be the line through P which is parallel to l (as guaranteed
by our Axiom 5). Then l2 intersects PQ at 90◦.

l3

l2

l

Q

P

Figure 7.

Proof. Suppose l2 does not intersect PQ at 90◦. Then the reflection l3 of l2
through the line PQ is not the same as l2 (see Figure 7). On the other hand, the
image of l under this reflection is itself. Thus, l3 cannot intersect l, for if it did,
then the reflection of that point would be the intersection of l2 and l, which cannot
exist since we chose l2 to be a line parallel to l. Thus, l3 is also parallel to l, and we
have two distinct lines through P which are parallel to l, a contradiction of Axiom
5. Thus, l2 must intersect PQ at 90◦. �

The point Q can always be found:

Lemma 1.35. Let l be a line and P a point not on l. Then there exists a point Q
on l so that PQ is perpendicular to l.

Proof. Let P ′ be the image of P under reflection through l. Since P does not lie
on l, we know P ′ 6= P . Let Q be the intersection of PP ′ and l. Let R be any point
on l not equal to Q. Then ∠RQP = ∠RQP ′, since one is the image of the other
under the reflection. But, these two angles are adjacent, so they are right angles,
as desired. �

The converse of Theorem 1.34 is also true:
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1.4. Parallel Lines 17

Theorem 1.36. Suppose l intersects two distinct lines l1 and l2 perpendicularly.
Then l1 and l2 are parallel.

Proof. Suppose l1 and l2 are not parallel. Then they must intersect at some point
R. Consider the reflection R′ of R through l. Since l1 and l2 are perpendicular
to l, their images under this reflection must be themselves. Thus l1 and l2 must
intersect at both R and R′. Since l1 and l2 are distinct, R and R′ must be the same
point, so must lie on l. But this too would imply that l1 and l2 are not distinct, a
contradiction. Hence, R cannot exist, so l1 and l2 are parallel. �

Corollary 1.37. Suppose a line l intersects two other lines l1 and l2 so that the
opposite interior angles are equal. Then l1 and l2 are parallel.

O

R ′

RP

Q

l1

l2

l

Figure 8.

Proof. Let l intersect l1 and l2 at P and Q, respectively, as in Figure 8. Let O
be the midpoint of PQ. Find the point R on l1 so that OR is perpendicular to l1.
Now, consider the rotation centered at O which sends P to Q. Let the image of R
be R′, which a priori does not lie on l2. Note that ∆ORP is congruent to ∆OR′Q,
since one is the image of the other under an isometry. Thus, ∠OPR = ∠OQR′,
and since the opposite interior angles are equal, we now know R′ lies on l2. But
then ∠PRO = ∠QR′O = 90◦ and by Theorem 1.34, l1 and l2 are parallel. �

Corollary 1.38 (Euclid’s Axiom 5). Suppose a line l meets two other lines l1 and
l2 so that the sum of the angles on one side is less than 180◦. Then the lines l1 and
l2 meet at a point on that side.

Proof. Let l intersect l1 and l2 at P and Q respectively, as in Figure 9. Let α be
the angle l makes with l1. There exists a line l3 through Q which makes an angle
of 180◦ − α with l. Then, by Corollary 1.37, l3 is parallel to l1, and hence l2 is
not parallel to l1, so intersects l at some point R. If R is to the left of l, then l3
enters ∆PQR, so it must exit the side PR. That is, it must intersect l1, which is
a contradiction. Thus, the point R must be to the right of l. �

In this proof, we stated that a line which enters a triangle through a vertex
must exit that triangle through the opposite side. This may seem obvious from
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18 1. Euclidean Geometry

l2

l1

Q

P

l3

l

α 

Figure 9.

pictures, but how does it follow from our axioms? This is the sort of question
which eventually led mathematicians to the conclusion that Euclid’s axioms are
not sufficient to define Euclidean geometry. We will return to this question in
Chapter 9.

Theorem 1.39. The three angles in a triangle sum up to 180◦.

B C

A

β γ 

Figure 10.

Proof. Let ∆ABC be a triangle. Find the line l through A and parallel to BC.
By Euclid’s version of Axiom 5, the angle labeled β in Figure 10 is equal to ∠ABC,
and the angle γ is equal to ∠ACB. But

β + ∠BAC + γ = 180◦,

so

∠ABC + ∠BAC + ∠ACB = 180◦,

as desired. �

Definition 1.40 (Exterior angle). The exterior angle at A in ∆ABC is one of the
angles adjacent to ∠BAC at the intersection of the lines AB and AC.

Corollary 1.41. The exterior angle at A is equal to the sum of the other two
interior angles.
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1.6. The Star Trek Lemma 19

Exercise 1.42 (*). Show that Euclid’s version of Axiom 5 implies our version of
Axiom 5.

Exercise 1.43. Prove that the angles in a quadrilateral sum up to 360◦. Generalize
this result to an n-sided polygon.

Exercise 1.44. What is the sum of the exterior angles of a triangle? What is
the sum of the exterior angles of a quadrilateral? What is the sum of the exterior
angles of an n-gon?

1.5. Pons Asinorum

In this section, we prove a very obvious theorem which has many applications. The
theorem is known as pons asinorum or the ass’s bridge, probably because of the
drawing used in Euclid’s proof and because of the dimness of anyone who cannot
grasp the theorem [Cox69]. Our proof does not include the same picture (and is
shorter) because we have chosen a different foundation for Euclidean geometry.

Theorem 1.45 (Pons Asinorum). The base angles of an isosceles triangle are
equal.

Proof. By SSS, ∆ABC is congruent to ∆ACB. That is, there exists an isometry
which fixes A and sends B to C (said isometry is, of course, reflection through the
angle bisector at A). But isometries preserve angles, so the angle at B must be
equal to the angle at C. �

Exercise 1.46 (†). Prove the converse of pons asinorum. That is, show that if in
∆ABC we have ∠ABC = ∠ACB, then |AB| = |AC|.
Exercise 1.47 (†). Prove that if a diameter of a circle bisects a chord which itself
is not a diameter, then the diameter is perpendicular to the chord. Also, prove
that the perpendicular bisector of a chord goes through the center of the circle.
And finally, prove that if a diameter is perpendicular to a chord, then the diameter
bisects the chord. [S]

1.6. The Star Trek Lemma

One of the most important theorems of circle geometry is a consequence of pons
asinorum. In the spirit of Euclid, we will refer to this theorem as the Star Trek
lemma because of the figure associated with the statement of the theorem. In this
proof, we will need to know that the sum of angles in a triangle is 180◦, so this is
a statement in Euclidean geometry only. We will no longer emphasize this point
until we begin the chapter on hyperbolic geometry.

Let A, B, and C be three points on a circle centered at O. We call angle ∠BAC
an inscribed angle, since it is inscribed in a circle. The angular measure of the arc
BC is the measure of the angle ∠BOC where this angle is measured on the same
side of O as the arc. We say angle ∠BAC subtends the arc BC.

Theorem 1.48 (Star Trek Lemma). The measure of an inscribed angle is half of
the angular measure of the arc it subtends.
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20 1. Euclidean Geometry

D
C

A

B

O

Figure 11.

Before Star Trek, as far as I know, this theorem had no name, though some
might call it Euclid III.20, which is its proposition number in Euclid’s Elements
(Book III, Proposition 20). Otherwise, it is often just quoted: ‘The measure of an
inscribed angle is half of the angular measure of the arc it subtends.’

Proof. We will prove this only in the case when ∠BAC is acute and the center O
is within this angle, as in Figure 11 (which resembles the Star Trek insignia). Note
that OA, OB, and OC are radii, so we have several isosceles triangles. We have
continued the segment OA to intersect the circle at D. Since ∆AOB is isosceles,
∠BAO = ∠OBA. Since the sum of angles in a triangle is 180◦,

∠BOD = ∠OBA+ ∠BAO = 2∠BAO.

Similarly,

∠DOC = 2∠OAC.

Adding these two equations, we get

∠BOC = 2∠BAC. �

We just proved the Star Trek lemma in one case. The other three cases are
left as exercises. The proofs in two of these cases (Exercises 1.49 and 1.50) are
almost identical to the case dealt with above. We will often offer a ‘proof’ which
is only a proof for one case and leave the other cases to the reader. The core ideas
of the proof for the other cases are usually the same as those for the case that is
considered.

Exercise 1.49. Prove the Star Trek lemma for an acute angle for which the center
O is outside the angle.

Exercise 1.50. Prove the Star Trek lemma for an obtuse angle.
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1.6. The Star Trek Lemma 21

Exercise 1.51 (†). Suppose ∠ABC is a right angle inscribed in a circle. Prove
that AC is a diameter. [S]

Exercise 1.52 († (Bow Tie Lemma)). Let A, A′, B, and C lie on a circle, and
suppose ∠BAC and ∠BA′C subtend the same arc (as in Figure 12(a)). Show that

∠BAC = ∠BA′C.

Again, because of the diagram, this lemma is sometimes known as the Bow Tie
lemma. We say ‘The angles at A and A′ are equal since they subtend the same
arc.’

A′

CB

A

O D

C

A

B A

B C D

(a) (b) (c)

Figure 12. See Exercises 1.52, 1.53, and 1.54.

Exercise 1.53. If |AB| = |AC| = |BC|, what is the angle atD? (See Figure 12(b).)
[A]

Exercise 1.54. If |AB| = 12, |BD| = 9, |BC| = 16, and |AC| = 20, then what is
the length of the diameter? (See Figure 12(c).) [A]

Exercise 1.55. If |AB| = |AC| = |BC| and AD is perpendicular to BC, then
what is ∠BCD? (See Figure 13(a).)

Exercise 1.56 († (The Tangential Case of the Star Trek Lemma)). Suppose AT
is a line segment that is tangent to a circle. Prove that ∠ATB is half the measure
of the arc TB which it subtends. Do this by picking a point C on the circle such
that ∠TCB subtends the arc TB (as in Figure 13(b)). Show that

∠ATB = ∠TCB.

Exercise 1.57 (†). Suppose two lines intersect at P inside a circle and meet the
circle at A and A′ and at B and B′, as shown in Figure 14(a). Let α and β be the
measures of the arcs A′B′ and AB respectively. Prove that

∠APB =
α+ β

2
.

Exercise 1.58 (†). Suppose an angle α is defined by two rays which intersect a
circle at four points, as in Figure 14(b). Suppose the angular measure of the outside
arc it subtends is β, and the angular measure of the inside arc it subtends is γ. (So,
in Figure 14(b), ∠AOB = β and ∠A′OB′ = γ.) Show that

α =
β − γ

2
. [S]
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(a) (b)

Figure 13. See Exercises 1.55 and 1.56.

P
B ′

A′

A

B

O
A′

B ′

A

P
B

O

α 

(a) (b)

Figure 14. See Exercises 1.57 and 1.58.

Exercise 1.59. Prove that the opposite angles in a convex quadrilateral inscribed
in a circle sum to 180◦. Conversely, prove that if the opposite angles in a convex
quadrilateral sum to 180◦, then the quadrilateral can be inscribed in a circle. Such
a quadrilateral is called a cyclic quadrilateral.

Exercise 1.60 (†). Let two circles Γ and Γ′ intersect at A and B, as in Figure 15.
Let CD be a chord on Γ. Let AC and BD intersect Γ′ again at E and F . Prove
that CD and EF are parallel. [S]

Exercise 1.61 (†). Let ABCD be a nonconvex cyclic quadrilateral. That is,
ABCD is inscribed in a circle and two of its opposite sides intersect (as in Fig-
ure 16(a)). Prove that ∠ABC = ∠CDA and ∠DAB = ∠BCD. Conversely, sup-
pose ∠ABC = ∠CDA and ∠BCD = ∠DAB in a quadrilateral with intersecting
opposite sides. Show that ABCD is cyclic.

Exercise 1.62. Suppose ABCDEF is a hexagon inscribed in a circle. Show that

∠ABC + ∠CDE + ∠EFA = 360◦.
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F

E

D

C

B

A
Γ 

Γ′

Figure 15. See Exercise 1.60.

Prove that the converse is not true. That is, find an example of a hexagon
ABCDEF whose angles B, D, and F sum to 360◦ but which cannot be inscribed
in a circle.

Exercise 1.63. Let E be a point inside a square ABCD such that ∆BCE is an
equilateral triangle, as in Figure 16(b). Show that ∠EAD = 15◦.

E

AB

C D

C

D

A

B

(a) (b)

Figure 16. See Exercises 1.61 and 1.63.

1.7. Similar Triangles

The following result is of fundamental importance in Euclidean geometry:

Theorem 1.64. Let B′ and C ′ be on the respective sides AB and AC of a triangle
∆ABC. Then B′C ′ is parallel to BC if and only if

|AB′|
|AB| =

|AC ′|
|AC| .

We will postpone the proof of this result until Chapter 9, where we prove the
following piece:
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C ′B ′

C B

A

Figure 17.

Theorem 1.65 (Theorem 9.40). Let ∆ABC be a triangle. Let B′ be on AB, and
let the line through B′ and parallel to BC intersect AC at C ′. Then

|AB′|
|AB| =

|AC ′|
|AC| .

From this, we can prove the converse:

Theorem 1.66. Let B′ and C ′ be points on the sides AB and AC of a triangle
∆ABC. Suppose

|AB′|
|AB| =

|AC ′|
|AC| .

Then B′C ′ is parallel to BC.

Proof. Let the line through B′ and parallel to BC intersect AC at C ′′. Then, by
Theorem 1.65,

|AB′|
|AB| =

|AC ′′|
|AC| ,

so C ′′ = C ′. �

Note that the angles in triangles ∆ABC and ∆AB′C ′ (in Figure 17) are equal,
since B′C ′ is parallel to BC. We call these two triangles similar.

Definition 1.67 (Similar Triangles). We say two triangles ∆ABC and
∆A′B′C ′ are similar if their angles are congruent. We write

∆ABC ∼ ∆A′B′C ′.

In this text, we will further adopt the convention that ∆ABC ∼ ∆A′B′C ′ means
the angles ∠A = ∠A′, ∠B = ∠B′, and ∠C = ∠C ′. That is, ∆ABC ∼ ∆A′B′C ′ if
their corresponding angles are congruent.

Corollary 1.68. If ∆ABC ∼ ∆A′B′C ′, then

|A′B′|
|AB| =

|A′C ′|
|AC| =

|B′C ′|
|BC| .
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Proof. Since ∠BAC = ∠B′A′C ′, there exists an isometry which sends A′ to A and
sends B′ and C ′ to points on the lines AB and AC, respectively. Since ∠ABC =
∠AB′C ′, the line B′C ′ is parallel to BC, so by Theorem 1.65,

|A′B′|
|AB| =

|A′C ′|
|AC| .

Similarly, by sending B′ to B, we get

|B′A′|
|BA| =

|B′C ′|
|BC| .

Combining, we get the desired result. �

One of the conveniences of the notational convention that the statement

∆ABC ∼ ∆A′B′C ′

means that the corresponding angles are congruent is that we can decide which
sides correspond to which. For example, AB corresponds to A′B′, since they share
the same spots in their respective notations.

Exercise 1.69. Suppose ∆ABC is similar to ∆A′B′C ′. Show that

|∆A′B′C ′| =
( |A′B′|
|AB|

)2

|∆ABC|.

That is, the ratio of the areas of the two triangles is the same as the square of the
ratios of the sides. Here, we have used the notation |∆ABC| to represent the area
of ∆ABC.

a b

D AB

C

Figure 18.

The above exercise gives an amusing proof of the Pythagorean theorem. Let
∆ABC be a right angle triangle, as in Figure 18. Let the altitude at C intersect
AB at D. Then triangles ∆ABC, ∆ACD, and ∆CDB are similar, and hence

|∆ABC|
|∆ACD| =

|AB|2
|AC|2 =

c2

b2

and
|∆ABC|
|∆CDB| =

|AB|2
|BC|2 =

c2

a2
.
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26 1. Euclidean Geometry

But, clearly
|∆ACD|+ |∆CDB| = |∆ABC|,

so

b2

c2
|∆ABC|+ a2

c2
|∆ABC| = |∆ABC|

b2 + a2 = c2.

Exercise 1.70. Let ∆ABC be an arbitrary triangle. Let A′, B′, and C ′ be the
midpoints of the opposite sides. Draw lines through A′, B′, and C ′ that make an
angle of 60◦ with each side, as in Figure 19(a). These lines intersect at A′′, B′′,
and C ′′ as shown. Prove that ∆A′′B′′C ′′ is similar to ∆ABC.

B ′′

A′′

C ′′
B ′

A′

C ′A B

C E

DB C 

A

(a) (b)

60
❜

60
❜

60
❜

Figure 19. See Exercises 1.70 and 1.71.

Exercise 1.71 († (The Angle Bisector Theorem)). In an arbitrary triangle ∆ABC,
let the interior angle bisector at A intersect the side BC at D. Show that

|BD|
|DC| =

|AB|
|AC| .

Hint: Construct the line parallel to AD and through B, as shown in Figure 19(b).
Let this intersect AC at E. Show |AB| = |AE|.
Exercise 1.72. The pentagon in Figure 20(a) is regular and each side has length
one. Show that

|AF |
|FD| =

1 +
√

5

2
.

Exercise 1.73. In the quadrilateral ABCD in Figure 20(b), AD is parallel to BC,
∠C = 2∠A, |CD| = 3, and |BC| = 2. What is |AD|? [A]

Exercise 1.74 (†). Let ∆ABC and ∆A′B′C ′ be two triangles such that

∠BAC = ∠B′A′C ′ and
|A′B′|
|AB| =

|A′C ′|
|AC| .

Prove that ∆ABC ∼ ∆A′B′C ′.
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F

E

A

D

B

C
B

A

DC

(a) (b)

Figure 20. See Exercises 1.72 and 1.73.

Exercise 1.75 (†). Suppose ∆ABC and ∆A′B′C ′ are two similar but noncongru-
ent triangles such that AB is parallel to A′B′, AC is parallel to A′C ′, and BC
is parallel to B′C ′, as in Figure 21. Prove that the lines AA′, BB′, and CC ′ are
concurrent.

A′
C ′

B ′

C

B

A

Figure 21. See Exercise 1.75.

Exercise 1.76. Let Γ be a circle. Suppose Γ′ is another circle whose center lies on
Γ. Let these two circles intersect at A and B, as in Figure 22(a). Let P be a point
on Γ, and let PB intersect Γ′ again at Q. Show that ∆PQA is isosceles. [H]

Exercise 1.77. Let two circles Γ and Γ′ intersect at A and B (see Figure 22(b)).
Let P be a point on the circle Γ. Let PA intersect Γ′ again at C, and let PB
intersect Γ′ again at D. Show that the length |CD| is independent of the location
of P . (Note that there are two cases to consider.) [H]

1.8. Power of the Point

The definition of the power of the point P with respect to a circle Γ is inspired by
the following theorem which we also call power of the point.

Theorem 1.78 (Power of the Point). Let P be a point inside a circle Γ (see
Figure 23). Let QQ′ and RR′ be two chords which intersect at P . Then

|PQ||PQ′| = |PR||PR′|.
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Γ′Γ 

Q

P

A

B

Γ 

Γ′
C

D
B

P

A

(a) (b)

Figure 22. See Exercises 1.76 and 1.77.

P

Q

Q ′

R

R ′

Figure 23.

Proof. By the Star Trek lemma, ∠RR′Q = ∠RQ′Q and ∠Q′RR′ = ∠Q′QR. Thus,
the triangles ∆RQ′P and ∆QR′P are similar, so

|PR|
|PQ| =

|PQ′|
|PR′| .

Cross multiplying gives us the desired result. �

This result is also true for P outside the circle (see Exercise 1.80). For any
chord QQ′ through P , we call the product Π(P ) = ±|PQ||PQ′| the power of the
point P with respect to the circle Γ. We choose the sign to be positive if P is outside
the circle, and negative if P is inside the circle. If Γ has radius r and center O,
then the power of the point P , together with the correct sign, is given by

Π(P ) = |OP |2 − r2.

To see this, choose RR′ so that RR′ goes through P and is a diameter of Γ.

Exercise 1.79. If in Figure 24(a), |AP | = 2, |AB| = 6, and |PC| = 3, then what
is |PD|? [A]

Exercise 1.80 (†). Theorem 1.78 is also true if the point P lies outside the circle,
as in Figure 25(a). Prove it for this case.
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D

C

P
BA E

A

D C B

(a) (b)

Figure 24. See Exercises 1.79 and 1.81.

Exercise 1.81. If in Figure 24(b), |AB| = 5, |BC| = 12, |AC| = 13, and |BD| = 3,
then what is |DE|? [A]

Exercise 1.82 († (The Tangential Version of Power of the Point)). In Figure 25(a),
suppose we let R and R′ move toward each other until they meet, so that the ‘chord’
RR′ is really the tangent at R, as in Figure 25(b). Then we get yet another version
of the power of the point. Suppose a chord QQ′ intersects a tangent at R at a point
P . Show that

|PQ||PQ′| = |PR|2.

Q

R

R ′

P

Q ′

Q

P

Q ′

R

(a) (b)

Figure 25. See Exercises 1.80 and 1.82.

Exercise 1.83. Use the tangential version of power of the point (Exercise 1.82) to
come up with yet another proof of the Pythagorean theorem. [H][S]

Exercise 1.84. In Figure 26(a), if BC is tangent to the circle centered at A,
|BC| = 3, and |CD| = 1, then what is the radius of the circle? [A]

Exercise 1.85. In Figure 26(a) as described in Exercise 1.84, what is the area of
∆ABD? [A]
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B

C D A

D

A′ B

B ′

A

C

(a) (b)

Figure 26. See Exercises 1.84, 1.85, and 1.86.

Exercise 1.86. Let ∆ABC be an isosceles triangle with |AB| = |AC| (see Fig-
ure 26(b)). Let A′ and B′ be the midpoints of sides BC and AC, respectively. Let
Γ be the circle that goes through B, A′, and B′. Let the extended side AB intersect
Γ at D. Suppose |AD| = 5 and |AB′| = 4. What are the lengths of the sides of the
triangle?

Exercise 1.87. In Figure 27, the point C is on the diameter AB of a half circle.
The two smaller half circles have diameters AC and CB. The region bounded
by the curved edges of the half circles was called an arbelos or butcher’s knife by
Archimedes. The perpendicular at C intersects the larger circle at D. Prove that
the circle with diameter CD has the same area as the arbelos.

Exercise 1.88. Show that the two inscribed circles in the arbelos in Figure 27
have the same radii. [H]

D

BCA

Figure 27. See Exercises 1.87 and 1.88.

The radical axis of two circles Γ and Γ′ is the set of points P with the property
that the powers of the point P with respect to both Γ and Γ′ are equal.
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1.9. The Medians and Centroid 31

Exercise 1.89. Let two circles Γ and Γ′ have distinct centers O and O′. Prove
that the radical axis of Γ and Γ′ is a line perpendicular to OO′.

Exercise 1.90. Suppose two circles intersect at A and B. Prove that the radical
axis of the two circles is the line AB.

Exercise 1.91. Let the circle Γ intersect the circle Γ′ at A and B, and the circle
Γ′′ at C and D. Let P be the point of intersection of AB and CD. Prove that P
lies on the radical axis for Γ′ and Γ′′.

Exercise 1.92 ( (The Radical Center)). Let Γ, Γ′, and Γ′′ be three circles. Show
that the three radical axes of these circles intersect at a common point. This point
is called the radical center of the three circles.

Exercise 1.93. Let P be the radical center of three circles Γ, Γ′, and Γ′′. Suppose
P is outside circle Γ. Prove that P is also outside circles Γ′ and Γ′′.

Exercise 1.94. Let P be the radical center of three circles Γ, Γ′, and Γ′′, and
suppose P lies outside of Γ. Show that P is the center of a circle which intersects
Γ, Γ′, and Γ′′ perpendicularly. Furthermore, show that the radius of this circle is√

Π(P ).

Exercise 1.95. Let Γ1, Γ2, Γ3, and Γ4 be four circles. Let Γ1 and Γ2 intersect at
P1 and P2. Let Γ3 and Γ4 intersect at P3 and P4. Let Γ1 and Γ4 intersect at Q1

and Q2, and let Γ2 and Γ3 intersect at Q3 and Q4. Show that P1, P2, P3, and P4

are collinear or cyclic if and only if Q1, Q2, Q3, and Q4 are collinear or cyclic (not
necessarily respectively).

1.9. The Medians and Centroid

In a triangle ∆ABC, let A′, B′, and C ′ be the midpoints of BC, AC, and AB,
respectively, as in Figure 28(a). The line segments AA′, BB′, and CC ′ are called
the medians of ∆ABC.

A′

B ′
C ′

C B

A

(a)

G

C ′ B ′

A

B C 

(b)

Figure 28.

Theorem 1.96. The three medians of a triangle ∆ABC intersect at a common
point G. Furthermore, |AG| = 2|A′G|, |BG| = 2|B′G|, and |CG| = 2|C ′G|.
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Proof. Let G be the intersection of the medians BB′ and CC ′, as in Figure 28(b).
Note that

|AC ′|
|AB| =

|AB′|
|AC| =

1

2
,

since B′ and C ′ are midpoints. Thus, B′C ′ is parallel to BC, and furthermore,
|B′C ′| = 1

2 |BC|. Since ∠C ′B′B and ∠B′BC are opposite interior angles of parallel
lines, they are equal. Similarly, ∠B′C ′C = ∠C ′CB, so ∆B′C ′G is similar to
∆BCG. In particular, since the ratio of |B′C ′| to |BC| is 1/2, we get |B′G| = 1

2 |GB|
and |C ′G| = 1

2 |GC|.
We now apply the same argument to the medians AA′ and BB′. Let these two

intersect at G′. We again conclude that |B′G′| = 1
2 |G′B|, so G′ = G. Thus, the

three medians intersect at a common point. �

Definition 1.97 (Centroid). We call G the centroid or center of mass of ∆ABC.

Exercise 1.98. In triangle ∆ABC pictured in Figure 29, let A′ and B′ be the
midpoints of the sides BC and AC, respectively. Let AA′ and BB′ intersect at G.
Suppose |AG| = 2 and suppose also that the circle through A, A′, and B bisects
the segment B′G. What is the length |BG|? [A]

G

A′

B ′

A

C B

Figure 29. See Exercise 1.98.

Exercise 1.99. Cut a triangle out of card stock. Locate its centroid G. Now
take a needle and hang the triangle by thread through G. The triangle should be
balanced, which is why we call G the center of mass or centroid of the triangle.

Exercise 1.100. Suppose the medians AA′ and BB′ of ∆ABC intersect at right
angles, and suppose a = 3 and b = 4. What is c? [A]

Exercise 1.101. Prove that the sum of the medians of a triangle lies between 3
4p

and p, where p is the length of the perimeter of the triangle.

Exercise 1.102. Prove that the diagonals of a parallelogram bisect each other.

1.10. The Incircle, Excircles, and the Law of Cosines

In the last section, we defined the centroid, a type of center of a triangle. In this
section, we describe a different type of center – the incenter. By the end of this
chapter, we will have described four types of centers for a triangle.
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E

E ′

D

CB

A

Figure 30.

Consider an angle ∠ABC and let D be any point on its angle bisector. Let E
and E′ be the points on BA and BC, respectively, so that ∠BED and ∠BE′D are
right angles (see Figure 30). Then, ∆BED and ∆BE′D are congruent, by ASA.
Hence, |DE| = |DE′|, and the circle centered at D with radius |DE| is tangent to
both BA and BC. Thus, we can prove:

Theorem 1.103. The angle bisectors of a triangle intersect at a common point I
called the incenter, which is the center of the unique circle inscribed in the triangle
(called the incircle).

Proof. Let I be the intersection of the angle bisector of ∠ABC and ∠ACB. The
perpendiculars from I to AB and BC are equal since I lies on the angle bisector
of ∠ABC, and similarly, the perpendiculars from I to AC and BC are equal, since
I lies on the angle bisector of ∠ACB. Thus, the perpendiculars from I to AB and
AC are equal, so I lies on the angle bisector of ∠BAC, so the three angle bisectors
intersect at a common point. �

In a triangle ∆ABC, we can define both the interior angle bisector at A, and
the exterior angle bisector at A. The incenter I is defined via the interior bisectors,
but we can also define the excenters Ia, Ib, and Ic. The excenter Ia is the point of
intersection of the interior angle bisector at A, and the exterior angle bisectors at
B and C. It is the center of the circle which is tangent to the side BC, is tangent
to the extended sides AB and AC, and lies outside ∆ABC (see Figure 31). This
circle is called an excircle.

Let the inradius r be the radius of the incircle, and let ra, rb, and rc be the
exradii. Let s = 1

2 (a+ b+ c) be the semiperimeter of ∆ABC.

Theorem 1.104. Let r be the inradius of ∆ABC, and let s be the semi-perimeter
of ∆ABC. Then

|∆ABC| = rs.

Proof. Consider ∆BCI in Figure 32, which has base a and height r, so has area
|∆BCI| = 1

2ar. Thus,

|∆ABC| = 1

2
(ar + br + cr) = rs. �
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Ic

Ia

I

Ib
A

B C

Figure 31. A triangle together with its incircle and three excircles.

Theorem 1.105 (The Law of Cosines). For any triangle ∆ABC, we have

c2 = a2 + b2 − 2ab cosC.

Proof. Consider a triangle ∆ABC with altitude AD, as in Figure 33. By the
Pythagorean Theorem,

c2 = |AD|2 + |DB|2.
But

|AD| = b sinC

|DB| = |a− b cosC|.(1.1)
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a

I

D

A

B C 

Figure 32.

b c

D BC

A

Figure 33.

Thus

c2 = b2 sin2 C + a2 − 2ab cosC + b2 cos2 C

c2 = a2 + b2 − 2ab cosC. �

Theorem 1.106 (Heron’s Formula). For any triangle ∆ABC,

|∆ABC| =
√
s(s− a)(s− b)(s− c).

Proof. Note that

|∆ABC| = 1

2
ab sinC.

By the Law of Cosines,

cosC =
a2 + b2 − c2

2ab
.
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Thus,

|∆ABC| = 1

2
ab
√

1− cos2 C

=
1

2
ab

√
4a2b2 − (a2 + b2 − c2)2

2ab

=
1

4

√
4a2b2 − (a2 + b2 − c2)2

=
1

4

√
(2ab+ a2 + b2 − c2)(2ab− a2 − b2 + c2)

=
1

4

√
((a+ b)2 − c2)(c2 − (a− b)2)

=
1

4

√
(a+ b+ c)(a+ b− c)(c+ a− b)(c− a+ b)

=

√
(a+ b+ c)

2

(a+ b− c)
2

(a− b+ c)

2

(−a+ b+ c)

2

=
√
s(s− c)(s− b)(s− a). �

Heron’s formula is named after Heron of Alexandria, who most probably lived
in the third century A.D., but possibly as early as 100 B.C. The formula, though,
dates back to Archimedes (ca. 250 B.C.).

Exercise 1.107. In a triangle ∆ABC, suppose ∠ABC = 60◦, a = 5, and c = 8.
What is b?

Exercise 1.108. In a quadrilateral ABCD, |AB| = 3, |BC| = 11, |CD| = 8,
|DA| = 4, and ∠BAD is a right angle. What is the area of the quadrilateral? [A]

Exercise 1.109. What is the area of ∆ABC if a = 3, b = 5, and c = 6?

Exercise 1.110. What is the area of the incircle of ∆ABC if a = 5, b = 6, and
c = 7? [A]

Exercise 1.111. In Figure 34(a), suppose |AC ′| = |C ′B| = |CE| = 2, |CD| = 3,
and |BF | = 1. What is the area of ∆ABC? [A]

Exercise 1.112. In Figure 34(b), suppose AD and EF are perpendiculars which
intersect at the center of the circle. Suppose also that |AB| = 2 and |BC| = 3.
Then what is |AC|? [A]

Exercise 1.113. Explain why there is an absolute value around a − b cosC in
Equation 1.1. [H]

Exercise 1.114. For a circle Γ and a point A outside the circle, let B and C be the
points on Γ such that AB and AC are tangent to the circle Γ, as in Figure 34(c).
Prove that the incenter I and the excenter Ia of ∆ABC both lie on Γ. [S]

Exercise 1.115 (†). Prove that

|∆ABC| = (s− a)ra.

Exercise 1.116 (†). Show that the distance from the vertex A to the tangent on
the side AB of
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Γ B

C

A

(a)

(b) (c)

E

D

F

C

BA C ′

C

B

D

A

F
E

Figure 34. See Exercises 1.111, 1.112, and 1.114.

(a) the incircle is s− a;

(b) the excircle centered at Ia is s;

(c) the excircle centered at Ic is s− b.

Exercise 1.117. Show that

rrarbrc = |∆ABC|2.
[H][S]

Exercise 1.118. Show that

1

ra
+

1

rb
+

1

rc
=

1

r
.

Exercise 1.119 ( (Theorem of Apollonius)). In a triangle ∆ABC, let A′ be the
midpoint of BC and let l = |AA′|. Prove that

b2 + c2 = 2l2 +
a2

2
.

Exercise 1.120. In this exercise, we are asked to find a different proof of the Law
of Cosines. In ∆ABC, suppose without loss of generality that a ≥ b. Draw the
circle centered at C that goes through B. Extend the sides AC and AB. Find the
power of the point A with respect to this circle. Conclude the Law of Cosines.
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Exercise 1.121 (*). Before we started using trigonometric functions, there was
no need to define the measure of an angle. Come up with a suitable definition of
the measure of an angle.

1.11. The Circumcircle and the Law of Sines

The third center we define is the circumcenter O, which is the center of the circle
that circumscribes the triangle ∆ABC.

Notice that the sides AB, AC, and BC are chords of the circumcircle, so their
perpendicular bisectors all go through the center O. In particular, they all meet at
a common point. The radius R of the circumcircle is called the circumradius.

Theorem 1.122 (The Extended Law of Sines).

a

sinA
=

b

sinB
=

c

sinC
= 2R.

R

A′ CB

A

—2
a

O

B ′C ′

Figure 35.

Proof. In ∆ABC, let A′O be the perpendicular bisector of BC, as in Figure 35.
Note that ∆BOC is isosceles, that ∠BOA′ = ∠COA′, and that |BA′| = |A′C| = a

2 .
Note also that, by the Star Trek lemma, ∠BOC = 2A, so ∠BOA′ = A. Thus,

R sinA =
a

2
or

2R =
a

sinA
.

But in a similar fashion,

2R =
b

sinB
=

c

sinC
. �
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1.11. The Circumcircle and the Law of Sines 39

Exercise 1.123. Though we have defined O to be the circumcenter, we have not
shown that the circumcircle always exists. Prove that the perpendicular bisectors
of two sides of a nondegenerate triangle ∆ABC intersect, and that this point is
equidistant from all three vertices. Conclude that ∆ABC has a circumcircle and
that the perpendicular bisectors are coincident.

Exercise 1.124. What are the areas of the incircle, circumcircle, and excircles of
an equilateral triangle with sides of length 1?

Exercise 1.125. The Law of Sines (not the extended Law of Sines) merely states

a

sinA
=

b

sinB
=

c

sinC
.

There is a simpler proof of this result. Find it. [H]

Exercise 1.126 (†). Let D be the base of the altitude at A of the triangle ∆ABC.
Let O be the circumcenter for ∆ABC, and let AO intersect the circumcircle at E,
as in Figure 36(a). As before, let R be the circumradius. Show that

|AD| = bc

2R
.

Conclude that

|∆ABC| = abc

4R
.

Hint: Show that ∆ABD is similar to ∆AEC. Or, express |AD| in terms of sinB
and use the extended Law of Sines. [S]

DB
C

E

O

A

B

CA
P

(a) (b)

Figure 36. See Exercises 1.126 and 1.129.

Exercise 1.127. Prove that

4R = ra + rb + rc − r.
Exercise 1.128. Where is the circumcenter of a right angle triangle, and why?
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40 1. Euclidean Geometry

Exercise 1.129 ( (The Four Coin Problem)). Suppose three congruent circles
meet at a common point P and meet in pairs at the points A, B, and C, as in
Figure 36(b). Show that the circumcircle of ∆ABC has the same radius as the
original three circles. Use a coin to draw three such circles, and note that the coin
can be used as the circumcircle for the resulting triangle ∆ABC.

Exercise 1.130. In a triangle ∆ABC, let O be the circumcenter, and let I be
the incenter. Let the line AI intersect the circumcircle at D. Prove that ∆BID is
isosceles.

Exercise 1.131 (*). Prove that a triangle is a right angle triangle if and only if

r + 2R = s.

Figure 37. The four coin problem was used as the logo for the 40th Interna-

tional Mathematical Olympiad held in Bucharest, Romania, 1999.

1.12. The Euler Line

The circumcenter O is the intersection of the perpendicular bisectors. The centroid
G is the intersection of the medians. If these two points are concurrent, then
the medians are the perpendicular bisectors, so the triangle is equilateral. Let us
suppose ∆ABC is not equilateral, so that O and G are distinct.

Theorem 1.132. In an arbitrary triangle ∆ABC, the three altitudes AD, BE,
and CF intersect at a common point.

Proof. We prove this in a roundabout way. If ∆ABC is equilateral, then the
altitudes are perpendicular bisectors and medians, so the altitudes all meet at
G = O. So let us assume ∆ABC is not equilateral, so that O and G are distinct.

Let H be the point on the line OG so that |GH| = 2|OG| and the points O,
G, and H are in that order, as in Figure 38. We will show that H lies on the
altitude at A. Let A′ be the midpoint of BC, so G lies on the median AA′ and OA′

is the perpendicular bisector of BC. Consider the triangles ∆GOA′ and ∆GHA.
The angles ∠A′GO and ∠AGH are vertical angles, so are congruent. Recall that
the centroid divides the medians in thirds, so |AG| = 2|GA′|. And by construction,
|GH| = 2|OG|, so these two triangles are similar. Hence, AH is parallel to OA′, and
therefore, if we continue AH until it intersects BC at D, then AD is perpendicular
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H

O

G

A′ CB

A

Figure 38.

to BC. That is, AD is the altitude at A, and H lies on the altitude. But there was
nothing special about starting with the side BC, so by the same argument, H lies
on the altitudes at B and at C. �

The point of intersection of the altitudes is called the orthocenter and is usually
denoted with an H. There are easier proofs of Theorem 1.132, as we will see in
Exercise 1.134. However, in the above proof, we have also shown the following
result:

Theorem 1.133 (The Euler Line). The circumcenter O, the centroid G, and the
orthocenter H are collinear. Furthermore, G is between O and H, and

|OG|
|GH| =

1

2
.

The line which contains O, G, and H is called the Euler line, named after the
man who discovered it, Leonhard Euler (1707 – 1783). It is surprising that such a
basic theorem in geometry was discovered so recently.

Exercise 1.134. Draw an arbitrary triangle ∆ABC. Through each vertex, draw
a line parallel to the opposite side. These three lines form a new triangle. Where
are the perpendicular bisectors of this new triangle? Use this to give a different
proof that the altitudes of ∆ABC intersect at a common point.

Exercise 1.135. Suppose we are told that a triangle ∆ABC is isosceles with
|AB| = |AC| but are given only the length of the median BB′ and the length of
the altitude BE. Use this information to construct ∆ABC.

Exercise 1.136. Let AD be the altitude of an arbitrary triangle ∆ABC. Prove
that

|AD| = 2R sinB sinC.

Conclude that

|∆ABC| = 2R2 sinA sinB sinC.
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42 1. Euclidean Geometry

Exercise 1.137. Suppose the Euler line of a triangle ∆ABC passes through the
vertex A. Prove that ∆ABC is either a right angle triangle or an isosceles triangle
(or both).

Exercise 1.138. Let ∆ABC be a triangle with orthocenter H and circumcenter
O. Let A′ be the midpoint of BC and let D be the base of the altitude from A.
Suppose that HOA′D is a rectangle with sides |HO| = 11 and |OA′| = 5. What is
the length |BC|? This question (without Figure 39) was question A-1 on the 1997
Putnam Mathematical Competition. [H][A]

B C 

A

H O

D A′

Figure 39. See Exercise 1.138.

1.13. The Nine Point Circle

Most would agree that a Mercedes is a pretty good car. This is because of its
engine, its chassis, its comfortable interior, and its engineering. But most would
also agree that it is not complete without a hood ornament. If we were to make
an analogy between Euclidean geometry and an automobile, the nine point circle
would have to be called a hood ornament. It is not a useful theorem – it just looks
nice and embodies everything we have learned so far.

As usual, let A′, B′, and C ′ be the midpoints of the sides of a triangle ∆ABC,
as in Figure 40. Let D, E, and F be the bases of the altitudes. Let H be the
orthocenter, and let A′′, B′′, and C ′′ be the midpoints of AH, BH, and CH,
respectively.

Theorem 1.139 (The Nine Point Circle). The nine points A′, B′, C ′, A′′, B′′, C ′′,
D, E, and F all lie on a circle.

Proof. Since B′ and C ′ are midpoints, B′C ′ is parallel to BC. Since C ′ and B′′

are midpoints of two sides of ∆AHB, we also have B′′C ′ is parallel to AH, which
is perpendicular to BC. Similarly, B′C ′′ is parallel to AH. Thus, B′C ′B′′C ′′

is a rectangle. Construct the circle with diameter C ′C ′′. Since ∠C ′B′C ′′ and
∠C ′B′′C ′′ are right angles, we know B′ and B′′ lie on the circle. Furthermore,
since |B′B′′| = |C ′C ′′|, B′B′′ is a diameter. Since CF is an altitude, ∠C ′′FC ′ is a
right angle, so F also lies on the circle. Since B′B′′ is a diameter and ∠B′EB′′ is
a right angle, E lies on the circle. Finally, by a similar argument, C ′A′′C ′′A′ is a
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F

C ′′

A′′

B ′′

D

E

H

C ′

A′

B ′

A

B C 

Figure 40.

rectangle, so A′ and A′′ lie on the circle, and A′A′′ is a diameter, so D lies on the
circle. �

Exercise 1.140 (** (Feuerbach’s Theorem)). Prove that the nine point circle of
∆ABC is tangent to the incircle and excircles of ∆ABC. The nine point circle is
sometimes known as the Feuerbach circle.

Exercise 1.141 (**). Prove that the center of the nine point circle lies on the
Euler line.

Exercise 1.142 (**). Prove that the tangent to the nine point circle at the point
C ′ is parallel to the line DE.

1.14. Pedal Triangles and the Simson Line

The Simson line is another interesting result which showcases the techniques we
have learned so far. Before we define it, let us first introduce the notions of cyclic
quadrilaterals and pedal triangles.

A cyclic quadrilateral is a quadrilateral that can be inscribed in a circle. Cyclic
quadrilaterals were introduced in Exercise 1.59, where we were asked to prove the
following:

Theorem 1.143. A convex quadrilateral ABCD is a cyclic quadrilateral if and
only if ∠ABC + ∠CDA = 180◦.

In a cyclic quadrilateral ABCD, the angles ∠ABD and ∠ACD are equal,
since they subtend the same arc (see Figure 41(a)). This simple observation is
quite useful, as we will see in the following lemma.
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A
D

C

B

P

A

B

Z

X

Y

C 

(a) (b)

Figure 41.

Let P be an arbitrary point either inside or outside a triangle ∆ABC. Let X
be the foot of the perpendicular to the extended side BC and through P . Similarly,
define Y and Z on the extended sides AC and AB respectively, as in Figure 41(b).
The triangle ∆XY Z is called the pedal triangle with respect to the point P and
the triangle ∆ABC.

Lemma 1.144. Let P be a point inside triangle ∆ABC, and let ∆XY Z be the
pedal triangle with respect to P . Then

∠APB = ∠ACB + ∠XZY.

Z

Y

X

C ′

A

B C 

P

Figure 42.
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1.14. Pedal Triangles and the Simson Line 45

Proof. Let CP intersect AB at C ′ (see Figure 42). Let us write

∠APB = ∠APC ′ + ∠C ′PB.

Since ∠APC ′ is an exterior angle of ∆APC, we get

∠APC ′ = ∠PAC + ∠ACP.

Note that the quadrilateral AY PZ is cyclic, since ∠PZA = ∠AY P = 90◦, and so
their sum is 180◦. Thus,

∠PAC = ∠PAY = ∠PZY,

and hence,

∠APC ′ = ∠PZY + ∠ACP.

Similarly,

∠C ′PB = ∠XZP + ∠PCB.

Summing, we get

∠APB = ∠APC ′ + ∠C ′PB

= (∠PZY + ∠XZP ) + (∠ACP + ∠PCB)

= ∠XZY + ∠ACB,

as desired. �

Though this result is stated only for P inside ∆ABC, similar results exist for
arbitrary P . For example, note that in Figure 42, the points A, B, and C are
oriented counterclockwise, as are the points X, Y , and Z. If we move P far enough
across the line AC so that the points X, Y , and Z become oriented in a clockwise
fashion, then the result becomes

∠APB = ∠ACB − ∠XZY.
Such variety can be dealt with in a systematic way by introducing the concept of an
oriented angle. When using oriented angles, the notation ∠ABC means the measure
of the angle from the ray BA to the ray BC, measured counterclockwise. This angle
may be larger than 180◦. Consequently, an angle sum like ∠ACB+∠XZY may be
larger than 360◦, so in equations involving oriented angles, we say two angle sums
are equal if they differ by a multiple of 360◦. So, for example,

∠ABC = 360◦ − ∠CBA = −∠CBA.
Using this convention, Lemma 1.144 is true for any point P , and the given proof
works for any diagram. We therefore get, as a corollary, the following theorem:

Theorem 1.145 (The Simson Line). Let Γ be the circumcircle for ∆ABC. Let
P be a point on Γ, and let ∆XY Z be the pedal triangle with respect to P . Then
∆XY Z is a degenerate triangle. That is, the points X, Y , and Z are collinear.
This line is called the Simson line.

Proof. Without loss of generality, we may assume P is on the arc AC, as in
Figure 43. Then,

∠APB = ∠ACB
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Z

X

Y

P

A

B C 

Figure 43.

since they subtend the same arc. Hence, by Lemma 1.144,

∠XZY = 0.

That is, ∆XY Z is degenerate, or equivalently, X, Y , and Z are collinear. �

Exercise 1.146. The proof of Lemma 1.144 works for any diagram. Prove Sim-
son’s result directly by adapting the proof of Lemma 1.144 for a point P on the
circumcircle.

Exercise 1.147. Let D be the center of the square constructed on the hypotenuse
of a right angle triangle ∆ABC with right angle at C. Prove that ∠ACD = 45◦.

[H]

Exercise 1.148. Let H ′ be the reflection of the orthocenter H of ∆ABC through
the line BC. Prove that ABH ′C is a cyclic quadrilateral.

Exercise 1.149. The Star Trek lemma is worded in terms of arcs instead of interior
angles since we normally consider an angle to measure no more than 180◦. Reword
the Star Trek lemma using oriented interior angles. Check that the proof given in
Section 1.6 works for any diagram if we understand the angles to be oriented.

Exercise 1.150. Reword the results in Exercises 1.57 and 1.58 using oriented
angles and in such a way that the wording for each is identical.

Exercise 1.151 († (Ptolemy’s Theorem)). Suppose that ABCD is a cyclic quadri-
lateral. Prove that

|AC||BD| = |AB||CD|+ |BC||DA|.
Hint: Draw AE so that E is on BD and ∠BAE = ∠CAD, as in Figure 44(a).
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Bβ 

α 

(b)(a)

Figure 44. See Exercises 1.151 and 1.153.

Exercise 1.152. Suppose triangle ∆ABC has sides of length a = 6, b = 5, and
circumradius R = 4. What is the length c? [A]

Exercise 1.153. Use Ptolemy’s theorem and Figure 44(b) to prove the angle sum
formula for sines (for acute angles α and β.) That is, show

sin(α+ β) = sinα cosβ + cosα sinβ.

Exercise 1.154. Extend the result in Exercise 1.153 to any angles. Make the
substitution α′ = π

2 − α and β′ = −β to derive the angle sum formula for cosines.

Exercise 1.155. Prove the converse of Exercise 1.153. That is, use Figure 44 and
the angle sum formula for sines to prove Ptolemy’s theorem.

Exercise 1.156. There are other proofs of the angle sum formulas. Use Figure 45
to come up with one of them. Though it is not necessary to notice any cyclic
quadrilaterals, the argument might be made neater by doing so. For which angles
is this proof valid? [S]

E

F D

A

B

O P

α 
β 

Figure 45. See Exercise 1.156.
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Exercise 1.157 ( (Brahmagupta’s Formula)). Heron’s formula generalizes to cyclic
quadrilaterals in the following way. Let a, b, c, and d be the lengths of the four
sides of the cyclic quadrilateral. Let s = 1

2 (a + b + c + d). Show that the area of
the quadrilateral is √

(s− a)(s− b)(s− c)(s− d).

Exercise 1.158 (†). Let ∆XY Z be the pedal triangle with respect to P and a
triangle ∆ABC. Show that

|Y Z| = |AP | sinA. [H]

Exercise 1.159. Let ∆ABC be an equilateral triangle. Suppose D is a point
outside the triangle such that ∠ADB = 120◦. Show that

|CD| = |AD|+ |BD|.
Exercise 1.160 (**). Let ABCDEF be a convex hexagon with |AB| = |BC| =
|CD|, |DE| = |EF | = |FA|, and ∠BCD = ∠EFA = 60◦. Let G and H be two
points in the interior of the hexagon such that ∠AGB = ∠DHE = 120◦. Prove
that

|AG|+ |GB|+ |DH|+ |HE|+ |GH| ≥ |CF |.
This was Question 5 on the 1995 International Mathematical Olympiad exam.

1.15. Menelaus and Ceva

Suppose D, E, and F are three points on the three (extended) sides BC, AC, and
AB of a triangle ∆ABC. Menelaus (ca. 100 A.D.) showed that if these points are
collinear, then they satisfy a certain condition. To state this condition, we must
first define the notion of a signed ratio of lengths. If P , Q, and R are collinear,

then the signed ratio of lengths is the ratio
|PQ|
|QR| together with a positive sign if

Q is between P and R, and a negative sign otherwise. In this section, every ratio
of lengths should be considered to be a signed ratio of lengths, unless otherwise
stated. The converse of Menelaus’ theorem is also true, as stated in the following.
Though Menelaus did not prove the converse, he assumed that it was true.

Theorem 1.161 (Menelaus’ Theorem). Let D, E, and F be three points on, re-
spectively, the extended sides BC, CA, and AB of ∆ABC. Then the points D, E,
and F are collinear if and only if

|AF |
|FB|

|BD|
|DC|

|CE|
|EA| = −1.

Proof. Let us suppose a line intersects the (extended) sides of ∆ABC at D, E,
and F . Note that the line either intersects two of the proper sides (that is, between
two vertices), or intersects none of the proper sides. In either case, the product
|AF |
|FB|

|BD|
|DC|

|CE|
|EA| is negative. We will therefore only concern ourselves with the

magnitude of this quantity.

Drop the perpendiculars to the line from each of the vertices. Let these
perpendiculars intersect the line at A′, B′, and C ′, as in Figure 46. Note that
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Figure 46.

∠A′AF = ∠B′BF , since they are opposite interior angles of a transversal to two
parallel lines. Thus, ∆AA′F ∼ ∆BB′F . Hence (with no signed ratios)

|AF |
|BF | =

|AA′|
|BB′| .

Similarly, ∆AA′E ∼ ∆CC ′E and ∆BB′D ∼ ∆CC ′D, giving

|AE|
|CE| =

|AA′|
|CC ′| and

|BD|
|CD| =

|BB′|
|CC ′| .

Hence, ignoring the convention concerning the sign, we get∣∣∣∣ |AF ||BF |
|BD|
|CD|

|CE|
|AE|

∣∣∣∣ =

∣∣∣∣ |AA′||BB′|
|BB′|
|CC ′|

|CC ′|
|AA′|

∣∣∣∣ = 1.

To prove the converse, let us suppose
|AF |
|FB|

|BD|
|DC|

|CE|
|EA| = −1, but that D, E,

and F are not collinear. Because of the sign, we know either two points are on
proper sides, or none of the points are on proper sides. Let us suppose, without
loss of generality, that the line DE intersects the third side at F ′ where F ′ is not
between A and B. Then, by the first part of this proof,

|AF ′|
|F ′B|

|BD|
|DC|

|CE|
|EA| = −1.

Hence,
|AF ′|
|F ′B| =

|AF |
|FB| .

Let |AF ′| = |AF |±|FF ′|. Then, |F ′B| = |FB|±|FF ′|. The choice of sign depends
on whether F is between A and F ′ or not. Note that the sign is the same for both
expressions, since F ′ does not lie between A and B. Thus,

(|AF | ± |FF ′|)|FB| = |AF |(|FB| ± |FF ′|)
±|FF ′|(|FB| − |AF |) = 0.

Since F is not between A and B, we know |FB| 6= |AF |. Hence, we must have
|FF ′| = 0. That is, F = F ′. �

The following result, due to Giovanni Ceva (1678), has a flavor similar to the
result above. It is surprising that 1600 years passed before it was discovered.
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Theorem 1.162 (Ceva’s Theorem). Let D, E, and F be three points on, respec-
tively, the sides BC, CA, and AB of ∆ABC. Then the lines AD, BE, and CF are
concurrent if and only if

|AF |
|FB|

|BD|
|DC|

|CE|
|EA| = 1.

E
P

D

F

A

B C 

Figure 47.

Proof. Suppose AD, BE, and CF intersect at a common point P . Let us consider
∆ABE. Note that F , P , and C are collinear (see Figure 47), so by Menelaus’
theorem, we have (ignoring the sign)∣∣∣∣ |AF ||BP ||EC||FB||PE||CA|

∣∣∣∣ = 1.

Similarly, from ∆BCE, we have∣∣∣∣ |BD||CA||EP ||DC||AE||PB|

∣∣∣∣ = 1.

Multiplying, we get

1 =
|AF ||BP ||EC|
|FB||PE||CA|

|BD||CA||EP |
|DC||AE||PB| =

|AF ||EC||BD|
|FB||DC||AE| ,

as desired. The sign must, of course, be positive.

For the other direction, we proceed as in the previous proof. Let us assume

|AF |
|FB|

|BD|
|DC|

|CE|
|EA| = 1,

but that AD, BE and CF are not coincident. Let AD and BE intersect at P , and
let CP intersect AB at F ′. Then, by the first part of this proof, we have

|AF ′|
|F ′B|

|BD|
|DC|

|CE|
|EA| = 1.

Hence,
|AF ′|
|F ′B| =

|AF |
|FB| .

AMS Open Math Notes: Works in Progress; Reference # OMN:202006.110830; Last Revised: 2020-07-11 09:32:23



1.15. Menelaus and Ceva 51

Again, suppose |AF ′| = |AF |+ x. Then, |F ′B| = |FB| − x, so

|AF |+ x

|FB| − x =
|AF |
|FB|

x(|AF |+ |FB|) = 0.

Hence, x = 0, and F = F ′, as desired. �

If D is a point on the side BC of a triangle ∆ABC, then AD is called a Cevian.

There is also a trigonometric version of Ceva’s theorem:

Theorem 1.163 (Trig Ceva). Let D, E, and F be points on the extended sides
BC, CA, and AB, respectively. Let α = ∠DAB and α′ = ∠CAD, and define β,
β′, γ, and γ′ similarly, as in Figure 48. Then AD, BE, and CF are coincident if
and only if

sinα sinβ sin γ = sinα′ sinβ′ sin γ′.

E
P

F

D CB

A

α′
α 

β′ β γ′
γ 

Figure 48.

Exercise 1.164. Prove the trigonometric version of Ceva’s theorem.

Exercise 1.165. In Figure 47, show that

|∆ABP |
|∆APC| =

|BD|
|DC| .

Use this to come up with a proof of Ceva’s theorem which does not use Menelaus’
theorem.

Exercise 1.166. What is the analogue of Menelaus’ theorem for the case when D
(in Figure 46) is at infinity?

Exercise 1.167. Use Ceva’s theorem to show that the medians intersect at a
common point.

Exercise 1.168. Use Ceva’s theorem to show that the altitudes intersect at a
common point.

Exercise 1.169. Use Ceva’s theorem to show that the angle bisectors intersect at
a common point. [H]
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Exercise 1.170 ( (The Gergonne Point)). Let the incircle of a triangle ∆ABC be
tangent to the sides BC, AC, and AB at, respectively, the points D, E, and F .
Show that AD, BE, and CF are coincident. This point is known as the Gergonne
point.

Exercise 1.171 ( (The Nagel Point)). Let the excircle opposite A be tangent to
BC at D. Define E and F similarly. Show that AD, BE, and CF are coincident.
This point is known as the Nagel point.

Exercise 1.172. Let ∆ABC be a triangle. Suppose D, E, and F are points on
the sides BC, AC, and AB, respectively, and such that AD, BE, and CF are
coincident. Let the reflection of the ray AD through the angle bisector of ∠BAC
intersect BC at D′. Similarly define E′ and F ′, as in Figure 49. Show that AD′,
BE′, and CF ′ are coincident.

E ′

D ′

F ′

F

D

E

CB

A

Figure 49. See Exercise 1.172.

Exercise 1.173. Let AD be an altitude to ∆ABC. Prove

|AB|2 − |BD|2 = |AC|2 − |CD|2.
Exercise 1.174. Let X, Y , and Z be points on the sides BC, AC, and AB,
respectively, of a triangle ∆ABC. Prove that the perpendiculars to the sides of
∆ABC through the points X, Y , and Z are concurrent if and only if

|AZ|2 − |ZB|2 + |BX|2 − |XC|2 + |CY |2 − |Y A|2 = 0. [H]

Exercise 1.175. Generalize the previous exercise: Let X, Y , and Z be any points
in the plane. Prove that the perpendiculars to the sides BC, AC, and AB through
the points X, Y , and Z, respectively, are concurrent if and only if

|AZ|2 − |ZB|2 + |BX|2 − |XC|2 + |CY |2 − |Y A|2 = 0.
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Chapter 2

Geometry in Greek Astronomy

The heavenly bodies have been a source of wonderment since at least the dawn of
civilization. The most notable records of mankind’s contemplation of the heavens
in ancient Western civilization are those of the Babylonians and the Greeks.

The ancient Babylonians (2000 – 600 B.C.) charted the stars and named the
constellations. They identified the twelve signs of the zodiac – those stars which
lie in the plane described by the Earth’s revolution about the sun. They further
partitioned each sign into 30 degrees, so the zodiac circle has 360 degrees. Their
system of angular measure – degrees, minutes, and seconds – is still in use today.

The Babylonians also tracked the movements of other celestial bodies, namely
the sun, the moon, and at least three of the five planets visible to the naked eye:
Venus, Mars, and Jupiter (Mercury and Saturn are the other two planets visible to
the naked eye). They kept accurate records of celestial phenomena and were able
in particular to predict solar and lunar eclipses.

If the Babylonians ever theorized about the meaning of these observations, such
theories have been lost to us. Such theories were the domain of the ancient Greeks.

At the end of this chapter, we present a time line of significant evolutions in
the theories of astronomy, but for now, a few remarks seem appropriate. The belief
that the Earth is spherical dates back to the time of Pythagoras (ca. 550 B.C.).
Anaxagoras (ca. 475 B.C.) believed that the moon is illuminated by the sun and that
it is of an earthy nature (with plains, mountains and valleys). Plato (ca. 400 B.C.)
wrote that the Earth is at the center of the universe but is said to have regretted
that concept in his later years. Heraclides of Pontus (ca. 360 B.C.) believed that
the Earth rotates on its axis, rather than that the sun and stars rotate daily about
the Earth. He also believed that Mercury and Venus revolve about the sun.

The most significant theory is due to Aristarchus of Samos (310 – 230 B.C.),
who is said to have proposed the following (and we quote from Archimedes)[Hea69]:

You are aware that “universe” is the name given by most astronomers
to the sphere the center of which is the center of the Earth, while its
radius is equal to the straight line between the center of the sun and
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54 2. Geometry in Greek Astronomy

the center of the Earth. This is the common account, as you have heard
from astronomers. But Aristarchus brought out a book consisting of cer-
tain hypotheses, wherein it appears, as a consequence of the assumptions
made, that the universe is many times greater than the “universe” just
mentioned. His hypotheses are that the fixed stars and sun remain un-
moved, that the Earth revolves about the sun in the circumference of a
circle, the sun lying in the middle of the orbit, and that the sphere of
the fixed stars, situated about the same center as the sun, is so great
that the circle in which he supposes the Earth to revolve bears such a
proportion to the distance of the fixed stars as the center of the sphere
bears to its surface.

Aristarchus proposed the heliocentric theory of the universe almost 2000 years
before Copernicus! Unfortunately, his theory was heretic in his time, and geocentric
theories of the universe prevailed.

Of celestial measurements, there is significant work of a few. Aristarchus mea-
sured the relative sizes of the moon, Earth, and sun, and the relative sizes of their
orbits. The size of the Earth was measured by Eratosthenes of Cyrene (ca. 275 –
195 B.C.), and by Posidonius (135 – 51 B.C.). Their measurements are the subject
of this chapter.

2.1. The Relative Size of the Moon and Sun

Aristarchus (310 – 230 B.C.) made several observations and with them calculated
the relative diameters of the Earth, moon, and sun, and the relative radii of their
orbits. Though his measurements were not always accurate, his method is sound.

The moon and the sun, when seen from the Earth, are about the same size.
We know this from observation and also because total solar eclipses cast a shadow
on only a small portion of the Earth. The angle they subtend is approximately .5
degrees.1 Thus, we get

DM

RM
=
DS

RS
=

2π

720
,

where DM and DS are the diameters of, respectively, the moon and sun, and RM
and RS are the distances from the Earth to, respectively, the moon and sun.

To compare the relative diameters of the moon and sun, Aristarchus made the
following observation: At half moon, when the lighted portion of the moon exactly
bisects the visible portion of the moon, the triangle made by the sun, moon, and
Earth is a right angle triangle with the right angle at the moon (see Figure 1).

By measuring the angle the moon makes with the sun at this time, one can find
RM
RS

and
DM

DS
. Aristarchus found this angle to be 87 degrees (in his words, “less

than a quadrant by one-thirtieth of a quadrant.”) That is, according to Aristarchus,
the angle θ in Figure 1 is 3◦.

1Aristarchus used the figure of 2◦ in his manuscript, but is said to have later used .5◦. Hipparchus
(161 – 126 B.C.) gave the measurements of 31′ when the moon is furthest away from the Earth, and 35′

when it is closest. Recall, 60′ = 1◦ (Read ‘sixty minutes equals one degree.’)
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2.1. The Relative Size of the Moon and Sun 55

Earth sun

moon

θ 

Figure 1.

We therefore get

sin θ =
RM
RS

.

Exercise 2.1. Express RM , RS , and DS in terms of θ and DM .

To compare the diameter of the moon DM with the diameter of the Earth
DE , Aristarchus measured the duration of a lunar eclipse. From this observation,
he concluded that the shadow of the Earth is twice as wide as the moon. In
the following calculation, we will use the more accurate measurement made by
Hipparchus (161 – 126 B.C.). He found that the shadow of the Earth is 2.5 times
the diameter of the moon.

moon sunEarth

Figure 2.

Figure 2 illustrates the shadow of the Earth cast on the moon. In this diagram,
we have two similar triangles, which give

RM
RS

=
DE − 2.5DM

DS −DE

RMDS −RMDE = RSDE − 2.5RSDM .

In the above, we have simplified our argument by using the approximation DE −
2.5DM . We remark that Aristarchus was more precise.

Recall that
RM
RS

=
DM

DS
,
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56 2. Geometry in Greek Astronomy

so RMDS = RSDM . Thus, we have

3.5RSDM = (RS +RM )DE

3.5DM =

(
1 +

RM
RS

)
DE

= (1 + sin θ)DE .

Exercise 2.2. Express RS , RM , DS , and DM in terms of θ and DE .

Exercise 2.3. Explain why the figure DE − 2.5DM is an approximation. That is,
what facts have we trivialized?

Exercise 2.4. It is fairly easy to measure the angle the moon subtends. On a
clear night, use a stopwatch to time the moonrise. That is, measure the amount of
time between when a sliver of the moon is first visible on the horizon and when the
moon is completely above the horizon. Explain how this gives the angular measure
of the moon. We know that the sun has approximately the same angular measure
since solar eclipses occur and when they do, the shadow of the moon is so small on
the Earth.

2.2. The Diameter of the Earth

James Smart, in his text Modern Geometry, gives a romantic version of the measure-
ment of the Earth made by Eratosthenes of Cyrene (ca. 275 – 195 B.C.)[Sma94].
Eratosthenes knew, according to Smart, that at high noon on the first day of sum-
mer, the sun shone directly into a well at Syene (now called Aswan). At a well
in Alexandria, 787 km north, the sun did not shine all the way down but instead
shone at an angle of 7.2◦ from the vertical. By assuming the sun is at a point at
infinity, Eratosthenes was able to calculate the radius of the Earth.

Exercise 2.5. Use the above measurements and assumptions to find the circum-
ference of the Earth.

Trivia. The meter was originally defined (by the French in 1799) so that the
distance from the North Pole to the equator (through Paris) measures 10, 000 km.
Thus, the (polar) circumference of the Earth is 40, 000 km.

Exercise 2.6. Was Eratosthenes’ assumption that the sun is a point at infinity a
safe assumption? Find an upper bound on the error in the above calculation of the
circumference of the Earth, given that the sun is 150,000,000 km from the Earth.
[S]

Exercise 2.7. Note that Eratosthenes’ measurements are by no means a testimony
that the Earth is round. This time, assume the Earth is flat, and use Eratosthenes’
measurements to calculate the distance from the Earth to the sun. [S]

Of Eratosthenes’ actual measurements, we have the description of Cleomedes
(probably ca. 50 B.C., but possibly as late as 200 A.D.), in which Eratosthenes is
said to have used sundials (not wells), the distance from Syene to Alexandria is
said to be 5000 stadia, and the angle of the shadow at Alexandria is said to be
one-fiftieth of a circle. The circumference of the Earth is therefore, according to
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2.2. The Diameter of the Earth 57

Eratosthenes, 250, 000 stadia. He later revised this to 252, 000 stadia, but it is not
known why he made this revision.

The accuracy of Eratosthenes’ measurements have been the subject of some
debate. The accepted length of the stade2 in the time of Eratosthenes is not known,
but the “most probable assumption” puts Eratosthenes’ figure of 252, 000 stadia at
about 39, 800 km [Hea69]. The accuracy seems to be a matter of luck more than
anything else, since his measurements (5000 stadia and 1/50th of a circle) do not
imply a significant degree of accuracy.

Exercise 2.8. Alexandria is not due north of Syene (Aswan). Consult a map
of Egypt and measure the distance between Alexandria and Aswan, and also the
distance between the lines of latitude through Aswan and through Alexandria. Use
both measurements, together with the figure 7.2◦, to calculate the circumference of
the Earth. How much of an error is introduced by assuming that Alexandria and
Syene are on the same line of longitude?

Posidonius (135 – 51 B.C.) also measured the circumference of the Earth. He
assumed that Rhodes, a small Greek island off the Turkish coast, lies on the same
line of longitude as Alexandria, and that the two are 5000 stadia apart. Instead
of observing the sun, Posidonius looked at the stars. One in particular, Canobus,
is not visible in mainland Greece. In Rhodes, when it is seen, it sets immediately
after rising. In Alexandria, on the same night, this star is observed to rise to a
height of one-quarter of a sign of the zodiac (that is, 1/48th of a circle or 7.5◦)
before it sets. Posidonius therefore concludes that the circumference of the Earth
is 240, 000 stadia.

Exercise 2.9. Use Eratosthenes’ measurements (5000 stadia and 7.2◦), Aristar-
chus’ values (moon and sun span .5◦, the angle called θ in Figure 1 is 3◦), and
Hipparchus’ measurement (the shadow of the Earth is 2.5 times the diameter of the
moon), to find DE , DM , DS , RM , and RS in stadia.

Exercise 2.10. Of the Greek measurements in Exercise 2.9, only the angle θ is not
very accurate. This angle is approximately 10′ or

(
1
6

)◦
. Use this value, together

with Smart’s values (787 km, 7.2◦), Aristarchus’ values (the moon and sun span
.5◦), and Hipparchus’ value (the shadow of the moon is 2.5 times the diameter of
the moon) to find DE , DM , DS , RM , and RS . Compare these values with today’s
accepted values given in Table 1. What is the percent error in each?

Polar diameter of the Earth: DE = 12, 720 km
Equatorial diameter of the Earth: 12, 760 km
Diameter of the moon: DM = 3475 km
Diameter of the sun: DS = 1, 392, 000 km
From the Earth to the moon at perigee (closest): 356, 000 km
From the Earth to the moon at apogee (farthest): 407, 000 km
From the Earth to the sun: RS = 149, 000, 000 km

Table 1.

2Stade – singular of stadia.
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58 2. Geometry in Greek Astronomy

2.3. The Babylonians to Kepler, A Time Line of Astronomy

The ancient Egyptians set the month at 30 days, and the year at 365 days or 12
months and 5 extra days. They partitioned both day and night into 12 hours, so
the length of an hour differed from day to night, and from season to season. They
invented sun dials and water clocks.

The Babylonians (2000 – 600 B.C.) named the constellations and the 12 signs
of the zodiac (Aquarius, Pisces, Aries, etc.). They further divided each zodiac sign
into 30 degrees. They used base 60 and invented the angular measuring system of
degrees, minutes, and seconds. They made accurate records of the cycles of the
moon, sun, and at least three planets (Venus, Mars, and Jupiter) and were able to
predict eclipses.

Thales (624 – 547 B.C.) predicted the solar eclipse of May 28, 585 B.C. This
was a rather spectacular prediction, since it occurred during a battle between the
Lydians and the Medes, and it was a total eclipse. His prediction was almost
certainly a result of access to Babylonian records. Thales was also probably the
first known nerd. Plato writes “A case in point is that of Thales, who, when he was
star-gazing and looking upward, fell into a well, and was rallied (so it is said) by
a clever and pretty maidservant from Thrace because he was eager to know what
went on in the heaven, but did not notice what was in front of him, nay, at his very
feet.”

Anaximander (611 – 546 B.C.) proposed that the Earth is suspended freely,
without support, but also proposed that it is a short cylinder. He also speculated on
the size and distances of the sun and moon. He claimed RM = 19DE , RS = 28DE ,
and DS = DE . He also hinted at a theory of evolution.

Pythagoras (ca. 572 – 500 B.C.) proposed that the Earth is spherical. He
recognized that the morning and evening stars are the same planet (Venus). He
also proposed that space or void exists. Some of his followers, the Pythagoreans,
believed that the Earth moves on its axis.

Anaxagoras (ca. 500 – 428 B.C.) claimed that the moon is illuminated by the
sun, and that it is of an earthy nature.

Empedocles (ca. 495 – 435 B.C.) proposed that light moves.

Plato (ca. 427 – 347 B.C.) placed the Earth at the center of the universe, but
in his later years, is said to have regretted that concept.

Heraclides of Pontus (ca. 388 – 315 B.C.) claimed that the apparent rotation
of the universe is caused by the rotation of the Earth. He also believed that Mercury
and Venus rotate about the sun.

Aristotle (384 – 322 B.C.) was a very influential philosopher, whose “services to
astronomy,” according to Heath, “consist largely of thoughtful criticisms, generally
destructive, of opinions held by earlier astronomers; ....” [Hea69].

Aristarchus of Samos (310 – 230 B.C.) proposed the heliocentric theory or
Copernican theory of the universe. He found few followers, and Cleanthes thought
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it the duty of Greeks to indict Aristarchus on the charge of impiety. Aristarchus also
calculated the relative diameters of the moon, Earth, and sun, and of the distances
to the moon and sun.

Euclid (4th century B.C.) believed the Earth is at the center of the universe.

Archimedes (287 – 212 B.C.) wrote Psammites (Sand-reckoner), in which he
attempted to calculate the number of grains of sand in the universe. It is in this
work that Archimedes writes of Aristarchus.

Eratosthenes of Cyrene (ca. 275 – 195 B.C.) measured the circumference of
the Earth and put it at 252, 000 stadia.

Hipparchus (ca. 161 – 126 B.C.) was an astronomer of great note in his time.
He placed the Earth at the center of the universe. He observed the precession of
the equinoxes. If we observe the night time sky on the day of the summer solstice,
the visible stars will slowly change from year to year. This is because the axis
of the Earth (which makes an angle of 23.5◦ to the zodiac plane) slowly revolves,
like a wobbling top. It makes a complete revolution every 26, 000 years. It is a
wonder that this phenomenon was ever noticed by Hipparchus. He figured that the
equinoxes precessed by 2◦ in the 160 years between his measurements and those
of Timocharis. This puts his figure for a complete revolution at 28, 800 years.
Hipparchus also put the year at 365 days, 5 hours, 55 minutes, and 12 seconds
(about 6 1

2 minutes too long), and the lunar month at 29.530585 days (it is actually

29.530596 days). He figured the sun is 1245DE away, 12 1
3DE in diameter, and

that the moon is 332
3DE away and DE/3 in diameter, where DE is the diameter

of the Earth. Hipparchus also constructed tables of lengths of chords – that is, he
developed a version of trigonometry.

Posidonius (135 – 51 B.C.) measured the circumference of the Earth and put
it at 240, 000 stadia.

Geminus (1st century B.C.) noted that the time between the solstices and
equinoxes are different – between the spring equinox, summer solstice, fall equinox,
winter solstice and spring equinox, there are respectively 94 1

2 days, 92 1
2 days, 88 1

8

days, and 90 1
8 days. He explained this phenomenon by proposing that the Earth

is offset from the center of circle about which the sun revolves. (The phenomenon
was accurately explained by Kepler.) Geminus also proposed that the stars do not
all lie on one sphere, but that some are closer and some are further away.

Ptolemy (ca. 100 – 170 A.D.) is the astronomer for which the Ptolemaic theory
of the universe is named. This theory placed the Earth at the center, where it
did not move (neither laterally nor on an axis). The motions of the planets and
stars were explained by compositions of circular movements – they move in circular
paths around a center which also moves in a circular motion. The theory had its
roots in Heraclides’ beliefs and was fully developed by the time of Hipparchus. The
Ptolemaic theory prevailed until and even during the time of Copernicus. The
complexity of this model motivated in part the development of spherical geometry.
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60 2. Geometry in Greek Astronomy

Nicolaus Copernicus (1473 – 1543) is usually credited with developing the he-
liocentric theory of the universe. He found the idea in Greek writings and developed
it in detail using the geometry of Ptolemy.

Galilei Galileo (1564 – 1642) invented the telescope and discovered four of
Jupiter’s moons. He supported the Copernican theory, a belief he was forced by
the Church to publicly renounce.

Johannes Kepler (1571 – 1630) proposed that the orbit of the planets are
ellipses with the sun at one of the foci (Kepler’s First Law). He further proposed
that a ray from the sun to a planet sweeps out equal areas of the ellipse in equal
times (Kepler’s Second Law). This means, for example, that when the Earth is
furthest from the sun, it moves slower in its orbit than when it is closest to the
sun. These two laws explain the phenomena observed by Geminus – that the
times between solstices and equinoxes differ depending on the season. Kepler also
proposed that T 2 = kR3, where T is the period of a planet, R is the (mean) distance
from the planet to the sun, and k is constant for all planets (Kepler’s Third Law).

1781: Sir William Herschel discovers Uranus.

1833: Thomas Henderson calculates the distance to Alpha Centauri.

1846: Johanne Galle sights Neptune. The planet is discovered independently by
John Couch Adams and Urbain Leverrier, who predict its location based on ob-
served irregularities of the motions of Uranus.

1930: Clyde Tombaugh discovers Pluto.
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Chapter 3

Constructions Using a
Compass and Straightedge

In this chapter, we investigate constructions using only a straightedge and compass.
We will very quickly discover that we can construct an equilateral triangle, square,
and regular hexagon. The regular pentagon is also constructible. However, it is not
possible to construct either the regular 7-gon or 9-gon. This is the central question
we consider: What regular polygons can be constructed using only a straightedge
and compass? The ancient Greeks asked the same question, as well as the following
three specific questions:

(1) Can we trisect an arbitrary angle?

(2) Is it possible to double the cube? That is, given the side s of a cube, is it

possible to construct a side of length 3
√

2s? A cube with side 3
√

2s has double
the volume of the cube with side s.

(3) Is it possible to square the circle? That is, given a circle of radius r, is it
possible to construct s so that the square with side s has the same area as the
circle of radius r?

Though the ancient Greeks were convinced that these constructions are not
possible, they were unable to prove this. In the early nineteenth century, more
than two millennia later, Gauss proved that the first two constructions are not
possible. In 1882, Ferdinand Lindemann proved that π is transcendental, from
which it follows that the third construction is also not possible.

Though we will not prove any of these results in this chapter, we will investigate
a key ingredient – the algebra of constructions. In this chapter, proofs that these
constructions are not possible are left as exercises (for those readers familiar with
fields). In Chapter 14, we solve these problems after introducing the reader to the
required tools from modern algebra.

61
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62 3. Constructions

3.1. The Rules

In our constructions using a straightedge and compass, we follow these rules:

(0) We start with two distinct points in the plane.

(1) We can draw a line through any two already constructed points.

(2) We can draw a circle with center an already constructed point, and through
another already constructed point.

(3) We can construct the points which are at the intersection of two distinct
constructed lines, two distinct constructed circles, or a constructed line and a
constructed circle.

Definition 3.1 (Constructible). A figure is constructible if we can construct it by
applying step 0 and a finite number of steps 1 – 3 as outlined above. The sequence
of steps is called a construction. In particular, if the figure is a line, circle, or point,
we call it a constructible line, constructible circle, or constructible point. The two
points in step 0 are called the base points.

Thus, we are using a compass to draw circles, and a straightedge to draw lines.
We avoid the term ‘ruler’ since our straightedge has no markings on it – that is, we
are not allowed to measure lengths with the straightedge.

3.2. Some Examples

Recall that we use the notation CP (r) to represent the circle centered at P with
radius r.

Theorem 3.2. We can construct an equilateral triangle.

Proof. Let O and P be the two base points in our construction. Construct
CO(|OP |) and CP (|OP |). These two circles intersect at Q (and another point).
Note that |OQ| = |PQ| = |OP |. Thus, ∆OPQ is an equilateral triangle (see
Figure 1(a).) �

Theorem 3.3. We can construct a square.

Proof. Let O and P be the two base points. Construct the line OP and CP (|OP |),
which intersect again at Q. Construct CO(|OQ|) and CQ(|OQ|). Let these two
circles intersect at R, and let PR intersect the original circle CP (|OP |) at S and T .
Then OSQT is a square (see Figure 1(b).) �

Theorem 3.4. We can construct a regular hexagon.

Proof. Again, we start with the base points O and P . Let CP (|OP |) intersect
OP again at Q. Construct CO(|OP |) which intersects CP (|OP |) at R and R′, and
construct CQ(|PQ|), which intersects CP (|OP |) at S and S′. Then QSROR′S′ is a
regular hexagon (see Figure 1(c).) �

Exercise 3.5. If the length |OP | is one, then the square constructed in Figure 1(b)

has sides of length
√

2. Describe how to construct a square with sides of length
one.
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Q

PO

R ′

R

S ′

S
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Q

PPO Q
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(a)

(b) (c)

Figure 1. Constructions of the equilateral triangle, square, and regular hexagon.

3.3. Basic Results

Some constructions, for example bisecting an angle and bisecting a line segment,
require a few steps and are used so often that it is useful to establish that these
constructions can be done so that we will not have to always repeat the process.

Lemma 3.6. If ∠BAC is a constructed angle, then we can bisect it.

Proof. Construct CA(|AB|), and let it intersect the ray AC at C ′, as in Figure 2(a).
Construct CB(|BC ′|) and CC′(|BC ′|), which intersect at D (and another point).
Then AD bisects ∠CAB. To see this, consider the triangles ∆ADB and ∆ADC ′.
Note that |AB| = |AC ′|, |BD| = |C ′D|, and AD is shared, so by SSS, ∆ABD ∼=
∆AC ′D. In particular, we get ∠BAD = ∠C ′AD. �

Lemma 3.7. We can construct the perpendicular bisector of any arbitrary line
segment AB.

Proof. Construct CA(|AB|) and CB(|AB|), which intersect at D and D′, as in
Figure 2(b). Then DD′ is the perpendicular bisector of AB. To see this, let us
first label the intersection of DD′ with AB with E. Note that |AD| = |BD|,
|AD′| = |BD′|, and DD′ is shared, so by SSS, ∆ADD′ ∼= ∆BDD′. In particular,
∠ADD′ = ∠BDD′. Thus, by SAS, ∆ADE ∼= ∆BDE, so |AE| = |BE|, as desired,
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D

C ′
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Figure 2.

and ∠BED = ∠AED. Since these two angles are adjacent angles, they must both
be right angles. �

In our definition of constructibility, we have only allowed a collapsible compass.
That is, we cannot a priori lift our compass and move it without losing the radius
at which it is set. This next lemma establishes that we may in fact pick up the
compass without losing the radius.

Lemma 3.8. Suppose A, B, and C are constructed points. Then we can construct
CA(|BC|).

D ′MD

C

B
A

Figure 3.

Proof. We will consider only the case when |AB| > 2|BC| and leave the rest
as an exercise. Construct AB, as in Figure 3. Construct M , the midpoint of
AB. Construct CB(|BC|), which intersects AB at D. Construct CM (|MD|), which
intersects AB again at D′. Then, |AD′| = |BD| = |BC|, so CA(|AD′|) = CA(|BC|).

�

The following three results are also often useful.

Lemma 3.9. Given a line AB and a point C, we can construct the line through C
which is parallel to AB.
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Lemma 3.10. Given ∆ABC and two points A′ and D, it is possible to construct
a triangle ∆A′B′C ′ which is congruent to ∆ABC and such that B′ is on the line
A′D.

Corollary 3.11. We can reproduce a constructed angle on any constructed line.

Exercise 3.12. Given a constructed line segment AB, describe how to find the
perpendicular at A.

Exercise 3.13. Finish the proof of Lemma 3.8. That is, prove that we can con-
struct CA(|BC|) even if |AB| ≤ 2|BC|.
Exercise 3.14. Prove Lemma 3.9.

Exercise 3.15. Prove Lemma 3.10 and its corollary.

Exercise 3.16. Show how to construct a regular octagon (8-gon) using a straight-
edge and compass.

Exercise 3.17 (** (Mohr Constructions)). Show that any constructible point can
be constructed using only a compass. This result is due to Mohr (1672).

Exercise 3.18 (**). Prove that any constructible point can be constructed using
only a straightedge and a compass with a fixed radius. Is there any difference
between such a compass and the lid of a jar?

3.4. The Algebra of Constructible Lengths

The realization that there exists an algebra associated with constructions, and the
development of field theory, are the two main accomplishments that allowed the
mathematical community to answer two of the three major questions of antiquity
concerning constructions. The third was not answered until it was shown that π is
transcendental.

In our rules of construction, we start with two points. We normalize our mea-
surement of length by defining the distance between those two points to be equal
to one unit. We then say a length a is a constructible length if there exist two
constructible points P and Q so that |PQ| = a. In this section, we will show that
the sum, product, or quotient of constructible lengths is also constructible.

Lemma 3.19. Suppose a and b are constructible lengths. Then there exist con-
structible points A, C, and C ′ so that |AC| = a+ b and |AC ′| = |a− b|.

Proof. Let A and A′ be the points which define the length a (so |AA′| = a), and
let B and B′ be the points which define b. Draw the line AA′. We know that we
can draw the circle CA′(b), which intersects AA′ at C and C ′. Let C be on the
opposite side of A′ as A. Then |AC| = a+ b, and |AC ′| = |a− b|. �

Lemma 3.20. Suppose a and b are constructible lengths. Then ab is a constructible
length.

Proof. On a constructible line with constructible point A, find the points B and
A′, respectively, a distance 1 and a away from A in the same direction, as in

AMS Open Math Notes: Works in Progress; Reference # OMN:202006.110830; Last Revised: 2020-07-11 09:32:23



66 3. Constructions

b

1

C

B ′

B A′A

1

1

B ′

C

B A′A

(a) (b)

Figure 4.

Figure 4(a). Let B′ be a distance b away from B on the perpendicular to AA′ at
B. Let C be the intersection of AB′ and the perpendicular to AA′ at A′. Then, by
similar triangles,

b

1
=
|A′C|
a

,

so |A′C| = ab, as desired. �

Lemma 3.21. Suppose a is a constructible length. Then
1

a
is a constructible length.

Proof. On a constructible line with constructible point A, find the points B and A′,
respectively, a distance 1 and a away from A in the same direction, as in Figure 4(b).
Let C be the point a distance 1 away from A′ on the line perpendicular to AA′.
Let the perpendicular to AA′ at B intersect AC at B′. Then

|BB′|
1

=
1

a
,

as desired. �

Note that to construct ab or 1/a, we only need similar triangles, and not nec-
essarily right angle triangles.

Corollary 3.22. If x is a positive rational number, then x is a constructible length.

Proof. Since x is a positive rational number, there exist positive integers r and s
so that x = r/s. We can construct both r and s by adding 1 to itself enough times.
We can then find 1/s, and multiply this by r to get x. �

There is one more operation we can do – we can take square roots.

Lemma 3.23. Suppose a is a constructible length. Then
√
a is a constructible

length.

Proof. Let A and A′ be points a distance a apart. Find the point B a distance 1
away from A on AA′ and on the opposite side of A from A′, as in Figure 5. Let
O be the midpoint of BA′, and construct the circle centered at O and with radius
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1

C ′

C

A O

B A′

Figure 5.

|OA′|. Construct the perpendicular to AA′ at A, and let this intersect the circle
at C and C ′. Since CC ′ is a chord which is perpendicular to a diameter BA′, we
know A is the midpoint of CC ′. Thus, the power of the point A is

|AC||AC ′| = |AC|2 = 1 · a,
so |AC| = √a, as desired. �

Exercise 3.24. Construct
√

5. (For some numbers, like 5, there are easier ways to

construct
√

5 than the above construction.)

Exercise 3.25. Construct
√

3.

Exercise 3.26. The geometric mean of two positive numbers a and b is
√
ab. Find

a simple construction to find the geometric mean of two lengths a and b.

Exercise 3.27. Recall the Argand plane model of the complex numbers C. Suppose
the two points we begin our constructions with are the points 0 and 1. Then, any
point which is constructible represents a complex number. We call such a number
a constructible number. Hence, we can talk about the sum, difference, product,
and quotient of constructible numbers. Prove that if P and Q are constructible
numbers, then so are P + Q, P − Q, P · Q, 1/P , and

√
P . For the last, recall

that any complex number P can be expressed as P = reiθ, where (r, θ) is the polar

coordinate representation of P . Then,
√
P =

√
reiθ/2.

The following exercises are for those who have studied modern algebra and
know some theory of fields. These questions are not easy, but not too hard either
– they just require some background knowledge.

Exercise 3.28. Let C ⊂ C be the set of constructible numbers. Prove that C is a
field.

Exercise 3.29. Suppose we have constructed a set of points S, and that K = Q[S]
is the smallest field which contains S. There are only three ways of constructing new
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points – finding the intersection of two lines defined by points in S; the intersection
of a line and circle defined by points in S; and the intersection of two circles defined
by points in S. In any of these three cases, show that there exists a D ∈ K so that
S together with the newly constructed points all lie in the field K[

√
D]. Conclude

that [Q[S] : Q] is a power of two for any set of constructible points S.

Exercise 3.30. Prove that if it is possible to double the cube, then it is possible
to construct 3

√
2. Let S be the set of points required to construct 3

√
2. Then

Q[ 3
√

2] ∈ Q[S]. Explain how this shows that it is impossible to double the cube.

Exercise 3.31. Show that to square the circle, one must be able to construct π.
In the latter part of the nineteenth century, it was proved that π is transcendental.
Conclude that it is impossible to square the circle.

3.5. The Regular Pentagon

In this section, we will first prove that it is possible to construct the regular penta-
gon. Then we will give a construction and prove that it is valid.

F

E

D

C

B

AO

Figure 6.

Consider the regular pentagon ABCDE inscribed in a circle of radius one
centered at O (Figure 6). Let the chord BE intersect OA at F . Then

|OF | = cos∠BOA = cos 72◦.

Thus, if we can construct cos 72◦, then we can construct F , and hence the regular
pentagon.

Recall DeMoivre’s theorem, which Euler formulated1 as

eiθ = cos θ + i sin θ.

We set θ = 2π
5 = 72◦, and for convenience, write ω = ei

2π
5 . Note that

(ei
2π
5 )5 = ei2π = 1

1Euler’s formula, stated here, is a generalization of DeMoivre’s theorem. At this point, we are
really only using DeMoivre’s theorem, hence our credit goes to him. See Exercise 3.37 for a precise
statement of the weaker version proved by DeMoivre.
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so

ω5 − 1 = 0.

If we think of ω as a variable, then ω = 1 is a root of this polynomial. Factoring
out (ω − 1), we get

(ω − 1)(ω4 + ω3 + ω2 + ω + 1) = 0.

Since ω 6= 1, the second factor must be zero. In particular, by dividing by ω2, we
get

ω2 + ω + 1 + ω−1 + ω−2 = 0.

Let x = ω + ω−1 = 2 cos(2π/5), and note that

x2 = (ω + ω−1)2 = ω2 + 2 + ω−2.

Thus,

x2 + x = ω2 + 2 + ω−2 + ω + ω−1 = (ω2 + ω + 1 + ω−1 + ω−2) + 1

so

x2 + x− 1 = 0

and hence

x =
−1±

√
5

2
.

Since x is positive, we get

cos(2π/5) =
−1 +

√
5

4
.

What do you notice about this number? It involves only square roots and rational
operations on integers. Thus, it is constructible! Hence, the regular pentagon is
constructible.

There are several ways of constructing the regular pentagon. The following
construction is due to H. W. Richmond [Cox69] (see Figure 7):

Theorem 3.32. Let |OA| have length 1, and construct the circle with center O
and radius 1. Let E be the intersection of this circle with the perpendicular to OA
at O. Let B be the midpoint of OE, and let the angle bisector of ∠ABO intersect
OA at C. Then

|OC| = −1 +
√

5

4
.

Proof. Let ∠CBO = α and let t = tanα. Then

t = tanα =
|OC|
|OB| = 2|OC|,

and

tan 2α =
1
1
2

= 2.

By the double angle formula

tan 2θ =
2 tan θ

1− tan2 θ
,
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C

B

E

A
O

Q ′

Q

P

P ′

C

B

E

O
A

Figure 7. Richmond’s construction of the regular pentagon.

we get

2 =
2t

1− t2
1− t2 = t

0 = t2 + t− 1.

So,

t =
−1±

√
5

2
.

Thus, since |OC| > 0, we get |OC| = −1+
√

5
4 , as desired.

To finish the construction of the regular pentagon, we just find the perpendic-
ular to OA at C which intersects the circle at P and P ′, and then use the length
|AP | to find points Q and Q′ to get the regular pentagon APQQ′P ′. �

Exercise 3.33. As mentioned, this is not the only way of constructing a regular
pentagon. Construct a segment of length

√
5, and from this, construct a segment

of length
√

5− 1. Rather than try to find a quarter of this, use it as is to construct
a regular pentagon inscribed in a circle of radius four.

Exercise 3.34. There is a rather nice proof that cos 72◦ = −1+
√

5
4 . Consider the

isosceles triangle ∆ABC with |AB| = |AC| = 1 and ∠BAC = 36◦. Find the
length of |BC|. (Hint: Construct the angle bisector of ∠ABC, as in Figure 8(a).)
The disadvantage of this derivation is that it works only for the regular pentagon.
The derivation in the text, though, can be modified to derive the lengths one must
construct to construct the regular 7-gon and 9-gon.

Exercise 3.35. Prove that

cos(4π/5) =
−1−

√
5

4
.
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CB

A

F 

E

D C

A

B

(b)(a)

Figure 8. See Exercises 3.34 and 3.36.

Exercise 3.36. Let ABCDE be a regular pentagon with sides of length 1. The
sides AB and CD are extended so that they intersect at F , as in Figure 8(b). What
is the length |BF |?
Exercise 3.37. DeMoivre’s theorem actually states

cosnθ + i sinnθ = (cos θ + i sin θ)n.

Use induction to prove DeMoivre’s theorem. Explain why Euler’s formula implies
DeMoivre’s theorem and so can be thought of as a generalization of it.

Exercise 3.38. Show that both y = Aeiθ and y = B(cos θ + i sin θ) are solutions
to the differential equation

dy

dθ
= iy.

Solve for A and B if y(0) = 1. Conclude Euler’s formula

eiθ = cos θ + i sin θ.

Exercise 3.39. Recall the Taylor series for sinx, cosx, and ex

sinx = x− x3

3!
+
x5

5!
− ... =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!

cosx = 1− x2

2!
+
x4

4!
− ... =

∞∑
k=0

(−1)kx2k

(2k)!

ex = 1 + x+
x2

2
+
x3

3!
+ ... =

∞∑
k=0

xk

k!
.

Use this to prove Euler’s formula. You may assume that these formulas are valid
for complex values of x.

Exercise 3.40. Use Euler’s formula to prove the angle sum formulas:

sin(α+ β) = sinα cosβ + cosα sinβ

cos(α+ β) = cosα cosβ − sinα sinβ.

Hint: ei(α+β) = eiαeiβ .
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Exercise 3.41. Prove

tan 2θ =
2 tan θ

1− tan2 θ
.

Exercise 3.42. Let w = 2 cos(2π/7). Show that the regular 7-gon is constructible
if and only if w is constructible. Find a polynomial f(x) with rational coefficients
such that f(w) = 0 and f(x) is irreducible over the rationals. [A]

Exercise 3.43. Let w = 2 cos(2π/9). Show that the regular 9-gon is constructible
if and only if w is constructible. Find a polynomial f(x) with rational coefficients
such that f(w) = 0 and f(x) is irreducible over the rationals.

The next exercise is for those who have done Exercises 3.28 and 3.29 in the last
section:

Exercise 3.44. Conclude, from the previous two exercises, that the regular hep-
tagon and nonagon are not constructible. Why does this imply that it is impossible
to trisect an arbitrary angle?

3.6. Other Constructible Figures

We have seen that it is possible to construct a regular n-gon for n = 3, 4, 5, 6, and
8. What other regular n-gons are constructible?

Theorem 3.45. It is possible to construct the regular 2r-gon for any integer r ≥ 2.

Proof? Just keep bisecting angles ....

Theorem 3.46. We can construct the regular 15-gon.

P13

P14

P1

P2

P8

P7

P4

P9

P6

P12

P3

P10

P5

P0

P11

Figure 9.
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Proof. On a unit circle, place the vertices of the regular 15-gon, and label them
P0, ... , P14 (see Figure 9). These points exist, but at this point, we do not know
if all are constructible. We may assume P0 is constructible. Note that P0, P5, and
P10 form a regular triangle and so are constructible points. Note also that P0, P3,
P6, P9, and P12 form a regular pentagon, so are constructible points. Thus, we can
construct the side of the regular 15-gon, since its length is |P5P6|, and both points
are constructible. We use this length to construct all the other points. �

This same idea can be used in general. What is key is that 3 and 5 are relatively
prime.

Theorem 3.47. If m and n are relatively prime, and we can construct the regular
m-gon and n-gon, then we can construct the regular mn-gon.

The proof of Theorem 3.47 makes a reasonable exercise. In contrast, the fol-
lowing two theorems are quite a bit more sophisticated, so we will emphasize that
we will not prove either in this chapter. Both results appear in Chapter 14.

Theorem 3.48 (Without Proof). Suppose a length x > 0 is the root of an irre-
ducible polynomial of degree n and suppose n has an odd prime factor. Then x is
not constructible.

Theorem 3.49 (Without Proof). Let p be an odd prime. We cannot construct a
regular pr-gon for any r ≥ 2, and can construct a p-gon if and only if p is of the
form

p = 22k + 1.

In particular, we cannot construct the regular 9-gon and hence cannot trisect
120◦. Thus, we cannot trisect an arbitrary angle.

We call
Fk = 22k + 1

the kth Fermat number. Thus, F0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537.
All of these are prime, and Fermat incorrectly believed that Fk is prime for all k.
In fact, the Fermat numbers Fk for 5 ≤ k ≤ 21 are all composite, and it is not
known if any other Fermat number is prime [Guy94]. Note that F21 has 631,305
digits.

Exercise 3.50. Use Theorem 3.48 (but not Theorem 3.49) to prove that the regular
7-gon is not constructible.

Exercise 3.51. Use Theorem 3.48 (but not Theorem 3.49) to prove that the regular
9-gon is not constructible. [S]

Exercise 3.52. Is cos(2π/15) constructible? Explain.

Exercise 3.53. Suppose x is a root of

x3 − 5x2 + 7x− 2 = 0.

Is the length x constructible? Explain.

Exercise 3.54. Is it possible to construct a triangle ∆ABC with ∠BAC = 24◦,
|AB| = 1+

√
5

2 , and |AC| =
√

1 +
√

2 ?
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Exercise 3.55. Is it possible to construct a triangle ∆ABC with ∠BAC = 20◦,
|AB| = 4, and |AC| = 2

√
3 ?

Exercise 3.56. Is it possible to construct a triangle ∆ABC with |AB| = 1, |BC| =
2, and |AC| = 1+

√
5 ? (Caution: You may want to think twice about this question.)

Exercise 3.57. Prove Theorem 3.47.

Exercise 3.58. A computer can factor F5 very quickly, but there exists a nice
proof that F5 is composite. Notice that

641 = 54 + 24 = 5 · 27 + 1.

Use this to show that 641 divides both 54 · 228 + 232 and 54 · 228 − 1, and hence
divides the difference, which is F5.

3.7. Trisecting an Arbitrary Angle

We have known for more than a century that it is impossible to trisect an arbitrary
angle using only a straightedge and compass. However, this impossibility depends
very much on the straightedge being only used to draw straight lines. If we are
clumsy enough as to scratch our straightedge, then these marks can be used to
trisect an angle. The following construction is due to Archimedes.

Theorem 3.59. If we are in possession of a compass and a straightedge that is
notched in two places, then it is possible to trisect an arbitrary angle.

rr
r

Q

P

B

AO

l1

l2

Figure 10.

Proof. Let the arbitrary angle be described by the lines l1 and l2, which intersect
at O. The intersection describes two angles, one of which is acute. We will trisect
the acute angle.
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3.7. Trisecting an Arbitrary Angle 75

Let r be the distance between the two notches on the straightedge. Draw CO(r),
and let this intersect l1 and l2 at A and B so that ∠BOA is the acute angle to be
trisected (see Figure 10).

Now for the construction which is not in our rules for constructibility: Place
one notch on the line OA at a ‘movable’ point P and the other at a ‘movable’ point
Q on the circle. Move the straightedge around until it goes through B, as in the
diagram.

Let us now analyze our diagram: Let α = ∠QPO. Since |QP | = r, we know
∆OPQ is isosceles, so ∠POQ = α. Thus, ∠OQB = 2α, since it is an external
angle to ∆OPQ. Since ∆QOB is also isosceles, ∠QBO = 2α, and hence ∠BOQ =
180◦ − 4α. But then

∠BOA = 180◦ − ∠POQ− ∠QOB
= 180◦ − α− (180◦ − 4α)

= 3α.

Thus, ∠QOP is a third of ∠BOA, as desired. �

As Archimedes’ trisection algorithm demonstrates, the rules of constructions
are not a reflection of the tools that were available to the ancient Greeks. In fact,
the ancient Greeks classified problems according to the complexity of their solution.
Those which can be solved using only a straightedge and compass are called plane.
A problem is called solid if it can be solved using a compass, straightedge, and one
or more conic sections. The third class studied by the ancient Greeks is the class
of problems whose solutions require the use of a more complicated curve, such as
the conchoid (in polar coordinates, r = a+ b sec θ). Such complicated curves were
usually considered because there exist some exotic tools which can create them.

Exercise 3.60. Describe how to trisect an arbitrary obtuse angle using a compass
and twice notched straightedge.

Exercise 3.61 (**). Suppose we are given a piece of paper on which there is drawn
the parabola y = x2, the points (0, 0) and (1, 0), and nothing else. Let us call this a
piece of parabola paper (see Figure 11). Come up with a construction of the regular
7-gon using only a straightedge, compass, and the information on the parabola
paper. [H][S]

Exercise 3.62 (*). Suppose we are given a piece of parabola paper, as described
in the previous exercise. Let f(x) be a polynomial of degree three with rational
coefficients and a real root c. Prove that it is possible to construct a length |c| using
only a compass, straightedge, and the information on this paper.

Exercise 3.63 (**). It is clear that it is possible to create a tool which draws
ellipses. Using this tool, a straightedge, and compass, come up with a construction
of some figure which is not constructible using only a straightedge and compass.

Exercise 3.64. Suppose we place one notch of a twice notched straightedge on
the line x = b and align the straightedge so that it passes through the origin (0, 0).
Prove that the other notch lies on the conchoid r = ±a + b sec θ where a is the
distance between the two notches.
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Figure 11. Parabola paper (see Exercises 3.61 and 3.62).

Exercise 3.65 (**). Prove that it is possible to construct 3
√

2 using a twice notched
straightedge. [H]
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Chapter 4

Geometer’s Sketchpad

In this chapter, we investigate Geometer’s Sketchpad, a visual geometry utility
created by Nicholas Jackiw and distributed by Key Curriculum Press. This utility
is based on the rules of constructions using a straightedge and compass. The
fundamental objects it draws are points; circles; and line segments, rays, and lines.
These are created using the buttons to the left of the screen ( , , , and

).

4.1. The Rules of Constructions

Let us begin with our rules of construction.

Rule 1: We start with two distinct points. Use the second button to create

these. Use the label button to identify them. Sketchpad labels them A and B.

Rule2: We can draw a line through two constructed points. To do this, click
on the segment button and with the button held down, drag it to the right

until the line button is highlighted. Now, click on point A, and drag the mouse
to point B. Notice the commentary in the bottom left corner of the screen. When
the cross hair is near the first point A, it reads ‘From Point A,’ and when it is
dragged near the second point B, the commentary reads ‘Passing through Point
B,’ Though Sketchpad will let us draw points and lines anywhere, within our rules
of constructions we are only allowed to draw lines which pass through two already
constructed points.

Rule 3: We can draw a circle whose center is a constructed point and through
another constructed point. To do this, select the circle button . Place the
cross hair at A and click the mouse. The commentary reads ‘Centered at point A.’
Holding the button down, drag the cross hair to B. The commentary reads ‘Passing
through Point B.’ Note that it is important to drag the cross hair to B, and to
resist the urge to just drag the mouse somewhere (not B) while making sure the
circle passes through B. The problem with this is that even though our intent is

77
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78 4. Geometer’s Sketchpad

that the circle go through B, Sketchpad will not know that that is our intent. For
example, in our current sketch, use the select button and select and drag B
someplace else. Note that the circle changes appropriately. Now, construct a circle
centered at B, and create a circle by dragging the cross hair to a point which is
not B, but so that the circle passes through A. Click on the select button, select A,
and move it. Notice that this time the circle we just drew does not appropriately
change. It is a circle that goes through a new point that we constructed without
obeying our rules.

Use ‘〈control〉 z’ to undo the circle we just created. (We may have to use this
several times before the circle disappears.)

Rule 4: The points of intersection of constructed lines and circles are con-
structed points. To construct them, select the select button and move it to the

point of intersection (which does not yet have a big dot). The commentary reads
‘Select Point at intersection.’ Click the mouse.

Remark: Sketchpad will construct the point of intersection of only two objects.
For example, construct a triangle and its three medians. We know they intersect at
a common point, but when we move the select button near that point of intersection,
Sketchpad sees three objects and hence three different points of intersection. Since
it does not know which point you want, it calls it an ambiguous point of intersection.
To remedy this, we can select two objects – to do this, click on one median, and
while holding the shift key down, select the other median. Now type ‘〈control〉 i’.
This constructs the point of intersection of these two medians. Of course, the third
median goes through this point too, but Sketchpad will never notice this.

4.2. Lemmas and Theorems

We can ‘reproduce’ the lemmas and theorems of Section 3.3 in Sketchpad. For
example, given three arbitrary points A, B and C, we can construct the angle
bisector of ∠BAC in Sketchpad by following the steps of Lemma 3.6. The point
of stating the lemma, though, is so we will not always have to go through these
steps just to find the angle bisector. What we really want to do is program our
computer to do this for us. We do this using a script. In Sketchpad, pull down the
‘File’ menu and select ‘New Sketch’ and ‘New Script.’ In the script window, press
the record button. In the sketch window, select three random points A, B, and
C (use the label button to label them); construct the rays AB and AC; draw the
circle centered at A and through B; create the point of intersection of the circle
with the ray AC and label this point (Sketchpad calls this point D); create the
circles centered at B through D and the circle centered at D and through B; select
the point of intersection of these two circles (Sketchpad calls it E); create the ray
AE – this is the angle bisector. Finally, hide the work we have just done which
is important to the proof but not to the final result. We do this by selecting each
object and hitting ‘〈control〉 h’ (‘h’ for hide). All that should be left are the three
original points and the angle bisector. Now, stop the recording. This script is our
lemma. To test it, open a new sketch. Create three points at random, labeled A,
B, and C. Note that the script says ‘Given: Point A, Point B, Point C.’ Select the
three new points in that order – to do this, hold down the ‘shift’ key and select A,
B, and C in that order. Note that all three points are highlighted. Now play the
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script by clicking the play button. The computer goes through the construction
step by step. Save this script as ‘anglebisector.’ As a final exercise, select B, A,
and C in that order, and click ‘Fast’ on ‘anglebisector.’ It constructs the bisector
of ∠ABC. The point of intersection of these two rays is, of course, the incenter.

Exercise 4.1. Write a script to construct an equilateral triangle with side AB.
When you are done, your script should say ‘Given: Point A, Point B.’ If it asks
for more points, try again. Test your script.

Exercise 4.2. Write a script to construct a square with side AB.

Exercise 4.3. Write a script to construct a regular hexagon inscribed in the circle
with center A and through B.

Exercise 4.4. Write a script to construct a perpendicular bisector. Write two
more scripts – one to find the line through A and perpendicular to AB; and the
second to find the midpoint of segment AB.

Exercise 4.5. Write a script to bisect an arbitrary angle. Move around one of the
points that defines an arm of the angle. Does the construction always work?

Exercise 4.6. Note that the buttons of Sketchpad mimic a ‘collapsible compass.’
Write a script which mimics a ‘noncollapsing compass’ (i.e., write a script which
models Lemma 3.8.) Test it. Does it always work? Rewrite it so that it always
works, or explain why we cannot write a script which always works.

Finding angle bisectors, segment bisectors, and perpendiculars is very common
in constructions, and after a while, the process becomes tedious. For all the re-
maining exercises, we allow the use of the operations under the pull-down menu
‘construct.’ Note that all of these (except ‘point on object’) can be done using the
rules of construction. In particular, the operation ‘Circle by center and radius’ is
the ‘noncollapsing compass.’

Exercise 4.7. Write scripts to add, subtract, multiply, and invert constructible
lengths.

Exercise 4.8. Write a script to find square roots.

Exercise 4.9. Use the above script to come up with your own construction of a
regular pentagon.

Exercise 4.10. Write a script to construct a regular pentagon inscribed in CA(|AB|).

The following is a construction of the regular 17-gon, due to H.W. Richmond
[Cox69]. We begin by constructing the diameter through O and P0, and its perpen-
dicular OA (see Figure 1). Find the point B on OA such that |OB| is one-quarter
of |OA|. Find the point C on OP0 such that ∠CBO is one-quarter of ∠P0BO. Find
the point D on OP0 such that ∠DBC = 45◦. Construct the circle with diameter
DP0 and let it intersect OA at E. Construct the circle with center C and through
E. Let this circle intersect OP0 at F and G. The perpendiculars to OP0 through
F and G intersect the original circle at P3, P5, P12, and P14. The circle centered
at P3 and going through P0 intersects the circle again at P6. The side P5P6 is an
edge of a regular 17-gon, and can be used to find the rest of the vertices.

AMS Open Math Notes: Works in Progress; Reference # OMN:202006.110830; Last Revised: 2020-07-11 09:32:23



80 4. Geometer’s Sketchpad
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Figure 1. Richmond’s construction of the regular 17-gon.

Exercise 4.11. Write a script to construct the regular 17-gon.

Exercise 4.12. The point F and the midpoint of DP0 are almost coincident, but
not quite. If O is zero and P0 is one, what are the values of F and the midpoint of
DP0?

Trivia. A construction of the regular 17-gon was first discovered by Karl Frederic
Gauss (1777 – 1855) – at the age of eighteen. Despite the many achievements of
Gauss, he is said to have been most proud of this discovery and wished that it
appear on his tombstone. His request was not carried out, though a monument
with the construction was later erected in his honor.

4.3. Archimedes’ Trisection Algorithm

Sketchpad is fairly faithful to the rules of construction. To demonstrate this, try
using Sketchpad to implement Archimedes’ trisection algorithm. A script can be
written that does everything but the last step – moving the line so that it goes
through B (see Theorem 3.59). This must be done by hand.

Exercise 4.13. Write a script which does every step of Archimedes’ construction,
except the one which is not permitted in our rules.

Exercise 4.14. Write a script which satisfies the following: ‘Apply the script to
points A and B. Move the point C along the circle until the line l intersects D.
The resulting figure is a regular 9-gon.’
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C. F. Gauss 1777-1855
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MATHEMATIK
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XXX.

Figure 2. Gauss and his construction of the 17-gon was again honored in the

logo of the 30th International Mathematical Olympiad, hosted by West Ger-

many.

4.4. Verification of Theorems

Sketchpad can be used to demonstrate many of the results we studied in Chapter 1.
Some, such as the Star Trek lemma and power of the point, are a little difficult to
demonstrate. Other more complicated results, like the nine point circle, are much
easier to demonstrate using Sketchpad.

Exercise 4.15 ( (The Centroid)). Write a script to demonstrate that the medians

intersect at a common point. Once you have your sketch, use the select button
to move the vertices around.

Exercise 4.16 ( (The Incircle)). Write a script which constructs the incircle of a
triangle with vertices A, B, and C. (The ‘Given’ information should be only three
points.)

Exercise 4.17 ( (The Excircles)). Write a script which constructs the excircles.

Exercise 4.18 ( (The Circumcircle)). Write a script which constructs the circum-
circle.

Exercise 4.19 ( (The Orthocenter)). Write a script to construct the orthocenter
H of ∆ABC. Does it work if the triangle is obtuse? Correct it, if not. Select a
vertex in your sketch and move it around. Do you notice a symmetry between the
vertices and H? Formulate a conjecture concerning this observation and prove it.

Exercise 4.20 ( (The Euler Line)). Write a script which demonstrates that the
circumcenter O, the centroid G, and the orthocenter H are collinear.

Exercise 4.21 ( (The Nine Point Circle)). Write a script which constructs the nine
point circle and the nine points which it goes through. Check your script. Does it
work if the triangle is obtuse? Are all nine points there? Let H be the orthocenter
of ∆ABC. What can you say about the nine point circle for ∆HBC?

Exercise 4.22 ( (Feuerbach’s Theorem)). On a triangle ∆ABC, run the script
which constructs the nine point circle. On the same triangle, run the script which
constructs the incircle and excircles. Formulate a conjecture.
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Exercise 4.23. On a triangle ∆ABC, find the center of the nine point circle and
the Euler line. Formulate a conjecture.

Exercise 4.24 ( (The Simson Line)). Write a script which constructs the Simson
line.

Exercise 4.25 ( (The Radical Axis)). Write a script which finds the radical axis
of two circles.

Exercise 4.26 ( (The Radical Center)). Write a script which finds the radical
center of three circles. Have this script find the circle which is orthogonal to each
of the original three circles.

Exercise 4.27. Write two scripts which demonstrate each direction of the theorem
of Menelaus.

Exercise 4.28. Write a script that demonstrates both directions of Ceva’s theorem.

4.5. Sophisticated Results

Why do we study geometry? Though some simple geometrical results are practical,
most are never used by engineers, scientists, or architects, so one might argue that
there is little point in teaching geometry. The end result, though, is not why we
teach geometry – it is the path we take to get there. Geometry is a beautiful
subject full of elegant and inspired logical arguments. It is a perfect subject to
teach a student the skill of creative and logical thinking. How then does Geometer’s
Sketchpad fit within this philosophy? If the education is in the proofs, then does
the use of Sketchpad circumvent the education? I would say not. It can be used as
a tool of discovery (see Exercises 4.21 and 4.22 above). It can also be used to make
very convincing arguments. Such arguments can be illuminating, can pave the way
to understanding the proofs, and can even inspire one to want to understand the
proof. This idea can be extended. There are many results in geometry which are
either beyond the scope of this text, or which we are not yet ready to prove, but
which can be illustrated using Sketchpad. We present a few below. The results
which are stated as theorems will be revisited in Chapter 11.

Exercise 4.29. Let ∆ABC be an arbitrary triangle. Let P be an arbitrary point,
and let the perpendiculars from P to the extended sides BC, AC, and AB be
labeled X, Y , and Z, respectively. The triangle ∆XY Z is called the pedal triangle
for P . Write a script which constructs the pedal triangle for P with respect to a
triangle ∆ABC. Move P about. When is ∆XY Z degenerate?

Exercise 4.30. For ∆ABC and a point P , write a script which creates the pedal
triangle (see Exercise 4.29) for P , finds the area of the pedal triangle, and finds the
area of ∆ABC. Make this script find the circumcenter O of ∆ABC too. Finally,
let R be the circumradius, r = |OP | and have this script calculate

R2 − r2

4R2
|∆ABC|.

Make a conjecture.
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Exercise 4.31. The pedal triangle ∆XY Z is sometimes called the derived triangle
or first derived triangle of ∆ABC with respect to the point P . The second derived
triangle of ∆ABC with respect to P is the pedal triangle of ∆XY Z with respect to
P . The third derived triangle is the derived triangle of the second derived triangle.
Use the script found in Exercise 4.29 to find the third derived triangle of ∆ABC
with respect to a point P . Investigate and formulate a conjecture concerning this
triangle.

Exercise 4.32. Write a script which finds the point of tangency of the excircles
to the sides of the triangle ∆ABC. Label these points D, E, and F on sides BC,
AC, and AB, respectively. Verify that the three segments AD, BE, and CF are
coincident. This point of coincidence is called the Nagel point N . Find the incenter
I and centroid G of the triangle ∆ABC too. Formulate a conjecture about the
three points N , I, and G.

Theorem 4.33 (Pappus’ Theorem). Let P1, P2, and P3 be three points on the line
l1, and let Q1, Q2, and Q3 be three points on the line l2. Let R be the intersection
of P2Q3 and P3Q2; let S be the intersection of P1Q3 and P3Q1; and let T be the
intersection of P1Q2 and P2Q1. Then R, S, and T are collinear. (See Figure 3.)

RT S

Q2

P2

Q3

Q1

P3

P1

Figure 3.

Exercise 4.34. Write a script which demonstrates Pappus’ theorem.

Theorem 4.35 (Pascal’s Theorem). Let P1, P2, P3, Q1, Q2, and Q3 be points on
a conic C, as in Figure 4. Let R be the intersection of P2Q3 and P3Q2; let S
be the intersection of P1Q3 and P3Q1; and let T be the intersection of P1Q2 and
P2Q1. Then R, S, and T are collinear. (See Figure 4.)

Pappus’ theorem is really a special case of Pascal’s theorem, since two lines
may be thought of as a degenerate conic.

Exercise 4.36. Write a script which demonstrates Pascal’s theorem for a circle.

Theorem 4.37 (Desargues’ Theorem). Let P be a point not on a triangle ∆ABC.
Let A′, B′, and C ′ be points on the lines PA, PB, and PC, respectively, as in
Figure 5. Let the (extended) sides BC and B′C ′meet at R. Similarly, let AC and
A′C ′meet at S and let AB and A′B′meet at T . Then R, S, and T are collinear.
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Figure 5.

Exercise 4.38. Write a script which demonstrates Desargues’ theorem.

The proof of Desargues’ theorem is actually not too difficult, if thinking in
three dimensions comes easily.

Proof of Desargues’ Theorem. In Figure 5, think of the rays emanating from
P as the edges of a pyramid. Then, ∆ABC can be thought of as the intersection
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of a plane α with this pyramid. Similarly, ∆A′B′C ′ is the intersection of a plane
α′ with this pyramid.

The intersection of the two planes α and α′ is a line l. Since the line BC is on
α, and B′C ′ is on α′, the intersection of these two lines must be in the intersection
of the two planes. That is, R is on l. Similarly, both S and T are on l. That is,
the three points are collinear. �

Exercise 4.39. Let ABCDEF be a hexagon inscribed in a circle. Let AB and
CD intersect at G, and let DE and AF intersect at H. Write a script which shows
that BE, CF , and GH are coincident.

Exercise 4.40. State and prove the converse of Desargues’ theorem. [H]

4.6. Parabola Paper

In this section, we construct parabola paper (see Exercise 3.61). In Geometer’s
Sketchpad, select ‘Plot Points’ under the ‘Graph’ pull-down menu. Manually insert
the points (x, x2) in .1 increments from .1 to 1.6. That is, enter (.1, .01), (.2, .04), ...,
(1.6, 2.56). Notice that the points (0, 0) and (1, 0) are already plotted. Select and
move the point (1, 0) to stretch the axis system. Join the points with line segments
and hide the points (but not the points (0, 0) or (1, 0)). Select the y-axis, mark it
as a mirror by double clicking it (or select it and choose ‘Mark Mirror’ under the
‘Transform’ menu). Select all (under the ‘Edit’ menu), and reflect the graph using
‘Reflect’ under the ‘Transform’ menu. Hide the axis and any leftover stray marks,
leaving only the parabola and the points (0, 0) and (1, 0). Save the Sketch for use
in the following exercises.

Exercise 4.41 (*). Use the parabola paper to construct a regular 7-gon (see Ex-
ercise 3.61).

Exercise 4.42 (*). Use the parabola paper to construct a regular 9-gon.

Exercise 4.43 (**). Use the parabola paper to construct a regular 13-gon.
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Chapter 5

Higher Dimensional Objects

5.1. The Platonic Solids

Recall that we call a polygon a regular polygon if all of its sides and all of its angles
are equal. In this section we will investigate the three-dimensional analogues, the
regular polyhedra or Platonic solids.1

Definition 5.1 (Platonic solid). A polyhedron is called a regular polyhedron or
Platonic solid if it is convex, all of its faces are identical regular polygons, and
there are the same number of faces at each vertex.

We are probably most familiar with the cube, which has six square faces. There
exist also the tetrahedron, which has four triangular faces; the octahedron, which
has eight triangular faces; the dodecahedron, which has twelve pentagonal faces;
and the icosahedron, which has twenty triangular faces (see Figure 1).

Unlike the two-dimensional case, there are only a finite number of regular poly-
hedra.

Theorem 5.2. There are only five Platonic solids – the tetrahedron, cube, octahe-
dron, dodecahedron, and icosahedron.

Proof. Let us look at the shape of each face and the number of faces at each vertex.

If each face is triangular, then there cannot be more than five faces to a vertex,
since if there are six or more, then the sum of the angles at the vertex is 60◦ times
the number of faces, which is greater than or equal to 360◦. That is, if there are
six equilateral triangles coming to a point, then the figure is flat, and if there are
more, then the figure has hills and valleys. Of course, there must be at least three
faces coming to a vertex, so the possible numbers are three, four, and five. These
produce the tetrahedron, octahedron, and icosahedron, respectively.

1It is a bit unfortunate that we think of these terms as synonyms. A polyhedron is usually thought
of as just the surface of a polyhedral solid, in the same way a sphere is the surface of a ball, and a circle
is the boundary of a disc. For now, the distinction is not important, but it will be when we start talking
about the topology of the regular polyhedron or solid.

87
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88 5. Higher Dimensional Objects

Figure 1. The five Platonic solids – the tetrahedron, cube, octahedron,

dodecahedron, and icosahedron.

If each face is a square, then again, four squares produce a flat figure, so there
can be only three squares to a vertex, which gives the cube. Furthermore, any figure
with regular n-gonal faces for n ≥ 4 must have exactly three faces to a vertex.

Thus, for pentagons, there can be only three faces to a vertex, and this gives
the dodecahedron.

For hexagons, there again can be only three faces, but this gives a flat surface.
Thus, there are no Platonic solids with regular n-gonal faces for n ≥ 6. �

Figure 2. The icosahedron was featured in the logo for the 21st International
Mathematical Olympiad hosted by the United States. An icosahedron is also

the logo for the Mathematical Association of America.

Exercise 5.3. Prove that the angles in a regular n-gon measure
(
n−2
n

)
180◦.
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Exercise 5.4. Construct a regular pentagon inscribed in a circle with radius two
inches. Make a cutout of this pentagon on card stock (to use as a template).
Construct templates of a square, equilateral triangle, and hexagon, each with sides
equal in length to the side of the pentagon you constructed.

Exercise 5.5. Construct models of the Platonic solids using the templates con-
structed in the previous exercise.

Exercise 5.6 (*). When we talk about regular polygons, we usually mean convex
regular polygons. There are, though, polygons whose sides cross, but whose angles
and edges are all identical. For example, the five-pointed star in Figure 3 is one
such regular star polygon. Note that this polygon has only five vertices and five
sides. In a similar fashion, we can construct the regular star polyhedra (see, for
example, Figure 3). Identify the set of all regular star polyhedra. How many faces

Figure 3. A star polygon and a star polyhedron. The vertices of the five

pointed star are the vertices of a regular pentagon. The vertices of this star

polyhedron are the vertices of a regular icosahedron.

does the regular star polyhedron in Figure 3 have?

Exercise 5.7. We consider the faces of the star polyhedron in Figure 3 to be
regular pentagons which intersect. If we instead think of the triangles as the faces,
then how many triangular faces are there? Find the lengths of the sides of each of
these triangles. These triangular faces are constructible using a straightedge and
compass. Construct a template, and use it to construct one of these star polyhedra.

5.2. The Duality of Platonic Solids

There is a natural pairing between Platonic solids. Let us take our favorite Platonic
solid. Mark the center of each face, and connect the dots. If done properly, we
should have again a Platonic solid. The new solid has as many vertices as the old
object has faces, and as many faces as the old object has vertices. Both objects
have the same number of edges. If we do this again, we end up with an object
which is similar to the one we started with. This gives a duality between Platonic
solids.
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Count the number of faces, vertices, and edges of each Platonic solid, as in
Table 1. From this information, it see that the tetrahedron is the dual of itself,
the cube is the dual of the octahedron, and the dodecahedron is the dual of the
icosahedron.

Platonic Solid Faces Vertices Edges
Tetrahedron 4 4 6
Cube 6 8 12
Octahedron 8 6 12
Dodecahedron 12 20 30
Icosahedron 20 12 30

Table 1.

5.3. The Euler Characteristic

Let F , V , and E be the number of faces, vertices, and edges of a polyhedron. Euler
observed that the quantity

χ = F + V − E
depends only on the topological shape of the polyhedron. For example, for the five
regular polyhedra, this quantity is always two. This quantity χ is called the Euler
characteristic.

Definition 5.8 (Topological equivalence). We say two regions are topologically
equivalent if we can stretch one shape into the other without tearing or puncturing
the object.

For examples, see Figures 4 and 5.

Before we continue, let us formalize the objects we are talking about. A vertex
is a point. An edge is a curve (not necessarily straight) which is bounded by one
or two vertices. Two edges cannot intersect except at a vertex. A face is a region
which is bounded by edges, is topologically equivalent to a disc, and contains no
interior vertices or edges.

To prove a result, it is sometimes easier to prove something a little more general.
In this case, we will first study the Euler characteristic of filled finite connected
planar graphs.

A graph is a nonempty set of edges and vertices. If this set is finite, then we
call it a finite graph. A graph is connected if for any two vertices, there exists a
path of edges which connects them. A graph is planar if it can be imbedded in the
plane in such a way that no pair of edges cross. A connected component of a graph
R is a subset S which is connected and is not connected to the remainder R \ S.
See Figure 6 for an example.

A finite connected planar graph partitions the plane into a finite number of
regions. One of these regions is unbounded, and the rest are all topologically
equivalent to a disc. Thus, the bounded regions can be thought of as faces. We
will call a finite connected planar graph together with these faces a filled finite
connected planar graph.
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⇒

⇒

Figure 4. Topologically equivalent figures: A triangular region is topologi-

cally equivalent to a disc, and an octahedron is topologically equivalent to a
sphere. Here, it is important that the octahedron be thought of as a polyhe-

dron, and not a solid.

Theorem 5.9. Let R be a filled finite connected planar graph. Then

χR = 1.

Proof. We use strong induction on the number of edges. A filled finite connected
planar graph R with no edges has only one point (since it is connected and is
nonempty). It therefore has no faces, and so

χR = 1.

Suppose that every filled finite connected planar graph with at most k edges
has Euler characteristic one. Let R be a filled finite connected planar graph with
k+ 1 edges. Pick an edge and remove it (but not its bounding vertices). There are
two possibilities for the resulting subgraph R′. It is either connected, or has two
connected components.

If R′ is connected, then by our induction hypothesis, χR′ = 1. By removing
the edge, we have either joined the two faces on either side of it, or have joined a
face on one side of it with the unbounded region on the other side. In either case,
the number of faces has decreased by one. The number of vertices has remained
unchanged, and the number of edges has of course decreased by one. The net effect
on the Euler characteristic is nil, so

χR = χR′ = 1.
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⇒/

⇒/

Figure 5. Regions which are not topologically equivalent: A disc is not

topologically equivalent to an annulus or washer since there is no way to deform
one into the other without tearing or puncturing either object. Similarly, a

sphere is not topologically equivalent to a torus or doughnut.

If R′ has two connected components, then χR′ is the sum of the Euler charac-
teristic of each component. Since each component has at most k edges, the Euler
characteristic of each is 1, so χR′ = 2. If the regions on either side of the removed
edge are different, then there exists another path of edges between the endpoints
of the removed edge. That is, removing the edge does not disconnect the graph.
Thus, the region on either side of the removed edge is the same. This region may
be the unbounded region, or possibly a face. In either case, removing the edge does
not change the number of faces. Again, the number of vertices remains unchanged,
and the number of edges drops by one, so

2 = χR′ = χR + 1.

Thus, χR = 1. �

Corollary 5.10. Suppose a polyhedron R is topologically equivalent to a sphere.
Then

χR = 2.

Proof. Remove a single face of this polyhedron. What is left, R′, can be stretched
and flattened so that it lies on the plane. The faces, vertices, and edges of this region
are just the faces, vertices, and edges of a filled finite connected planar graph, so
χR′ = 1. Since R has one more face then R′,

χR = χR′ + 1 = 2. �
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a
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c

A

e

B

C
D

E

Figure 6. A finite connected planar graph. The graph obtained by removing

either of the edges d or e is again a finite connected planar graph. The graph
obtained by removing a, b, or c gives a finite planar graph which has two

connected components. If a is removed, then one of the connected components

is the isolated point A. If b is removed, then one of the components lies entirely
within a face of the other connected component. Note that the face with

vertices B, C, and E is thought of as a pentagon BCDCE, so it contains no
interior vertices or edges.

Exercise 5.11. What is the Euler characteristic of a polyhedron which is topolog-
ically equivalent to a torus? Prove your assertion.

5.4. Semiregular Polyhedra

Definition 5.12 (Semiregular polyhedron). We call a polyhedron a semiregular
polyhedron if it is convex, all of its faces are regular polygons, and each vertex looks
identical.

The semiregular polyhedron with which our youth is most familiar is probably
the hypo-truncated icosahedron, better known as the soccer ball (and also known as
the hyper-truncated dodecahedron or more recently, the Buckyball.)

We arrive at such a figure by taking an icosahedron and slicing off the corners
(see Figure 7). If the slices are shallow enough, the resulting face is a pentagon.
The formerly triangular faces are triangles with their corners cut off, and if done
properly, the resulting faces are regular hexagons. On a soccer ball, the pentagonal
faces are black and the hexagonal faces are white. Note that each face is a regular
polygon, and each vertex has two hexagonal faces and one pentagonal face.

If we take a deeper slice, the triangular faces become triangles again, and we get
the truncated icosahedron (see Figure 8. This object can also be obtained by slicing
the corners of the dodecahedron, so it is also known as the truncated dodecahedron.
If we take an even deeper cut, we get the hyper-truncated icosahedron (hyper means
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Figure 7. A hypo-truncated icosahedron or soccer ball (right), created by
slicing the vertices off an icosahedron.

a lot, hypo means a little), which can also be obtained from the dodecahedron by
taking shallow cuts. Finally, if we take such a deep cut that the triangular faces
are cut away, we get the dodecahedron, as discussed in the section on duality.

Figure 8. The truncated icosahedron (middle), created by cutting the corners

off an icosahedron. Deeper cuts give us the dodecahedron.

The same can be done with the cube (see Figure 10) or octahedron, and with
the tetrahedron.

Figure 9. Representatives of the two infinite classes of semiregular polyhedra

– a hexagonal right prism (left) and a hexagonal drum (right).
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Figure 10. Metamorphosis of solids: A cube, hypo-truncated cube, trun-

cated cube, hyper-truncated cube, and the octahedron.

We now have quite a few examples of semiregular polyhedra. They all have,
however, a common theme – each polyhedron has the underlying structure of a
Platonic solid. One might wonder if this is always the case. It is, with the exception
of two infinite classes of semiregular polyhedra (see Figure 9). The first class is the
class of right prisms. At each vertex of such a polyhedron there are two squares and
one polygon. The second class is the class of drums, which have three triangles and
one polygon at each vertex. Furthermore, if we exclude the drums and right prisms,
there are only a finite number of semiregular polyhedra. The task of categorizing
these polyhedra is a difficult combinatorial problem, but we will begin the task in
the following section.

Trivia. Synthetic oil consists of synthetic hydrocarbon molecules in which the
carbon atoms are arranged so that they form the vertices of a hypo-truncated
icosahedron. The resulting molecule is therefore as spherical as a soccer ball, and
the oil is essentially molecule size ball bearings. Since their creation in 1985, these
molecules have been called Buckyballs, Fullerene, or Buckminsterfullerene, named
after R. Buckminster Fuller. Buckminster Fuller is the American architect who,
together with Shoji Sadao, designed the geodesic dome for Expo ’67 in Montreal
(see Figure 11). Geodesic domes are usually made with isosceles triangles, so are not
portions of semiregular polyhedra. However, their underlying structure is usually
that of a semiregular polyhedron.

Exercise 5.13. What is the truncated tetrahedron better known as?

Exercise 5.14. What is the truncated tetrahedron better known as?
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Figure 11. The American pavilion at Expo ’67 in Montreal, a geodesic dome

designed by Buckminster Fuller and Shoji Sadao.

Exercise 5.15 (*). In Exercise 5.6, we introduced the notion of a regular star
polyhedron. There exist, also, semiregular star polyhedra. Find and classify all of
them.

Exercise 5.16 (*). A geodesic dome can be created by making shallow pentagonal
and hexagonal based pyramids and gluing these pyramids on the pentagonal and
hexagonal faces of a soccer ball. What lengths should we choose for the sides of
the faces of the pyramids if we want to make the geodesic dome as spherical as
possible? Note that the triangular faces used for the pentagonal pyramids will be
different from the triangular faces used for the hexagonal pyramids.

5.5. A Partial Categorization of Semiregular Polyhedra

We can classify (though not uniquely) the semiregular polyhedra by the shape of
the vertices. Note first that the angles of six equilateral triangles joined at a vertex
sum to 360◦, so the greatest number of faces to a vertex is five. Let us consider
this case first. Suppose four faces are triangles. If the fifth is a hexagon, then we
again have a flat vertex (which gives an interesting tiling).

If the fifth is a pentagon, then we get a figure called the snub dodecahedron –
something we have not seen yet. If the fifth is a square, we get the snub cube, which
we also have not seen. And if the fifth is a triangle, we get the icosahedron. Now
suppose only three are triangles. Then the fourth and fifth faces are at least squares,
but that already gives a flat vertex. Thus, we have exhausted all possibilities.

Let us now assume there are four faces to a vertex. If all four are squares,
we have a flat figure. Otherwise, at least one must be a triangle. If there is only
one triangle, then two of the other faces must be identical. (Why?) These two
other faces cannot be pentagons, since two pentagons, a square and a triangle are
already too much (366◦). Thus, we have one triangle and two squares. The fourth
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face cannot be a hexagon (which gives another interesting tiling) so must be a
pentagon or square. Both these figures exist. Now let us assume there are two
triangles. These triangles cannot be adjacent to each other. (Why?) Note that the
other two faces must be identical. (Why?) They cannot both be hexagons, since
that gives a flat vertex. If they are pentagons, we get the truncated icosahedron,
and if they are squares, we get the truncated cube. Finally, if three of them are
triangles, then for each polygon we get a drum.

It is convenient to describe semiregular polyhedra with k-tuples, where k is the
number of faces at each vertex. Each entry in the k-tuple is a number representing
the number of edges to each face at the vertex, taken in order. For example, the
soccer ball has two hexagons and one pentagon at each vertex, so we represent
it with a triple (6, 6, 5). Of course, the representations (6, 5, 6) and (5, 6, 6) are
equivalent.

Using this representation, we can tabulate the set of semiregular polyhedra
which we have already identified, as shown in Table 2.

Representation Name Remarks
(3,3,3,3,5) Snub dodecahedron There are two orientations.
(3,3,3,3,4) Snub cube There are two orientations.
(3,4,5,4)
(3,4,4,4) There are two.
(3,5,3,5) Truncated dodecahedron
(3,4,3,4) Truncated cube
(3,3,3,n) n-gonal drum An infinite class.

Table 2.

The number of possibilities to cover is quite a bit higher for the case of three
faces to a vertex. It is a doable problem and we include it in the exercises.

Exercise 5.17. How many pentagonal faces are on a snub dodecahedron?

Solution. We can solve this using the Euler characteristic. Let F3 and F5 be the
number of triangular and pentagonal faces. Thus F = F3 + F5. Note that each
corner of each pentagon is the vertex of exactly one vertex of the polyhedron, so

V = 5F5.

Similarly, at each vertex, there are four corners of triangles, so we also have

V =
3F3

4
.

We count edges by noting that each pentagonal face has five, each triangle has
three, and we have counted each edge twice, so

E =
3F3 + 5F5

2
.
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Finally, combining this information with the Euler characteristic, we get

2 = F + V − E

=
20F5

3
+ F5 + 5F5 −

20F5 + 5F5

2

=
F5

6
(40 + 6 + 30− 60− 15)

=
F5

6
.

Thus, F5 = 12, which is what we would expect, since this figure has pentagonal
faces, so should have an underlying dodecahedral structure. �

Exercise 5.18. How many square faces are on the snub cube?

Exercise 5.19. How many square faces are on a semiregular polyhedron repre-
sented by (3, 4, 4, 4)? The answer might surprise you.

Exercise 5.20. Find formulas for F , V , and E in terms of m and n for a Platonic
solid with m n-gons at each vertex.

Exercise 5.21. Using the templates you made earlier, construct a model of your
favorite semiregular polyhedron. If you can, involve a young child in the project.

Exercise 5.22. Answer the first ‘Why’ in this section. That is, if there are four
faces to a vertex and only one of them is a triangle, explain why two of the other
faces must be identical.

Exercise 5.23. Answer the second and third ‘Whys’ in this section. That is, if
there are four faces to a vertex and two of them are triangles, explain why these
triangles cannot be adjacent, and explain why the other two faces must be identical.

Exercise 5.24. Identify the two different semiregular polyhedra represented by
(3, 4, 4, 4).

Exercise 5.25 (*). Classify the semiregular polyhedra with three faces to each
vertex.

Exercise 5.26. Note that (3, 3, 3, 3, 6) represents a tiling. Identify the complete
set of tilings (both regular and semiregular) with five faces at each vertex. Are
there any tilings with six faces to a vertex?

Exercise 5.27 (*). Consider the set of convex polyhedra whose faces are all con-
gruent equilateral triangles (but with possibly different numbers of triangles at each
vertex). Show that this set is finite. How many such polyhedra are there?

5.6. Four-Dimensional Objects

How can we make sense of a four-dimensional object? Probably the easiest way is
to use Cartesian coordinates and make inferences from what we know about two-
and three-dimensional objects.

For example, a square is the object with vertices (0, 0), (0, 1), (1, 0) and (1, 1).
A cube is the object with vertices (x, y, z), where x, y, and z run through all com-
binations of 0 and 1. The four-dimensional analogue, a hyper-cube, is therefore the
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object with vertices (w, x, y, z), where w, x, y, and z run through all combinations
of 0 and 1. A face of the cube is the set of points in the cube with z = 0. This is
the polygonal region bounded by the vertices (0, 0, 0), (0, 1, 0), (1, 0, 0), and (1, 1, 0).
That is, this face is a square. By analogy, a face of the hyper-cube is the set of
points with z = 0, which describes a cube. Thus, just as the cube has square faces,
the hyper-cube has cube faces. What then should the analogue of an edge be? The
set of points with both y and z equal to 0? Then, the analogue of an edge is a
square.

With this analogy in mind, perhaps we should define a regular four-dimensional
hyper-polyhedron as a figure whose faces are Platonic solids. The natural question
one might ask is, are there any more regular four-dimensional hyper-polyhedra?

The analogue of a circle and sphere in four dimensions is the figure described
by

w2 + x2 + y2 + z2 = r2,

which is the set of points a distance r from the origin. An interesting question we
can answer is this: What is the hyper-volume of the interior of the hyper-sphere
in four dimensions? To answer this question, let us first recall how one derives the
volume of a sphere.

Theorem 5.28. The volume of a sphere with radius r is 4πr3/3.

Proof. Let us use the equation for a sphere:

x2 + y2 + z2 = r2.

Let us take a slice of this sphere by fixing z = z0. This gives a cross section with
equation

x2 + y2 + z2
0 = r2

x2 + y2 = (r2 − z2
0),

which is the equation of a circle of radius
√
r2 − z2

0 , which has area π(r2 − z2
0).

Thus, this cross section has volume

∆V = π(r2 − z2)∆z

(yes, we are using calculus now) and hence the volume of a sphere is

V =

∫ r

−r
π(r2 − z2)dz

=

[
π(r2z − 1

3
z3)

]r
−r

=
4

3
πr3. �

We can use the same argument with the hyper-sphere.

Theorem 5.29. The hyper volume of the hyper-sphere of radius r in four dimen-
sions is π2r4/2 .
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Proof. We use the equation

w2 + x2 + y2 + z2 = r2.

We take a cross section z = z0, which has the equation

w2 + x2 + y2 = r2 − z2
0

and hence is a sphere with radius
√
r2 − z2

0 . Thus, the hyper-volume of a four-
dimensional hyper-sphere is

V =

∫ r

−r

4

3
π
(
r2 − z2

)3/2
dz.

We make the substitution r sin θ = z, and get

V = 2

∫ π/2

0

4

3
πr4 cos4 θdθ

=
2

3
πr4

∫ π/2

0

(cos2 2θ + 2 cos 2θ + 1)dθ

=
πr4

3

∫ π/2

0

(cos 4θ + 1 + 4 cos 2θ + 2)dθ

=
π2r4

2
. �

Exercise 5.30. We can unfold the faces of a cube to get the region in Figure 12.
What do we get if we unfold the hypercube?

Figure 12. An unfolded cube. See Exercise 5.30.

Exercise 5.31. We saw that the dual of the cube is the octahedron, and it can be
thought of as having vertices which are the centers of the faces of the cube. Find
the centers of the faces of the hyper-cube. Check that this gives a four-dimensional
regular hyper-polyhedron.

Exercise 5.32. What does the dual of the hyper-cube look like when it is unfolded?

Exercise 5.33. What is the analogue of a cube (a hypo-cube?) in one dimension?
What is a hypo-sphere in one dimension?
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5.6. Four-Dimensional Objects 101

Exercise 5.34. What is the hyper-surface area (a volume) of the hyper-sphere in
four dimensions? [H]

Exercise 5.35. Find the hyper-volume of the interior of a hyper-sphere in five
dimensions. [A]
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Chapter 6

Hyperbolic Geometry

As has been stressed, the difference between hyperbolic and Euclidean geometry is
Euclid’s fifth postulate, so let us begin this section by recalling the set of axioms
we gave for Euclidean geometry:

(1) We can draw a unique line segment between any two points.

(2) Any line segment can be continued indefinitely.

(3) A circle of any radius and any center can be drawn.

(4) Any two right angles are congruent.

The fifth axiom, the parallel postulate, is the axiom we change in this chapter,
so let us return to its replacement later.

We also assumed that the usual isometries exist:

(6) Given any two points P and Q, there exists an isometry f such that f(P ) = Q.

(7) Given a point P and any two points Q and R which are equidistant from P ,
there exists an isometry which fixes P and sends Q to R.

(8) Given any line l, there exists a map which fixes every point in l and fixes no
other points.

And finally, the new fifth postulate:

(5) Given any line l and any point P not on l, there exist two distinct lines l1 and
l2 through P which do not intersect l.

6.1. Models

The biggest problem most students have understanding hyperbolic geometry is
getting past the fifth axiom. How can there exist two lines through P neither of
which intersect l? As history demonstrates, mathematicians had the same problem.
Since the time of Euclid, mathematicians (Euclid included) have tried to prove that
Euclid’s fifth postulate follows from Euclid’s first four postulates. After all, how
can there exist two lines through P neither of which intersect l? The mathematical

103
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104 6. Hyperbolic Geometry

community very slowly came to the realization that their efforts were in vain. In the
nineteenth century, several mathematicians independently arrived at the conclusion
that Euclid’s fifth postulate does not follow from the first four, and constructed
models of geometry in which through any point P not on l, there exist two lines
neither of which intersect l.

To make things easier to grasp, let me provide you with a crutch the ancient
mathematicians did not have – a model of hyperbolic geometry.

In this model, the entire hyperbolic plane is represented by a disc, not including
its boundary. Lines are circular arcs which are perpendicular to the boundary of
the disc. Thus, it is indeed possible that for any line l and any point P not on l,
there exist two distinct lines through P which do not intersect l – as in Figure 1.

P

Figure 1. A model of hyperbolic geometry, a crutch the ancient mathemati-

cians did not have. In this model, the entire plane is represented by the disc,
and lines are arcs of circles which are perpendicular to the boundary.

This model may still not make us feel too comfortable. Perhaps we want lines
to be straight. Perhaps a model of the plane should be unbounded. To help us get
over this, let me also present a model of the Euclidean plane which looks a little
more like the above model of the hyperbolic plane.

Let the Euclidean plane be represented by the plane z = −1 in three-space.
Consider also the unit sphere

x2 + y2 + z2 = 1.

For any point P = (P0, P1,−1) in the Euclidean plane, draw a line through P and
the North Pole of the sphere N = (0, 0, 1), as in Figure 2. Let this line intersect the
sphere at P ′. In this way, we can map the entire Euclidean plane to the surface of
the sphere, not including the North Pole. Thus, the punctured sphere is a model
for the Euclidean plane. What does a line look like in this model? Let l be a line
on the plane z = −1. The image of l on the sphere is the intersection of the sphere
with the plane through (0, 0, 1) and l. In particular, it is the intersection of a plane
with a sphere, so is a circle. Furthermore, this circle goes through the North Pole.
Thus, we have constructed a model of the Euclidean plane which is bounded, and
on which lines are circles through a fixed point. This model is not too dissimilar
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6.1. Models 105

P

P ′

N

Figure 2. An unusual model of Euclidean geometry: The Euclidean plane

is represented by the sphere not including the North Pole N . Lines in this
model are circles which go through N . The model is derived by projecting

points in the plane z = −1 to points on the sphere through the point N . Such

a projection is called a stereographic projection.

from the above model of the hyperbolic plane, and I hope it makes you feel more
comfortable with that model.

Before moving on, let me emphasize that this model of hyperbolic geometry is
meant to be a crutch. It is to help us with our intuition and is not meant to be a
statement of fact. The results we desire must be proved from the axioms we have
set forth, and not from this model.

It is very important for us to eventually establish the existence of a model for
hyperbolic geometry, since such a model is the evidence that hyperbolic geometry
exists. However, we may establish many interesting results (as we will do in the
following few sections) using just the axioms. For now, we will think of these
results as properties of hyperbolic geometry if such a geometry exists. Eventually,
we will construct a model which satisfies the axioms of hyperbolic geometry, thereby
proving that such a geometry exists.

Some of the results we will discover in this chapter are probably quite a bit older
than the discovery of hyperbolic geometry (usually attributed to János Bolyai, Karl
Friederich Gauss, and/or Nikolai Ivanovich Lobachevsky, all in the early nineteenth
century). I say this because of the work of a seventeenth-century Jesuit priest,
Girolamo Saccheri. He, like many mathematicians before him, thought Euclid’s
first four postulates were quite reasonable, but that the fifth looked like a theorem
and therefore should follow from the first four. He set out to prove this, using the
time honored method of reductio ad absurdum or proof by contradiction.

Saccheri studied quadrilaterals ABCD with equal sides AB and CD perpen-
dicular to BC, as in Figure 3. By symmetry, the angles at A and D must be equal.
There are therefore three possibilities. The angles A and D are either obtuse, right,
or acute. If these angles are right angles, then the parallel postulate follows (see
Exercise 6.9), so Saccheri assumed that they are either obtuse or acute. He assumed
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A

B C

D

Figure 3. A Saccheri quadrilateral, studied by Girolamo Saccheri in the

seventeenth century, and earlier by Omar Khayyám and Nasir Eddin al-Tusi
in the eleventh and thirteenth centuries.

first that the angles are obtuse, which in fact leads to a contradiction (see Exercise
6.5). He then assumed that the angles are acute, and though he was able to deduce
many strange results [Gre93], he was unable to arrive at a contradiction. In this
chapter, we too will discover many strange results. Saccheri was, perhaps, referring
to these results.

6.2. Results from Neutral Geometry

Some results may be proved without using either version of the fifth axiom. Such
a result is called a result in neutral geometry. These include several properties
we proved for Euclidean geometry. For example, two circles intersect in at most
two points. Thus, both SSS and SAS are results in neutral geometry and hence
results in hyperbolic geometry. So is ASA, pons assinorum, and the following very
important result which was also proved in Chapter 1:

Lemma 6.1 (Lemma 1.35). Let l be a line and P a point not on l. Then there
exists a point Q on l so that PQ is perpendicular to l.

Let us add one more result to that list:

Theorem 6.2 (The Saccheri-Legendre Theorem). The sum of the angles in a tri-
angle is at most 180◦. That is, in ∆ABC, we have

A+B + C ≤ 180◦.

In the statement of the above theorem, we have again used the abbreviation A
for ∠BAC, and so on. Though this notation can at times lead to confusion, our
use of it here is for the sake of the clarity that brevity can sometimes bring.

To prove Theorem 6.2, we require a couple of lemmas:

Lemma 6.3. In any triangle ∆ABC, we have

A+B < 180◦.

Proof. Suppose A + B ≥ 180◦. Construct ∆ABC ′ so that ∆ABC ≡ ∆BAC ′, as
in Figure 4. If A + B = 180◦, then ∠CAC ′ = 180◦ = ∠CBC ′. That is, the lines
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C

A

B

C ′

Figure 4.

CA and CB intersect again at C ′, a contradiction of the first axiom. Thus, we may
assume A+B > 180◦. But then the ray CA enters ∆ABC ′ at A, so must intersect
the segment BC ′. Similarly, the ray CB must intersect AC ′, so these two rays must
intersect inside ∆ABC ′, and again we get that the lines CA and CB intersect twice,
contradicting the first axiom. Thus, we must have A+B < 180◦. �

Lemma 6.4. Given a triangle ∆ABC, there exists a triangle ∆A′B′C ′ such that

C ′ ≤ 1

2
C

and
A′ +B′ + C ′ = A+B + C.

E

D

B

A

C 

Figure 5.

Proof. Let D be the midpoint of AB (see Figure 5). Let E be the point on CD so
that |CD| = |DE| and C and E are on opposite sides of AB. Then, either ∠BCE
or ∠ECA is at most 1

2∠BCA. Without loss of generality, let us assume

∠ECA ≤ 1

2
∠BCA.

Then choose A′ = A, C ′ = C, and B′ = E. By SAS, ∆BCD ≡ ∆AED, so

A′ = ∠DAE + ∠DAC = ∠DBC + ∠CAD

B′ = ∠DEA = ∠BCD

C ′ = ∠DCA,

so
A′ +B′ + C ′ = A+B + C. �
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Proof of Theorem 6.2. By Lemma 6.4, we can find a sequence of triangles ∆AkBkCk
such that ∆A0B0C0 = ∆ABC,

Ak+1 +Bk+1 + Ck+1 = Ak +Bk + Ck,

and

Ck+1 ≤
1

2
Ck.

Thus,

Ak +Bk + Ck = A+B + C

and

Ck ≤
1

2k
C.

In particular, if

A+B + C = 180◦ + ε

for some ε > 0, then there exists a k such that 1
2k
C < ε. But then

Ak +Bk = A+B + C − Ck > 180◦ + ε− ε = 180◦,

which contradicts Lemma 6.3. �

The reader might be a bit skeptical of the proof of Lemma 6.3 – in particular
with the statement that a line which enters a triangle must also exit the triangle.
To prove such a statement, we need a better set of axioms. Such a set will be
presented in Chapter 9 and this particular question will be addressed in Exercises
9.8 and 9.15.

Exercise 6.5. Prove that the sum of angles in a quadrilateral is at most 360◦.
Conclude that the angles A and D in the Saccheri quadrilateral in Figure 3 are at
most right angles. [S]

Exercise 6.6. Suppose ABCD is a rectangle. That is, suppose ABCD is a quadri-
lateral whose angles are all right angles. Prove that |AB| = |CD| and |BC| = |DA|.
Prove that the line AB does not intersect the line CD. Let a line l intersect AB
perpendicularly at E. Show that l intersects CD at a point F and that AEFD is
a rectangle.

Exercise 6.7. Prove that if there exists a triangle whose angles sum to 180◦, then
there exists a right angle triangle whose angles sum to 180◦. Conclude that if there
exists a triangle whose angles sum to 180◦, then there exists a rectangle. [H]

Exercise 6.8. Suppose ABCD is a rectangle, and that l is a line through A which
is not the line AD. Prove that l intersects the line BC. Conclude that there are
no rectangles in hyperbolic geometry. [S]

Exercise 6.9. Prove that the existence of a rectangle (or a triangle whose angles
sum to 180◦) implies the Euclidean parallel postulate. [H]
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6.3. The Congruence of Similar Triangles

In Exercise 6.9, we are asked to show that the existence of a triangle whose angles
sum to 180◦ implies the Euclidean parallel postulate. Thus, in hyperbolic geometry,
we have the following:

Theorem 6.10. In any triangle ∆ABC, we have

A+B + C < 180◦.

This has a corollary which we were asked to prove in Exercise 6.5:

Corollary 6.11. The sum of the angles in a quadrilateral is less than 360◦.

These two results imply the rather surprising result:

Theorem 6.12. Suppose ∆ABC ∼ ∆A′B′C ′. Then

∆ABC ≡ ∆A′B′C ′.

B ′′

C ′′

B

A

C 

Figure 6.

As in Euclidean geometry, we say two triangles are similar if their angles are
equal.

Proof. Since ∠BAC = ∠B′A′C ′, there exists an isometry which sends A′ to A,
the ray A′B′ to the ray AB, and the ray A′C ′ to the ray AC. Let the image of
B′ and C ′ under this isometry be respectively B′′ and C ′′, as in Figure 6. If these
two triangles are not congruent, then we may assume, without loss of generality,
that B′′ 6= B, and that B′′ lies between A and B. By Exercise 6.13, BC and B′′C ′′

cannot intersect. But then, BCB′′C ′′ forms a quadrilateral. This quadrilateral has
the angles

∠B′′BC = ∠ABC,

∠C ′′CB = ∠ACB,

∠BB′′C ′′ = 180◦ − ∠ABC,
∠CC ′′B′′ = 180◦ − ∠ACB,
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which sum to 360◦, which contradicts Lemma 6.11. Thus, we must have B′′ = B
and C ′′ = C, so the two triangles are congruent. �

Exercise 6.13. Show that, in the proof of Theorem 6.12, the edges BC and B′′C ′′

cannot intersect. [H]

6.4. Parallel and Ultraparallel Lines

Let l be a line and P a point not on l. Then there exist two lines through P which
do not intersect l. Any line between these two lines also cannot intersect l, since
to do so, such a line must first cross one or the other, and this would contradict
our first axiom. Thus, there exists an infinite set of lines through P which do not
intersect l.

l

P

P

l

Figure 7. Lines through P which are parallel (bold) and ultraparallel to l.

(Abstract picture on the left; our model on the right.)

This also demonstrates that there must be two boundary lines – two lines
through P which do not intersect l and such that all lines through P which do not
intersect l lie between these two lines (see Figure 7). These boundary lines through
P are called the lines through P which are parallel to l. All the lines between them
are called ultraparallel lines.

P

Q

N M

β β 

P

Q

M

N

β β 

Figure 8.
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6.4. Parallel and Ultraparallel Lines 111

Let P be a point not on l, and let l ‘intersect infinity’ at M and N , as in
Figure 8. (In our model, M and N are points on the boundary of the disc, which
are not points in hyperbolic space. However, this picture is the inspiration for
referring to points at infinity.) Then, the rays PM and PN are parallel to l. Let
Q be the point on l such that PQ is perpendicular to l. Let β = ∠MPQ. By
symmetry (reflection through PQ), ∠NPQ = β.

Furthermore:

Theorem 6.14. The angle β depends only on the length |PQ|.

Proof. Let l′ be another line, Q′ a point on l′, and P ′ a point not on l′ such that
P ′Q′ is perpendicular to l′ and |P ′Q′| = |PQ|. Let l′ have endpoints M ′ and N ′

at infinity. Let β′ = ∠M ′P ′Q′. We wish to show β′ = β. Suppose not. Then,
without loss of generality, we may assume β′ < β. Draw the ray r which makes an
angle β′ with PQ. Since β′ < β, this ray must intersect l, say at a point R. By our
sixth and seventh axioms, and since |PQ| = |P ′Q′|, there exists an isometry which
sends P to P ′ and Q to Q′. Let R′ be the image of R under this isometry. Since
isometries preserve angles, ∠R′P ′Q′ = β′, a contradiction, since this says R′P ′ is
parallel to l′. Thus, β′ = β. �

This theorem justifies our writing the angle β as a function of the distance
|PQ|. We write

Π(|PQ|) = β

and call β the angle of parallelism. Note that Π(|PQ|) < π/2 for all points P and
Q (for otherwise, we would have a contradiction to our fifth axiom).

Theorem 6.15. Two ultraparallel lines have a common perpendicular.

S ′

S

T

RQ

P

N 

M

Figure 9.

Proof. Let l1 and l2 be two ultraparallel lines. Let P be a point on l2 and let Q
be the point on l1 such that PQ is perpendicular to l1. Let M and N be points at
infinity at the ends of l1 and l2 on the side where the angle l2 makes with PQ is
smaller, as in Figure 9. Since l2 is ultraparallel to l1, the ∠NPQ is greater than
β = Π(|PQ|). Let R be a point on l1 on the M side of Q. Let us vary R. As
we move R toward Q, ∠PRQ goes to a right angle. By moving R towards M ,
we can make ∠PRQ as small as we like (see Exercise 6.16). Thus, we can make
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112 6. Hyperbolic Geometry

∠PRM as close to 180◦ as we like, which means we can make ∠RPM as small as
we like. Hence, if R = Q, then ∠NPR = ∠NPQ, and as R goes to M , ∠NPR
approaches ∠NPM . Thus, at some point, we must have ∠NPR = ∠PRQ. Fix R
so that this is the case. Let T be the midpoint of PR, and let S be the point on
l1 so that TS is perpendicular to l1. Let S′ be the point on l2 between P and N
so that |PS′| = |RS|. Then, by SAS, ∆PS′T ' ∆RST . Hence, ∠S′TP = ∠STR,
and because PTR is a straight line, the angle ∠S′TS must also be 180◦. Further,
∠PS′T = ∠RST , which is a right angle. Thus, S′S is a common perpendicular to
both l1 and l2. �

Exercise 6.16. Let M be a point at infinity and let ∠PQM = 90◦. Given ε > 0,
show that there exists a point R on QM such that ∠PRQ < ε. Figure 10 is a hint.

P

Q

M 

Figure 10. See Exercise 6.16.

Exercise 6.17. Prove that if alternate interior angles of a transversal l to two lines
l1 and l2 are equal, then l1 and l2 are ultraparallel.

Exercise 6.18. Two parallel lines do not have a common perpendicular (see The-
orem 6.19 below). Where does the proof of Theorem 6.15 fail in this case? That
is, where was it important that the two lines in Theorem 6.15 be ultraparallel?

6.5. Singly Asymptotic Triangles

Let M be a point at infinity, and let A and B be points in the hyperbolic plane.
We call the region bounded by AB, AM and BM an asymptotic triangle. The
angle at infinity can either be thought of as not existing, or in light of Exercise
6.16, considered to have the measure zero.

Theorem 6.19. The angles in an asymptotic triangle sum to less than 180◦.

Proof. Let ∆ABM be an asymptotic triangle, where M is a point at infinity, as
in Figure 12. Construct a line with endpoints N and N ′ through A such that N
is on the same side of AB as M and ∠N ′AB = ∠ABM . Then, by Exercise 6.17,
NN ′ and BM are ultraparallel lines. Thus, the ray AN is above AM , and hence
∠NAB > ∠MAB. �

Theorem 6.20. Two similar singly asymptotic triangles are congruent. That is, if
∆ABM and ∆A′B′M ′ are two asymptotic triangles such that ∠MAB = ∠M ′A′B′

and ∠ABM = ∠A′B′M ′, then |AB| = |A′B′|.
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B

A M

A

B
M

Figure 11. Singly asymptotic triangles.

B

A
N

M 

N ′

Figure 12.

B ′

A

B

M 

Figure 13.

Proof. Suppose |AB| 6= |A′B′|. Translate and rotate ∆A′B′M ′ so that A′ is sent
to A and A′B′ is sent to AB, as in Figure 13. Note that M ′ must go to M . Thus,
∆BB′M is an asymptotic triangle. But the sum of the angles in this triangle is
180◦, a contradiction. �

6.6. Doubly and Triply Asymptotic Triangles

Given a line l intersecting infinity at M and N , and a point A not on l, it is possible
to define the doubly asymptotic triangle ∆AMN .
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114 6. Hyperbolic Geometry

However, given two rays AM and AN , is it possible to construct the triangle
∆AMN? Note that the points M and N are not points in hyperbolic geometry, so
we cannot use our first axiom to assure the existence of a line MN . In our model, it
is painfully clear that the line MN should exist, but do not forget that as yet, our
model is only a crutch, and like a poor picture in Euclidean geometry, may lead us
astray. In this case, it does not, but we have to work to prove this ‘obvious’ result.

Theorem 6.21. Two intersecting rays have a unique common parallel.

Proof. Let OM and OM ′ be the two rays. Pick A on OM and A′ on OM ′ such
that |OA| = |OA′|, as in Figure 14. Construct AM ′ and A′M . Let a and a′ be
the angle bisectors of ∠MAM ′ and ∠MA′M ′, respectively. Let E be the point of
intersection of AM ′ and A′M , and let OE intersect infinity at L. Finally, let A′M
intersect a at F .

a a′

F E

A A′
O

M M ′

L

Figure 14.

We first show a and a′ are ultraparallel. Suppose first that a and a′ intersect
at a point D, which, by symmetry, lies on OL. Consider the two triangles ∆ADM
and ∆A′DM . Since |AD| = |A′D|, we know there exists an isometry which fixes
D and sends A to A′. Since ∠MAD = ∠MA′D, we know AM is sent to A′M
under this isometry. Thus, ∆MAD ≡ ∆MA′D, which is clearly not possible, since
∠ADM 6= ∠A′DM . Thus, the point D cannot exist.

Let us now assume a and a′ are parallel, so they intersect at infinity at L.
This time, let us consider the two triangles ∆AFM and ∆A′FL. By construction,
∠MAF = ∠LA′F , and clearly ∠A′FL = ∠AFM , since they are vertical angles.
Thus, ∆AFM is similar to ∆A′FL, and hence are congruent. Thus, |AF | = |A′F |,
which means F = E, which is clearly absurd. Thus, a and a′ cannot be parallel.

Since a and a′ neither intersect nor are parallel, they must be ultraparallel.
Hence, by Theorem 6.15, there exists a line which is perpendicular to both a and
a′. Let this line intersect a at C and a′ at C ′, as in Figure 15.

We now will show that CC ′ intersects infinity at M and M ′, so is the mutual
parallel we are looking for. Assume CC ′ intersects infinity at points N and N ′.
Note that the triangles ∆MAC and ∆MA′C ′ are similar, since ∠MAC = ∠MA′C ′

and |AC| = |A′C ′|. Thus, ∠NCM = ∠NC ′M . If N 6= M , then ∆MCC ′ is an
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C ′C

A A′
O

N N ′

M ′
M

Figure 15.

asymptotic triangle whose angles sum to 180◦, a contradiction. Thus, N = M , as
desired. Similarly, N ′ = M ′. �

Theorem 6.22. Two similar doubly asymptotic triangles are congruent. That
is, if ∆AMN and ∆A′M ′N ′ are two doubly asymptotic triangles with ∠MAN =
∠M ′A′N ′, then there exists an isometry which sends ∆AMN to ∆A′M ′N ′.

Proof. Let Q and Q′ be the points on MN and M ′N ′ such that AQ and A′Q′

are, respectively, perpendicular to MN and M ′N ′. Then ∆MAQ is similar to
∆M ′A′Q′, so they are congruent. That is, there exists an isometry which sends the
first triangle to the second. But isometries preserve angles, so under this isometry,
we must also have N sent to N ′. �

We can also define triply asymptotic triangles (see Figure 16).

B C

A

A

B

C

Figure 16. Triply asymptotic triangles.

Exercise 6.23. Prove that any two triply asymptotic triangles are congruent.

6.7. The Area of Asymptotic Triangles

In Euclidean geometry, an asymptotic triangle has infinite area. In hyperbolic ge-
ometry, the opposite is true. Though we will not define area in hyperbolic geometry
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116 6. Hyperbolic Geometry

in this section, we will establish and use several of the properties which any area
function should have. These are

(1) Two congruent regions have the same area.

(2) A nonempty region has a nonzero area.

(3) The area of a disjoint union of regions is the sum of the areas of the regions.

(4) The area of a bounded region is finite.

Theorem 6.24. The area of any asymptotic triangle in hyperbolic space is finite.

A

B B1
E B2

B3
B4

Q0 Q Q1 Q2 Q3 Q4

1
2 2

1
2 2

3 3
4 4 3 3

4

M M ′

Figure 17.

Proof. Let ∆ABM be an asymptotic triangle. Let M ′ be an endpoint at infinity
of AB, as in Figure 17. Find the common parallel MM ′. Let Q0 and Q be the
points on MM ′ such that BQ0 and AQ are perpendicular to MM ′. Reflect B
through AQ to get B1, and find Q1 on MM ′ such that B1Q1 is perpendicular
to MM ′. Let B1M

′ intersect BM at E1. By symmetry, E1 is on AQ. Note
that ∆B1Q1M

′ ≡ ∆B1Q1M , so the reflection of E1 through B1Q1 is a point B2

on AM and E2 at the intersection of B1A1 and B2M
′. Repeat, to get B3, B4,

and so on. Note that the triangles labeled 1, 2, 3, ... in ∆ABM are congruent to
the corresponding disjoint triangles labeled 1, 2, 3, ... in the pentagon BAB1Q1Q0.
That is, the triangle ∆ABM can be sliced into pieces and reassembled to form a
subset of the pentagon BAB1Q1Q0. Thus, the area of ∆ABM is less than or equal
to the area of the pentagon, which is bounded and therefore has finite area. �

Exercise 6.25. Prove that the area of any doubly asymptotic triangle is finite.

Exercise 6.26. Prove that the area of all triply asymptotic triangles are finite and
equal.
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Chapter 7

The Poincaré Models of
Hyperbolic Geometry

In this chapter, we investigate two models of hyperbolic geometry developed by
Henri Poincaré (1854 – 1912). Both models are in common use today. Both have
their advantages and disadvantages.

We first study the upper half plane model and eventually show that it is a
model of hyperbolic geometry. The other model is the disc model, which is the
crutch introduced in Chapter 6.

7.1. The Poincaré Upper Half Plane Model

Recall that a complex number z can be represented in Cartesian coordinates (x, y)
where z = x+ iy. This planar representation of the complex numbers is called the
Argand plane. The Poincaré upper half plane model of hyperbolic geometry is the
set of points H above the real axis:

H = {x+ iy : y > 0},

together with the arclength element

ds =

√
dx2 + dy2

y
.

Amazingly, that is the complete description. The remainder of this chapter involves
a detailed investigation of this model, which will in particular establish that this
is a model for hyperbolic geometry. That is, this model does in fact satisfy the
axioms of hyperbolic geometry. In order to show this, we must first discover what
lines are, what the distance function is, and what the isometries are.

117
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118 7. The Poincaré Models of Hyperbolic Geometry

7.2. Vertical (Euclidean) Lines

Let ~x(t) = (x(t), y(t)) be a piecewise smooth parameterized curve between points
~x(t0) and ~x(t1). Recall that the arclength element ds in Euclidean geometry is given

by ds =
√
dx2 + dy2, so the arclength of this curve in Euclidean space is given by

s =

∫ t1

t0

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Now let us suppose ~x(t) = (x(t), y(t)) represents a curve in the Poincaré upper
half plane. Then, because of the different arclength element, the arclength of this
curve is given by

s =

∫ t1

t0

√(
dx
dt

)2
+
(
dy
dt

)2

y
dt.

Let us consider a special curve, the curve

~x(y) = (x0, y) y ∈ [y0, y1].

This is the vertical (Euclidean) line segment between (x0, y0) and (x0, y1). The
Poincaré arclength of this curve is

s =

∫ y1

y0

1

y
dy = ln y1 − ln y0 = ln(y1/y0).

Now, let us consider any piecewise smooth curve ~x(t) = (x(t), y(t)) with ~x(t0) =
(x0, y0) and ~x(t1) = (x0, y1). So, this curve starts and ends at the endpoints of
the previously considered segment. Let us also suppose that y(t) is an increasing
function. Then, we get

s =

∫ t1

t0

√(
dx
dt

)2
+
(
dy
dt

)2

y
dt

≥
∫ t1

t0

√(
dy
dt

)2

y
dt

≥
∫ y(t1)

y(t0)

dy

y

≥ ln y(t1)− ln y(t0).

That is, this curve is longer (using the Poincaré arclength element) than the vertical
line segment which joins the two points. Hence, the shortest path between these
two points is a vertical (Euclidean) line segment. Thus, vertical (Euclidean) lines
in the upper half plane are lines in the Poincaré model.

Exercise 7.1. What is the distance between the points 3 + i and 3 + 5i in the
Poincaré upper half plane H? Remember, the Poincaré upper half plane H comes
equipped with a non-Euclidean arclength element, so the answer is not 4.
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Exercise 7.2. What is the distance between the points −2 + 2i and −2 + i
1

7
in

the Poincaré upper half plane H?

7.3. Isometries

An isometry is a map which preserves lengths. In particular, it preserves arclengths.

For example, the arclength element in Euclidean space is

ds =
√
dx2 + dy2

and it is preserved under the action of the rotation

R(x, y) = (u(x, y), v(x, y)) =

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
=

[
x cos θ − y sin θ
x sin θ + y cos θ

]
.

To show this, we must show that du2 + dv2 = dx2 + dy2:

du2 + dv2 = (cos θdx− sin θdy)2 + (sin θdx+ cos θdy)2

= cos2 θdx2 − 2 cos θ sin θdxdy + sin2 θdy2

+ sin2 θdx2 + 2 sin θ cos θdxdy + cos2 θdy2

= dx2 + dy2,

as desired.

In a similar fashion, to show that a map in the Poincaré upper half plane
model is an isometry, we must show that it preserves this slightly different arclength
element. That is, a map

(u(x, y), v(x, y))

is an isometry if
du2 + dv2

v2
=
dx2 + dy2

y2
.

Some maps are clearly isometries, though the full group1 of isometries is not obvious.
One obvious isometry is the map

Ta(x, y) = (u(x, y), v(x, y)) = (x+ a, y),

since
du2 + dv2

v2
=
dx2 + dy2

y2
,

as desired. We will refer to this map as horizontal translation by a. Note that the
word ‘horizontal’ refers to a Euclidean concept. It is a concept particular to this
model and not to hyperbolic geometry.

Another obvious isometry is reflection through the vertical line x = b:

Rb(x, y) = (u, v) = (2b− x, y).

1In Appendix A.3, we remind the reader of the definition of a group. If the reader is not familiar
with this concept, then this text reads fine with the substitute definition that the group of isometries is
just the collection or set of isometries.
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120 7. The Poincaré Models of Hyperbolic Geometry

A not so obvious isometry is a map called inversion in the unit circle

Φ(x, y) = (u, v) =

(
x

x2 + y2
,

y

x2 + y2

)
.

Let us write r2 = x2 + y2. This aides in checking the arclength element:

du2 + dv2

v2
=
r4

y2

((
r2dx− 2x2dx− 2xydy

r4

)2

+

(
r2dy − 2xydx− 2y2dy

r4

)2
)

=
1

y2

(
((y2 − x2)dx− 2xydy)2 + ((x2 − y2)dy − 2xydx)2

r4

)
=

1

y2r4

(
(x4 − 2x2y2 + y4 + 4x2y2)dx2

−(2xy(y2 − x2) + 2xy(x2 − y2)dxdy + r4dy2
)

=
dx2 + dy2

y2
.

Exercise 7.3. Prove that the dilation

δλ(x, y) = (λx, λy)

preserves the Poincaré arclength element.

7.4. Inversion in the Circle

This last isometry deserves some investigation. In this section, we will show that
the image of a (Euclidean) line under inversion in the unit circle is either a line or
circle, and the image of a circle is either a line or a circle. We will also show that
angles are preserved under this map.

The image of a point P under inversion in the circle centered at O and with
radius r is the point P ′ on the ray OP and such that

|OP ′| = r2

|OP | .

In the map Φ(x, y) considered in the previous section, we took r = 1 and O = 0.

We will also have occasion to use dilation by λ,

δλ(x, y) = (λx, λy)

which was introduced in Section 1.7. It just shrinks or magnifies the image, so
clearly preserves angles and sends lines to lines and circles to circles.

Lemma 7.4. Let l be a line which does not go through the origin O. The image of
l under inversion in the unit circle is a circle which goes through the origin O.

Proof. We will prove this for a line l which does not intersect the unit circle, as in
Figure 1. We leave verification of the other case as an exercise.
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P ′
P

A′

A

O

Figure 1.

Find the point A on l so that OA is perpendicular to l. Let |OA| = a. Find the
point A′ on the ray OA so that |OA′| = 1/a. Construct the circle with diameter
OA′. We claim that this circle is the image of l under inversion. To see this, let P
be an arbitrary point on l and let |OP | = p. Let P ′ be the point of intersection of
the ray OP and the circle with diameter OA′. Let |OP ′| = x. Consider the two
triangles ∆OAP and ∆OP ′A′. These two triangles are similar, since they are both
right angle triangles and they have a shared angle at O. Hence,

|OP ′|
|OA′| =

|OA|
|OP |

x

(1/a)
=
a

p

x =
1

p
.

Thus, P ′ is the image of P under inversion in the unit circle. �

Lemma 7.5. Suppose Γ is a circle which does not go through the origin O. Then
the image of Γ under inversion in the unit circle is a circle.

Proof. We will prove this for a circle Γ which does not intersect the unit circle, as
in Figure 2. We leave verification of the other case as an exercise.

Let the line through O and the center of Γ intersect Γ at points A and B. Let
|OA| = a and |OB| = b. Let Γ′ be the image of Γ under dilation by 1/ab. We claim
that this circle Γ′ is the image of Γ under inversion in the unit circle.

Let B′ and A′ be the images of A and B, respectively (note the reverse order),

under this dilation. Then |OA′| = 1

ab
b = 1/a, so A′ is the image of A under the

inversion. Similarly, B′ is the image of B under the inversion. Now, let l′ be an
arbitrary ray through O which intersects Γ at P and Q. Let Q′ and P ′ be the
images of P and Q, respectively, under the dilation (again, note the reverse order).
We claim that P ′ is the image of P under the inversion. To see this, note that
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l ′

l

P ′
Q ′

Q

P

A′B ′
B

A

O

Γ′

Γ 

Figure 2.

∆OA′P ′ is similar to ∆OBQ since one is the dilation of the other. Note that
∠QBA = ∠QPA, by the Star Trek lemma, and hence ∆OBQ is similar to ∆OPA.
Hence, ∆OA′P ′ ∼ ∆OPA and hence

|OA′|
|OP | =

|OP ′|
|OA|

(1/a)

|OP | =
|OP ′|
a

|OP ′| = 1

|OP | .

Thus, P ′ is the image of P under the inversion, and hence the circle Γ′ is the image
of Γ under inversion. �

Lemma 7.6. Inversions preserve angles.

Note: We define the angle between two curves at a point of intersection to be
the angle between the tangent lines at that point. When we say that angles are
preserved under inversion, we mean that the angle between two curves is equal to
the angle between the images of these two curves under inversion.

Proof. Let us only consider an angle α created by the intersection of a line l not
intersecting the unit circle, and a line l′ through O, as in Figure 3. Note that any
angle can be thought of as the sum or difference of two such angles.

Let A be the point of intersection of the lines which create α. Let P be the
point on l so that OP is perpendicular to l. Let P ′ be the image of P under the
inversion. Then, the image of l under inversion is the circle Γ whose diameter is
OP ′. The image of A is the point A′ of intersection of Γ with l′. Let l′′ be the
tangent to Γ at A′. Then the angle β is the image of the angle α under inversion,
and so we wish to show α = β.
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l ′′
l

l ′

A′ A

P
P ′

O
β 

α 

Figure 3.

To show these two angles are equal, we first note that ∆OAP and ∆OP ′A′ are
similar, since they are both right angle triangles and they share the angle at O.
Thus, ∠A′P ′O = ∠OAP = α. But by the tangential case of the Star Trek lemma,
β = ∠A′P ′O. Thus, α = β, as desired. �

Corollary 7.7. Lines in the Poincaré upper half plane model are (Euclidean) lines
and (Euclidean) half circles which are perpendicular to the x-axis (see Figure 5).

P

Q

O M N

Figure 4.

Proof. Let P and Q be two arbitrary points in H. Let Γ be the circle through
both points P and Q and whose center lies on the x-axis. Let Γ intersect the x-axis
at M and N (Figure 4 suggests how to find M and N). Consider the map ϕ which
is the composition of the horizontal translation by −M followed by inversion in the
unit circle. This map is an isometry since it is the composition of isometries. Note
that M is first sent to the origin O and then to ∞ by the inversion. Thus, the
image of Γ is a (Euclidean) line. Since the center of the circle is on the real axis,
the circle intersects the axis at right angles. Since inversion preserves angles, the
image of Γ is a vertical (Euclidean) line. Since vertical lines are lines in the model,
and isometries preserve arclength, it follows that Γ is a line through P and Q. �
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Figure 5. Lines in the upper half plane.

Exercise 7.8. Let P = 4 + 4i and Q = 5 + 3i. Find M and N , the endpoints of
the Poincaré line through P and Q.

Exercise 7.9. Let P = 12i and Q = 7 + 5i. Find M and N , the endpoints of the
Poincaré line through P and Q.

Exercise 7.10. Finish the proof of Theorem 7.4. That is, show that the image of
a line l under inversion in the unit circle is a circle through O when l is tangent to
the unit circle, or when l intersects the circle in two places, but does not go through
O. What is the image of l if l goes through the origin O?

Exercise 7.11. In the proof of Lemma 7.5, we assumed that Γ lies outside the
unit circle. What are the remaining cases which must be checked? Prove them.

Exercise 7.12. The proof of Lemma 7.6 is not quite complete. What other cases
must be considered?

Exercise 7.13. Show that the map

Φr(x, y) =

(
r2x

x2 + y2
,

r2y

x2 + y2

)
is inversion in the circle with radius r and centered at the origin O.

Exercise 7.14. Prove Lemmas 7.4 and 7.5 analytically. That is, for Lemma 7.4,
let l be a line with equation ax+ by = c and c 6= 0. Show that the image of l under
the action of Φ (or Φr) gives the equation of a circle which goes through O. Do the
same for Lemma 7.5.

Exercise 7.15. Let P be a point inside a circle centered at O. Let T be a point
where the perpendicular to PO intersects the circle. Let P ′ be the point where the
tangent to the circle at T intersects OP . Show that P ′ is the image of P under
inversion in the circle.

Exercise 7.16. Two circles, as shown in Figure 6, intersect at right angles. The
circle centered at O has radius one unit. The point R is an arbitrary point on the
circle centered at P . Prove that

|OS| = 1

|OR| .
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S

R

P
O

Figure 6. See Exercise 7.16.

Exercise 7.17. Write a Geometer’s Sketchpad script which draws the Poincaré
line through two points in H. The input might be the two points and the line
which defines the real axis.

Exercise 7.18. Write a Geometer’s Sketchpad script which constructs the inversion
of a line in a given circle. Use only the buttons to the left and the ‘Construct’ pull-
down menu. Does your script work for all lines? If not, consider the use of rays
instead of lines at some places in your script.

Exercise 7.19. Write a Sketchpad script which demonstrates that inversion in a
circle preserves angles.

Exercise 7.20. Write a Sketchpad script which inverts a circle in a given circle.
Again, use only the buttons and the ‘Construct’ pull-down menu.

Exercise 7.21. Write a Sketchpad script which inverts a circle in a given circle.
This time, include, in your script, an arbitrary point P on the original circle and its
image under inversion. As you drag the point P around the circle, does its inverse
move appropriately? If not, rethink your method of constructing the inverse of P .

Exercise 7.22 ( (The Necklace Theorem or Steiner’s Porism)). Let the circle Γ′ be
inside the circle Γ. Insert a circle c1 externally tangent to Γ′ and internally tangent
to Γ, as in the diagram. Insert another circle c2 tangent to c1, Γ, and Γ′. Continue
around Γ′. Suppose that, for some n, we have cn tangent to c1 (an example with
n = 6 is shown in Figure 7.)
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Γ ′

c3

c1

Γ 

c2

c4

c5

c6

Figure 7. A necklace with n = 6. See Exercise 7.22.

Prove that if this happens for some n and some pair of circles Γ and Γ′, then
no matter where we first draw c1, we will always have cn tangent to c1.

Exercise 7.23. Use Sketchpad to draw a picture like the one in Figure 7.

Exercise 7.24. Let Γ′ and Γ be internally tangent and have centers on the x-axis,
as in Figure 8. Let c0 be the circle with center on the x-axis and such that c0 is
tangent to Γ and Γ′. Let c1 be the circle tangent to Γ, Γ′, and c0, and in general,
let cn be the circle tangent to Γ, Γ′, and cn−1. Let hn be the distance from the
center of cn to the x-axis, and let dn be the diameter of cn. Prove that

hn = ndn.

This result is attributed to Pappus.

The following Exercises 7.25 – 7.28 are related:

Exercise 7.25. Suppose three congruent circles are concurrent at H and inter-
sect in pairs at A, B, and C, as in Figure 9(a). Write a Sketchpad script which
demonstrates that H is the orthocenter of ∆ABC.

Exercise 7.26. Three tangents to a circle centered at I intersect in pairs at A′,
B′, and C ′, as in the Figure 9(b). Write a Sketchpad script which demonstrates
that the line A′I goes through the circumcenter of ∆B′C ′I.

Exercise 7.27. For A, B, C, and H as in Exercise 7.25 and A′, B′, C ′, and I as
in Exercise 7.26, show that H is the orthocenter of ∆ABC if and only if A′I goes
through the circumcenter of ∆B′C ′I. (Hint: Think inversion in some circle.)
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c4
c3 c2

c1

c0

Γ′

Γ 

Figure 8. See Exercise 7.24.

A

C

B H

C ′

A′

B ′

I

(a) (b)

Figure 9. See Exercises 7.25 – 7.28.

Exercise 7.28. For A′, B′, C ′, and I as in Exercise 7.26, prove that A′I goes
through the circumcenter of ∆B′C ′I. (Hint: Let O be the center of the circumcircle
of ∆B′C ′I. What is ∠IC ′B′? What is ∠IOB′? What type of triangle is ∆IOB′?
What is ∠A′IO?) Conclude that for A, B, C, and H as in Exercise 7.25, H is the
orthocenter of ∆ABC.

Exercise 7.29 (*). Two circles Γ and Γ′ intersect at A and D. A common tangent
intersects Γ and Γ′ at E and F , respectively. A line through D parallel to EF
intersects Γ and Γ′ and C and B, respectively, as in Figure 10. Show that the
circumcircles of ∆BDE and ∆CDF intersect again on the line AD. Hint: Exercise
1.170 might help.

Exercise 7.30. Check the result in Exercise 7.29 using Sketchpad.
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Γ 

Γ′

D

A

CB

EF

Figure 10. See Exercise 7.29.

7.5. Inversion in Euclidean Geometry

In this section, we look at inversion as a tool for proving results in Euclidean
geometry. The contents of this section are not relevant to the development of the
Poincaré upper half plane, so may be safely skipped if understanding H is the
immediate goal of the reader. However, I would like to invite all such readers to
return to this section at some time.

There are two more results which are particularly useful when applying inver-
sion to a problem in Euclidean geometry:

Theorem 7.31. Let the images of A and B under inversion in a circle centered
at O be A′ and B′. Then

∠OAB = ∠OB′A′.

Theorem 7.32. Let the images of A and B under inversion in a circle centered
at O with radius r be A′ and B′. Then

|A′B′| = |AB|r2

|OA||OB| .

A beautiful example of the power of inversion is the following exercise:

Exercise 7.33 ( (Ptolemy’s Inequality)). For an arbitrary quadrilateral ABCD,
show that

|AC||BD| ≤ |AB||CD|+ |BC||DA|.
When does equality hold?

Solution. Try this question before reading this solution. If a hint is needed, read
the next line and try again.

Invert in a circle centered at D with radius 1, and apply Theorem 7.32.

The left side of the inequality becomes:

|AC||BD| = |A′C ′|
|A′D||C ′D|

1

|B′D| ,
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and the right side becomes

|AB||CD|+ |BC||DA| = |A′B′|
|A′D||B′D|

1

|C ′D| +
|B′C ′|

|B′D||C ′D|
1

|A′D| .

Multiplying through by |A′D||B′D||C ′D|, the inequality becomes

|A′C ′| ≤ |A′B′|+ |B′C ′|,

which is just the triangle inequality! Furthermore, equality holds if and only if A′,
B′, and C ′ are collinear with B′ between A′ and C ′. That is, we have equality
if and only if A, B, and C lie on a circle through D with B and D on opposite
sides of AB. That is, we have equality if and only if ABCD is a convex cyclic
quadrilateral. �

Exercise 7.34. Prove Theorems 7.31 and 7.32.

Exercise 7.35. Let Q be the image of O under reflection through the line l. Prove
that the image Q′ of Q under inversion in a circle centered at O is the center of the
circle Γ which is the image of l under the same inversion.

Exercise 7.36. Four circles are coincident at a point O in such a way that they are
externally tangent at O in pairs, as in Figure 11(a). These circles intersect again
at points A, B, C, and D. Show that

|AB||OD||OC| = |CD||OA||OB|.

Exercise 7.37. Two circles intersect at A and C. The tangents at A to these
circles intersect them again at B and D, as in Figure 11(b). Show that

|AB||CD| = |AC||AD|.

D

C

B

A

O

B

D

A

C

(a) (b)

Figure 11. See Exercises 7.36 and 7.37.
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7.6. Fractional Linear Transformations

The group of direct isometries is actually very easy to describe – they are all frac-
tional linear transformations of a particular type. Recall that we call an isometry
a direct isometry if it preserves orientation.

A fractional linear transformation is a function of the form

T (z) =
az + b

cz + d

where a, b, c and d are complex numbers, and ad − bc 6= 0. The domain of this
function is the set of complex numbers C together with the symbol ∞, which
represents a point at infinity. We extend the definition of T to include the following:

T (−d/c) = lim
z→−dc

az + b

cz + d
=∞ if c 6= 0,

T (∞) = lim
z→∞

az + b

cz + d
= a/c if c 6= 0,

T (∞) = lim
z→∞

az + b

cz + d
=∞ if c = 0.

We usually represent the fractional linear transformation T with the 2 × 2
matrix

γ =

[
a b
c d

]
,

and write T = Tγ . The matrix representation for T is not unique, since T is also
represented by

kγ =

[
ka kb
kc kd

]
for any scalar k 6= 0. We say that two matrices γ and γ′ are equivalent if they
represent the same fractional linear transformation. That is, two matrices γ and γ′

are equivalent if
Tγ = Tγ′ .

We write γ ≡ γ′.
This matrix representation is more than just a notational convenience. The

composition of fractional linear transformations is in fact related to matrix multi-
plication2 by the following result (proved in Exercise 7.45):

Theorem 7.38.
Tγ1γ2(z) = Tγ1(Tγ2(z)).

Note that the fractional linear transformation TI represented by the identity
matrix

I =

[
1 0
0 1

]
is just the identity function. That is,

TI(z) =
z + 0

0z + 1
= z.

2See Appendix A for a short tutorial on matrices.
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In particular, by Theorem 7.38,

Tγ(Tγ−1(z)) = TI(z) = z.

Thus,
T−1
γ = Tγ−1 .

Let us verify this directly. To find T−1
γ , let us set w = Tγ(z) and isolate z:

w =
az + b

cz + d
(cz + d)w = az + b

czw − az = b− dw

z =
dw − b
−cw + a

.

Thus, T−1
γ is represented by[

d −b
−c a

]
≡ 1

ad− bc

[
d −b
−c a

]
= γ−1.

Note that we have used the requirement that ad− bc 6= 0.

Because of the similarity between matrices and fractional linear transforma-
tions, it is common to interchange the role of the two. In particular, it is common
to write γz when Tγ(z) is meant. We will adopt this convention, and write

γz =

[
a b
c d

]
z =

az + b

cz + d
.

In light of Theorem 7.38, this convention is reasonable, since

(γ1γ2)z = γ1(γ2z),

so either interpretation is appropriate for γ1γ2z. This notation, though, is not
without its flaws, and we must warn that in general, k(γz) 6= (kγ)z, since

k(γz) =
k(az + b)

cz + d

but

(kγ)z = γz =
az + b

cz + d
.

Let us now recall the notations for various sets of matrices:

M2×2(R) =

{[
a b
c d

]
: a, b, c, d ∈ R

}
GL2(R) = {γ ∈ M2×2(R) : det(γ) 6= 0}
SL2(R) = {γ ∈ GL2(R) : det(γ) = 1},

where R can be any of the complex numbers C, the reals R, the rationals Q, or in
the last case, even the integers Z. The first set is the set of matrices, the second is
called the general linear group, and the third is the special linear group.

There is another group, which is less well known, called the projective special
linear group and denoted PSL2(R). This is the group GL2(R) modulo the equiva-
lence relation mentioned above. The group PSL2(C) is isomorphic to the group of
fractional linear transformations. Though this is more precisely the group we are
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132 7. The Poincaré Models of Hyperbolic Geometry

studying, in the following we will stick with the more familiar groups GL2(R) and
SL2(R).

As mentioned earlier, we introduced the group of fractional linear transforma-
tions so that we may describe the group of direct isometries on the upper half plane.
We will show that any 2 × 2 matrix with real coefficients and determinant equal
to one represents a fractional linear transformation which is an isometry of the
Poincaré upper half plane. That is, the group SL2(R), when viewed as a group of
fractional linear transformations, is a group of isometries on the upper half plane.

Lemma 7.39. The horizontal translation by a,

Ta(x, y) = (x+ a, y),

can be thought of as a fractional linear transformation which is represented by an
element of SL2(R).

Proof. As a map of complex numbers,

Ta(z) = z + a,

which is generated by

τa =

[
1 a
0 1

]
. �

Lemma 7.40. The map

ϕ(x, y) =

( −x
x2 + y2

,
y

x2 + y2

)
,

which is inversion in the unit circle followed by reflection through x = 0, can be
thought of as a fractional linear transformation which is represented by an element
of SL2(R).

Proof. As a function of complex numbers, the map ϕ is just

ϕ(z) = ϕ(x+ iy) =
−x+ iy

x2 + y2
=

−(x− iy)

(x+ iy)(x− iy)
=
−1

z
.

This map is generated by

σ =

[
0 −1
1 0

]
. �

Theorem 7.41. The group SL2(R) is generated by σ and the maps τa as a ranges
over R.

Proof. Our proof is constructive. Note that

στr =

[
0 −1
1 0

] [
1 r
0 1

]
=

[
0 −1
1 r

]
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so

στsστr =

[
0 −1
1 s

] [
0 −1
1 r

]
=

[
−1 −r
s rs− 1

]
and

στtστsστr =

[
0 −1
1 t

] [
−1 −r
s rs− 1

]
=

[
−s 1− rs

st− 1 rst− r − t

]
.

Thus, if

γ =

[
a b
c d

]
∈ SL2(R)

and a 6= 0, then set s = −a, solve b = 1 − rs = 1 + ra and c = st − 1 = −at − 1,
which gives

r =
b− 1

a
and t =

−1− c
a

.

Note that since det γ = 1, this forces d = rst− r− t. Thus, if a 6= 0, then γ can be
written as a product involving only σ and translations. If a = 0, then c 6= 0, since
ad− bc = 1, and hence

σγ =

[
−c −d
a b

]
,

which can be written as a suitable product. Thus, SL2(R) is generated by the
translations and σ. �

Corollary 7.42. The group SL2(R), when thought of as a group of fractional linear
transformations, is a subgroup of isometries of the Poincaré upper half plane.

Corollary 7.43. If γ ∈ GL2(R) and det γ > 0, then γ is an isometry of the
Poincaré upper half plane.

Proof. Note that
1√

det γ
γ ∈ SL2(R),

and

(kγ)z = γz. �

Theorem 7.44. The image of a circle or line in C under the action of a fractional
linear transformation γ ∈ SL2(C) is again a circle or line.

Proof. Note that in the proof of Theorem 7.41, the numbers r, s, and t need not
be real. Thus, we can solve for a, b, c, and d, even if these numbers are complex.
Now note that both σ and τa (where a can now be complex) send lines and circles
to lines and circles, so every element of SL2(C) sends lines and circles to lines and
circles. �
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Exercise 7.45. Prove Theorem 7.38. That is, prove that if γ1 and γ2 are two
invertible 2× 2 matrices, then

Tγ1γ2(z) = Tγ1(Tγ2(z)),

or equivalently, that

(γ1γ2)z = γ1(γ2z).

Exercise 7.46. Prove that if γ ≡ γ′, then

γ′ = kγ

for some scalar k.

Exercise 7.47. In the upper half plane model H, carefully draw the asymptotic
triangle with vertices i, 1 + i, and 1. Is the map

γ =

[
1 −1
1 0

]
an isometry of H? In the same diagram, carefully draw the image of the asymptotic
triangle under the action of γ.

Exercise 7.48. In the Poincaré upper half plane H, carefully draw the triangle
with vertices i, −1 + i, and 1 + i. In the same diagram, carefully draw the image
of this triangle under the isometry

γ =

[
2 1
1 1

]
.

[S]

Exercise 7.49. Let P =
8 + i

13
, Q =

13 + i

20
, and γ =

[
2 −1
−3 2

]
. What are γP

and γQ? Sketch P , Q, and their images. Is γ an isometry? Why? Use all this
information to find the distance between P and Q in H.

Exercise 7.50. Let P = 2 + 4i and Q =
6 + 4i

3
be two points in the Poincaré

upper half plane. Let

γ =

[
1 2
−1 2

]
.

What are γP and γQ? What is the Poincaré distance from P to Q? [S]

Exercise 7.51 (†). Suppose T is a fractional linear transformation such that
T (1) = 1, T (0) = 0, and T (∞) = ∞. Prove that T is the identity map. That
is, show that T (z) = z for all z.

Exercise 7.52. Show that the dilation δλ(z) = λz is an isometry of H. Find
an isometry which sends a + ib to i by composing a dilation δλ and a horizontal
translation τr for some λ and r.

Exercise 7.53. Write the dilation δλ(x, y) = (λx, λy) as a product of σ’s and τa’s.

Exercise 7.54. Suppose γ ∈ SL2(R). Show that γ is a direct isometry. Hint: Show
that τa and σ are direct isometries.
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7.7. The Cross Ratio

An important tool when working with fractional linear transformations is the cross
ratio.

Definition 7.55 (Cross ratio). Let a, b, c, and d be four elements of C ∪ {∞}, at
least three of which are distinct. We define the cross ratio of a, b, c, and d to be

(a, b; c, d) =
a− c
a− d

/ b− c
b− d .

The algebra for the element∞ and for division by zero is the same as for fractional
linear transformations.

If we fix three distinct elements a, b, and c ∈ C∪ {∞}, and think of the fourth
element as a variable z, then we get a fractional linear transformation:

T (z) = (z, a; b, c) =
z − b
z − c

/a− b
a− c .

This is the unique fractional linear transformation T with the property that T (a) =
1, T (b) = 0, and T (c) =∞ (see Exercise 7.58). This observation is the motivation
for defining the cross ratio. It can also be used to solve some very general problems,
as we will see in the following exercises.

Exercise 7.56. Find the fractional linear transformation which sends 1 to 1, −i
to 0, and −1 to ∞.

Solution. Set

w = (z, 1;−i,−1)

=
z + i

z + 1

/ 1 + i

1 + 1

=
2z + 2i

(1 + i)(z + 1)
,

or in the matrix notation,

w =

[
2 2i

1 + i 1 + i

]
z. �

Exercise 7.57. Find the fractional linear transformation which fixes i, sends ∞
to 3, and 0 to −1/3.

Solution. Let
γ1z = (z, i;∞, 0)

and
γ2w = (w, i; 3,−1/3).

Then, γ1(i) = 1, γ1(∞) = 0, and γ1(0) = ∞. Also, γ2(i) = 1, γ2(3) = 0, and
γ2(−1/3) = ∞, so in particular, γ−1

2 (1) = i, γ−1
2 (0) = 3, and γ−1

2 (∞) = −1/3.
Hence, if we compose these two functions, we get

γ = γ−1
2 γ1

with the property that γ(i) = i, γ(∞) = 3, and γ(0) = −1/3, as desired.
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Let us set w = γ(z). Then

w = γ−1
2 γ1(z)

γ2(w) = γ1(z)

(w, i; 3,−1/3) = (z, i;∞, 0).

Solving, we get

w − 3

w + 1/3

/ i− 3

i+ 1/3
=
z −∞
z − 0

/ i−∞
i− 0

(3i+ 1)w − 9i− 3

3(i− 3)w + i− 3
=
i

z

z =
(−9i− 3)w − 1− 3i

(3i+ 1)w − 9i− 3

=
−3(3i+ 1)w − (3i+ 1)

(3i+ 1)w − 3(3i+ 1)

=
3w + 1

−w + 3

=

[
3 1
−1 3

]
w.

Thus,

w =

[
3 −1
1 3

]
z.

In the last step, we used that[
3 1
−1 3

]−1

=
1

10

[
3 −1
1 3

]
≡
[
3 −1
1 3

]
.

Note that the entries of γ are all real, so this fractional linear transformation is in
fact an isometry of the upper half plane. �

Exercise 7.58. Suppose a, b, and c are distinct elements of C ∪ {∞}, and that T
is a fractional linear transformation such that T (a) = 1, T (b) = 0, and T (c) = ∞.
Prove that T is unique. [H]

Exercise 7.59 (†). There is an important result hidden in the solution to Exercise
7.57. Suppose γ is a fractional linear transformation and that γa = a′, γb = b′, and
γc = c′. Prove that

(z, a; b, c) = (γz, a′; b′, c′).

Exercise 7.60 (†). Find the fractional linear transformation which sends 0 to −i,
1 to 1, and∞ to i. What is the image of H under this map? If l is a vertical line or
half circle perpendicular to the real axis, what is its image under this map? (The
image of H under this map is the Poincaré disc model D of hyperbolic geometry
introduced as our ‘crutch’ in Chapter 6.) [S]

Exercise 7.61. The map r(z) = eiθz rotates the complex plane an angle θ about
the origin. Compose this map with the inverse of the map found in Exercise 7.60
to get a map of H. Is this new map an isometry?
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Exercise 7.62. A circle centered at P and with radius r is the set of points a
distance r away from P . Prove that a circle in the Poincaré model is a (Euclidean)
circle which lies entirely within the model. [H]

Exercise 7.63. Suppose w = γz where γ ∈ SL2(R). Suppose also that

(z,A;B,C) = (w,B;C,A)

for all z ∈ H and some distinct points A, B, and C ∈ H. What can be said about
∆ABC? What can be said about γ? [A]

Exercise 7.64. Let (a, b; c, d) = λ. Show that (a, b; d, c) = 1/λ and (a, c; b, d) =
1−λ. Use this to find (a, x; y, z) for the other three permutations (x, y, z) of {b, c, d}.
Exercise 7.65. Suppose λ = (a, b; c, d) = (a, c; d, b). What is λ?

7.8. Translations

If this model is to model hyperbolic space, then our sixth axiom must hold:

(6) Given any two points P and Q, there exists an isometry f such that f(P ) = Q.

So let P = a+ ib and Q = c+ id. There are many choices for such an isometry.
Let us choose the isometry f which also fixes ∞. Since f(∞) =∞ and f(P ) = Q,
the line through P and ∞ must be sent to the line through Q and ∞. Thus, the
vertical line at a is sent to the vertical line at c. In particular, f(a) = c. Thus, we
must have

(w, c+ id; c,∞) = (z, a+ ib; a,∞)

w − c
id

=
z − a
ib

w =
d(z − a)

b
+ c

=

[
d bc− ad
0 b

]
z.

Since this matrix has real coefficients and its determinant is positive (since b > 0
and d > 0), it is an isometry of the Poincaré upper half plane.

This map is in fact a translation. Recall that translations are direct isometries
which have no fixed points (and rotations are direct isometries which have exactly
one fixed point). In Exercise 7.54, we showed that every element of SL2(R) is a
direct isometry. Thus, to show that this map is a translation, we must show that it
has no fixed points. A map γ has a fixed point if there exists a point z0 such that
γz0 = z0. In this case, if we solve for z, we get

dz0 + bc− ad
b

= z0

z0 =
ad− bc
d− b .

But note that a, b, c, and d are all real so if b 6= d, then z0 is real and hence is not
in the upper half plane. Thus, this map has no fixed points in H and hence is a
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translation. If b = d, then z0 = ∞, and again, there are no solutions in the upper
half plane, so this map is a translation.

In this geometry, we classify translations depending on how many fixed points
there are on the line at infinity (that is, in R ∪∞.) Let

γ =

[
a b
c d

]
.

Then γ(z) = z if

cz2 + (d− a)z − b = 0.

If c 6= 0, then this is a quadratic with discriminant

∆ = (d− a)2 + 4bc.

Hence, γ has a fixed point in H if ∆ < 0, and no fixed points if ∆ ≥ 0. If ∆ = 0,
then γ has exactly one fixed point on the line at infinity. We call such a translation
a parabolic translation. If ∆ > 0, then we call γ a hyperbolic translation.

Exercise 7.66. Suppose γ =

[
a b
c d

]
∈ SL2(R) and c = 0. Under what condition(s)

is γ a parabolic translation?

Exercise 7.67. Suppose γ ∈ SL2(R) and γ∞ =∞. Prove that γ is a translation.

Exercise 7.68. Is horizontal translation by a (the map τa) a parabolic or hyper-
bolic translation?

Exercise 7.69. Prove that a map γ ∈ SL2(R) is either the identity on H or has at
most one fixed point in H. Thus, every element in SL2(R) is either a rotation or
translation.

Exercise 7.70. Suppose γ is a hyperbolic translation. Show that there exists
exactly one line l in H such that for any P ∈ l, we have γP ∈ l. Show that no such
line exists if γ is a parabolic translation. What is the corresponding statement for
translations in Euclidean geometry?

Exercise 7.71. Prove that for any two distinct points P and Q inH, there exists an
infinite number of translations f such that f(P ) = Q. Contrast this with Exercise
1.33.

Exercise 7.72. Find a map γ ∈ SL2(R) which sends 1 + i to i and ∞ to 1. Does
this map have a fixed point?

Solution. Let γ be the isometry which we are looking for. We do not seem to have
enough information, since we only know the image of two points. However, since γ
is an isometry, it also has some special properties. In particular, it sends lines to
lines (that is, lines in H).

Let us look at the line through i + 1 and ∞ (see Figure 12). This line goes
through 1, too. The image of this line includes the point i and 1, so it is the line
through i and 1. This is the (Euclidean) half circle perpendicular to the real axis
that goes through 1 and i. This circle also goes through −1. Thus, the last piece
of information we need is that 1 is sent to −1.
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1− 1

i

0

i+1

Figure 12.

Thus,

(z, i+ 1; 1,∞) = (w, i;−1, 1)

z − 1

z −∞
/ i+ 1− 1

i+ 1−∞ =
w + 1

w − 1

/ i+ 1

i− 1(
z − 1

i

)(
i+ 1

i− 1

)
=
w + 1

w − 1[
−1 1
0 1

]
z =

[
1 1
1 −1

]
w[

−1 −1
−1 1

] [
−1 1
0 1

]
z = w

w =

[
1 −2
1 0

]
z.

Thus, we should choose γ =

[
1 −2
1 0

]
, except that this matrix does not have

determinant equal to 1, so is not in SL2(R). Since two matrices which are multi-
ples of each other give the same fractional linear transformation, we merely divide
through by the square root of the determinant:

γ =
1√
2

[
1 −2
1 0

]
=

[
1/
√

2 −
√

2

1/
√

2 0

]
.

To see whether γ has a fixed point, we solve

γz = z

z − 2

z
= z

0 = z2 − z + 2

z =
1± i

√
7

2
.

Since the point z = 1+i
√

7
2 is in H, this map has a fixed point. Thus, γ is a

rotation. �
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Exercise 7.73. Find the isometry γ of H in GL2(R) which sends 2i to 3i+ 4 and
2 to −5. Does this isometry have any fixed points in H?

Exercise 7.74. Find an isometry γ ∈ GL2(R) of H which sends 2i to 3i and ∞ to
−1. [S]

7.9. Rotations

We can similarly find the fractional linear transformation which fixes P = a+ib and
rotates counter clockwise through an angle θ. To do this, first find the (Euclidean)
line through P which makes an angle θ with the vertical line. Find the perpendicular
to this line, and find where it intersects the x-axis. The circle centered at this
intersection and through P is the image of the vertical line under the rotation. Let
this circle intersect the x-axis at M and N . Then the rotation is given by

(w,P ;N,M) = (z, P ; a,∞).

1
r

x

P= i
θ 

M N

Figure 13.

Let us do this in the case when P = i, as in Figure 13. Let the center of the half
circle be −x, and let the radius of the circle be r. Note that these are Euclidean
measures, and not lengths in the Poincaré model. Then r cos θ = x, r sin θ = 1,
M = −r − x, and N = r − x.

After much algebraic manipulation, we find w = ρθz where

ρθ =

[
cos θ2 sin θ

2

− sin θ
2 cos θ2

]
.

Exercise 7.75. Fill in the algebraic manipulation that establishes the above result.

Exercise 7.76. Use the above result to find the map which rotates an angle θ
about a point P . (Hint: Translate P to i, then do the rotation, and translate
back.)

Exercise 7.77. Find an isometry which fixes 1 + i and sends 1 to 2. [S]

Exercise 7.78. Find an isometry in GL2(R) which sends i+ 1 to i and ∞ to 1. Is
this isometry a rotation or translation? [A]
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Exercise 7.79. The map

γ =

[
1 −5
1 3

]
is a rotation of H. What is the center of this rotation?

Exercise 7.80. Find an isometry γ ∈ GL2(R) which fixes i and sends∞ to 1. The
isometry γ fixes i and hence is a rotation about i through some angle. What is that
angle?

Exercise 7.81. Recall that all triply asymptotic triangles are congruent. Find
three distinct isometries in GL2(R) which send the triply asymptotic triangle with
vertices 1, 2, and 3 to the triply asymptotic triangle with vertices 0, −1, and ∞.
Remember, for an element of GL2(R) to be an isometry, it must have a positive
determinant. Identify which of these isometries are rotations and which are trans-
lations.

7.10. Reflections

The set of isometries which do not preserve orientation in the Poincaré upper half
plane model H also have a very nice description. Recall that the reflection through
the imaginary axis is given by

R0(x, y) = (−x, y),

which can be expressed using complex coordinates as

R0(z) = −z.
Here, the bar indicates the complex conjugate of z.

Note that we can write

R0(z) = µz,

where

µ =

[
−1 0
0 1

]
.

The reflection through the line l in H can be found by first moving the line
l to the imaginary axis using an appropriate isometry γ1, then reflecting through
the imaginary axis, and moving the imaginary axis back to l. Thus, this reflection
becomes

γ−1
1 µγ1z = γ−1

1 µγ1z.

Note that µ2 is the identity, and that µγµ ∈ SL2(R) for every γ ∈ SL2(R), since
detµ = −1. Thus,

γ−1
1 µγ1z = γ−1

1 (µγ1µ)µz = γ2µz = γ2(−z),
where γ2 ∈ SL2(R). Thus, every reflection can be written in the form γ(−z) for
some γ ∈ SL2(R). In fact, we can prove the following:

Theorem 7.82. Every isometry f of H which is not direct can be written in the
form

f(z) = γ(−z)
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for some γ ∈ SL2(R). Furthermore, if γ =

[
a b
c d

]
, then f(z) is a reflection if and

only if a = d.

Exercise 7.83. Find the image of i under reflection through the line l whose
endpoints are 1 and 3.

Solution. Let the reflection be

f(z) = γ(−z) =

[
a b
c a

]
(−z).

We will solve for γ ∈ GL2(R) with positive determinant (instead of in SL2(R)).
Since the endpoints of l are 1 and 3, we get the following two equations: From
f(1) = 1, we get [

a b
c a

]
(−1) = 1

−a+ b

−c+ a
= 1

−a+ b = −c+ a

0 = 2a− b− c;
and from f(3) = 3, we similarly get

0 = 6a− b− 9c.

Subtracting the first equation from the second, we get

4a− 8c = 0,

so a = 2c. Plugging this into the first equation, we get

0 = 4c− b− c,
so b = 3c. Let us set c = 1, so a = 2 and b = 3. Thus,

γ =

[
2 3
1 2

]
.

It is a fluke that det γ = 1. We now solve for f(i):

f(i) =

[
2 3
1 2

]
(−i) =

2i+ 3

i+ 2
=

(
2i+ 3

2 + i

)(
2− i
2− i

)
=

8 + i

5
. �

Exercise 7.84. Find the reflection of 1 + i through the line l with endpoints 2 and
5.

Exercise 7.85. Find a formula for the reflection through the line l with endpoints
−1 and 1.

Exercise 7.86. Find a formula for the reflection through the line l which goes
through 3i and 1 + 4i.

Exercise 7.87. Prove Theorem 7.82.
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7.11. Lengths

We can also use the cross ratio to establish a formula for the distance between two
points or the length of a line segment. First, let us suppose two points P = a+ ib
and Q = a+ ic lie on the same vertical line. Then, the distance between P and Q
is given by

|PQ| =
∣∣∣∣∫ c

b

dy

y

∣∣∣∣
= |ln(c/b)| .

Now, suppose P and Q are two points in H which do not lie on a vertical line.
Then there exists a half circle with center on the x-axis which goes through both
P and Q. Let this half circle have endpoints M and N . Since isometries preserve
distances, let us consider the image of P and Q under the isometry σ which sends
P to i and the line PQ to a vertical line. That is, the map which sends P to i, M
to 0, and N to ∞. Note that the image of Q under this map lies on this line, so
σ(Q) = 0 + ic for some c, and that

|PQ| = |ln(c/1)| = |ln c|.
Finally, note that

(σz, i; 0,∞) = (z, P ;M,N)

and in particular, since σQ = ic and (σz, i; 0,∞) =
σz

i
, we get

c = (Q,P ;M,N),

so

|PQ| = |ln(Q,P ;M,N)|.
Exercise 7.88. Show that |PQ| is independent of which endpoint we call M and
which we call N . That is, show that

|ln(Q,P ;M,N)| = |ln(Q,P ;N,M)|.
Show also that |PQ| = |QP |.
Exercise 7.89. Find the Poincaré distance |PQ| between P = 4+4i and Q = 5+3i.

Solution. In order to find the Poincaré length |PQ|, we must first find M and
N . We do this by finding the center x of the (Euclidean) circle which describes
the line PQ, as in Figure 14. Note that x lies on the real axis (since the circle is
perpendicular to the real axis), so x is real. Also, the Euclidean distance between
x and P is the same as that between x and Q. Thus,

(4− x)2 + 42 = (5− x)2 + 32

x2 − 8x+ 16 + 16 = x2 − 10x+ 25 + 9

2x = 2.

Hence, the center is at x = 1, and the radius of the circle is

r =
√

(4− 1)2 + 42 = 5,
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P

Q

0 x

Figure 14.

so M and N are 1± 5. Thus,

|PQ| = | ln(4 + 4i, 5 + 3i,−4, 6)|

=

∣∣∣∣ln(4 + 4i+ 4

4 + 4i− 6

/5 + 3i+ 4

5 + 3i− 6

)∣∣∣∣
=

∣∣∣∣ln( (8 + 4i)(−1 + 3i)

(−2 + 4i)(9 + 3i)

)∣∣∣∣
=

∣∣∣∣ln( 4(2 + i)(−1 + 3i)

2i(i+ 2)(−3i)(3i− 1)

)∣∣∣∣
= | ln(4/6)| = ln(3/2).

Note that the cross ratio is real and positive, as it must be. If this had not been
the case, then we would know we had made an error in our calculations. �

Exercise 7.90. Find the Poincaré distance between P = 1 + 3i and Q = 8 + 4i.
Write your answer in the form ln(a/b) where a and b are positive integers.

Exercise 7.91. Find the distance |PQ| between P = i and Q =
1 + i

√
3

2
in the

Poincaré upper half plane H.

Exercise 7.92. Find the Poincaré distance between 12 + 5i and 5 + 12i. Write
your answer in the form ln(a/b) where a and b are integers. [S]

7.12. The Axioms of Hyperbolic Geometry

Up to this point, we have been careful not to refer to the Poincaré upper half plane
H as the hyperbolic plane. In this section, we will establish that H satisfies the
axioms of hyperbolic geometry and hence is a model of hyperbolic geometry.

Recall, from Chapter 6, the axioms of hyperbolic geometry:

(1) We can draw a unique line segment between any two points.

(2) Any line segment can be continued indefinitely.

The Poincaré upper half plane H satisfies these two axioms, since there exists
a half circle (or vertical line) through any two points in the plane. This line has
infinite length in both directions.
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(3) A circle of any radius and any center can be drawn.

This is essentially by definition.

(4) Any two right angles are congruent.

We saw that the isometries preserve the Euclidean angular measure in the
Poincaré upper half plane, so let us define angular measure in H to be the same as
the Euclidean angular measure. Then, any two right angles are congruent.

(6) Given any two points P and Q, there exists an isometry f such that f(P ) = Q.

(7) Given a point P and any two points Q and R such that |PQ| = |PR|, there
exists an isometry which fixes P and sends Q to R.

(8) Given any line l, there exists a map which fixes every point in l and leaves no
other point fixed.

We established these in Sections 7.8, 7.9 and 7.10.

Finally, the fifth postulate:

(5) Given any line l and any point P not on l, there exist two distinct lines l1 and
l2 through P which do not intersect l.

This is clear, since given any half circle perpendicular to the x-axis (the line
l), and a point P not on l, there exist two parallel lines l1 and l2, as shown in
Figure 15. Then any line through P and between l1 and l2 does not intersect l.

Pl

l1

l2

Figure 15. Two lines l1 and l2 which go through P and are parallel to l.

7.13. The Area of Triangles

In Chapter 6, we saw that the area of an asymptotic triangle is finite. We also
saw that all triply asymptotic triangles are congruent. Hence, the area of a triply
asymptotic triangle is a constant. What is that area in the Poincaré upper half
plane model of hyperbolic geometry?

We evaluate this by first looking at the doubly asymptotic triangle with vertices
at P = ei(π−θ) in H, and vertices at infinity of 1 and∞, as in Figure 16. The angle
at P for such a triangle has a measure of θ.

The area element for the Poincaré upper half plane model of hyperbolic space
is derived by taking a small (Euclidean) rectangle with sides oriented horizontally
and vertically. The sides approximate hyperbolic line segments, since the rectangle
is very small. The area is therefore the product of the height and width (measured
with the hyperbolic arclength element). The vertical sides of the rectangle have
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P

10

θ 

θ 

− cosθ  

Figure 16.

Euclidean length ∆y, and since y is essentially unchanged, the hyperbolic length is
∆y

y
. The horizontal sides have Euclidean length ∆x and hence hyperbolic length

∆x

y
. Thus, the area element is given by

dxdy

y2
. We now use this to find the area of

the triangle in Figure 16:

Theorem 7.93. The area of a doubly asymptotic triangle ∆PMN with points M
and N at infinity and with angle ∠MPN = P has area

|∆PMN | = π − P,
where the angle P is measured in radians.

Proof. Let the angle at P have measure θ. Then ∆PMN is similar to the doubly
asymptotic triangle in Figure 16 and hence is congruent to it. But the area of that
triangle is given by

A(θ) =

∫ 1

− cos θ

∫ ∞
√

1−x2

dydx

y2

=

∫ 1

− cos θ

dx√
1− x2

= π − θ. �

As an immediate consequence, we get the following result:

Corollary 7.94. The area of a triply asymptotic triangle is π.

Proof. Let ∆LMN be a triply asymptotic triangle, and let P be a point in the
interior, as in Figure 17. Then

|∆LMN | = |∆PLM |+ |∆PMN |+ |∆PNL|
= (π − ∠MPL) + (π − ∠MPN) + (π − ∠NPL)

= 3π − 2π. �
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P

NML

Figure 17.

Corollary 7.95. Let ∆ABC be a triangle in H, with angles A, B, and C. Then,
the area of ∆ABC is

|∆ABC| = π −A−B − C,
where the angles A, B, and C are measured in radians.

B
B

C A
A

C

N

L M
L M N

Figure 18. An arbitrary triangle in an abstract model (left) and in the

Poincaré upper half plane (right).

Proof. Figure 18 depicts two arbitrary triangles ∆ABC. One is an abstract picture
like those we were drawing in Chapter 6, while the other is in the Poincaré model
H. Continue the edges of the triangle indefinitely as rays AB, BC, and CA. Let
the points at infinity on these rays be, respectively, L, M , and N . Find the common
parallels LM , MN , and NL. These lines form a triply asymptotic triangle, whose
area is π. Thus,

|∆ABC| = π − |∆ALN | − |∆BLM | − |∆MCN |
= π − (π − (π −A))− (π − (π −B))− (π − (π − C))

= π −A−B − C. �

Exercise 7.96. Consider the doubly asymptotic triangle ∆AMN in H where

A =
8 + i

5
, M =

5

3
, and N = 2. What is the image of ∆AMN under the isometry

γ =

[
2 −3
−1 2

]
?

Use this to find the hyperbolic area of ∆AMN . [S]
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Exercise 7.97. Find the area in H of the doubly asymptotic triangle with vertices
i, 1, and 1 +

√
2.

Exercise 7.98. Draw the asymptotic triangle ∆ABM in H with A = i, B = i
√

3,
and M = 1. What is the Poincaré length |AB|? What is the area of ∆ABM?

7.14. The Poincaré Disc Model

In Poincaré disc model D of hyperbolic geometry is the crutch we introduced in
Chapter 6. In Exercise 7.60, we found the map

φ =

[
1 −i
−i 1

]
,

which sends the upper half plane H onto the unit disc. Under this map, lines and
circles perpendicular to the real line are sent to circles which are perpendicular
to the boundary of D. Thus, hyperbolic lines in this model are the portions of
Euclidean circles in D which are perpendicular to the boundary of D.

When dealing with this model, we usually express points in polar coordinates.
That is,

D = {reiθ : 0 ≤ r < 1}.
The arclength element is (see Exercise 7.99)

ds =
2
√
dr2 + r2dθ2

1− r2
.

The group of proper isometries in D has a description similar to the description
on H. It is the group

Γ =

{
γ ∈ SL2(C) : γ =

[
a b

b a

]}
.

All improper isometries of D can be written in the form

γ(−z),
where γ ∈ Γ.

Exercise 7.99. Prove that the arclength element in D is

ds =
2
√
dr2 + r2dθ2

1− r2
.

[H][S]

Exercise 7.100. Prove that Γ is the group of proper isometries of D. [S]

Exercise 7.101. Characterize the set of reflections in D. [H][A]

Exercise 7.102. What is the area element in D? [A]

Exercise 7.103. Let P andQ be two points in D and letM andN be the endpoints
of the line PQ. What is the formula for the length |PQ| in terms of P , Q, M , and
N . [A]
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7.15. Circles and Horocycles

Lines, in the Poincaré upper half plane model, are lines and circles which are
perpendicular to the real axis. It took a little bit of investigation before we came
to that conclusion. We might also wonder, then, what do circles look like in this
model? They are, in fact, circles which lie entirely in H. To see this, we first note
that a Euclidean circle centered at 0 in the Poincaré disc model is a hyperbolic
circle.

So suppose that C is a hyperbolic circle in H centered at P . There exists an
isometry γ ∈ GL2(R) which sends P to i. After composing with φ, we have a circle
centered at 0 in the disc model, which is a Euclidean circle. The composition of
φγ is in GL2(C), and hence so is its inverse. But such maps send circles and lines
to circles and lines. Thus, C must be either a Euclidean circle or line. Since this
image cannot intersect ∞, it must be a circle. Thus, hyperbolic circles in H are
Euclidean circles in H.

In Euclidean geometry, as the radius of a circle goes to infinity, the circle itself
looks more and more like a line. In the Poincaré upper half plane, the limiting case
is a (Euclidean) circle tangent to the real axis, which we know is not a line (see
Figure 19) . Such an object is called a horocycle.

Figure 19. Circles and horocycles, together with their centers, in the
Poincaré upper half plane and disc models of hyperbolic geometry.

One way of describing a circle centered at a point P is to call it the locus of a
point under all rotations centered at P . Similarly, a horocycle can be thought of as
the locus of a point under the action of all parabolic translations γ ∈ SL2(Z) which
fix a point P on the boundary of H. The point P is the point of tangency and is
thought of as the center of the horocycle. Poincaré lines through P are thought of
as radii. Like the radii of a circle, they intersect the horocycle at right angles. With
this interpretation, a parabolic translation exhibits properties similar to a rotation.
We sometimes think of parabolic translations as being a boundary case between
hyperbolic translations and rotations.

Exercise 7.104. In the upper half plane model, describe the horocycles centered
at ∞. Justify your answer.
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150 7. The Poincaré Models of Hyperbolic Geometry

Exercise 7.105. Use Geometer’s Sketchpad to draw a circle and several of its radii
in H.

Exercise 7.106 (*). Show that the area A of a circle of radius r in H is

A = 4π sinh2(r/2),

where sinh(x) = ex−e−x
2 is the hyperbolic sine function. Note that, unlike triangles,

the area of a hyperbolic circle can be arbitrarily large.

Exercise 7.107 (*). Use the result found in Exercise 7.106 to find an equation for
the circumference of a circle in hyperbolic geometry. [H]

Exercise 7.108. The area of a triangle is at most π. The area of a circle is
unbounded. Hence, there must be a largest circle that can be inscribed in a triangle.
What is the diameter of this circle? [S]

Exercise 7.109. What is the diameter of the largest circle that can be inscribed
in a quadrilateral?

Exercise 7.110. What is the diameter of the largest circle that can be inscribed
in a pentagon?

Exercise 7.111. In Euclidean geometry, all triangles have a circumcircle. In hy-
perbolic geometry, this is not the case. Draw a (nonasymptotic) triangle ∆ABC in
H which does not have a circumcircle.

7.16. Hyperbolic Trigonometry

We are probably all familiar with the hyperbolic trigonometric functions. These
are

coshx =
ex + e−x

2
,

sinhx =
ex − e−x

2
,

tanhx =
sinhx

coshx
=
ex − e−x
ex + e−x

,

and so on. We may also be familiar with some identities, such as

cosh2 x− sinh2 x = 1

cosh(x+ y) = coshx cosh y + sinhx sinh y.

Hyperbolic trigonometric functions are very similar to the usual trigonometric func-
tions, and are in fact related by Euler’s formula:

cos θ =
eiθ + e−iθ

2
= cosh iθ,

sin θ =
eiθ − e−iθ

2i
= −i sinh iθ.

The hyperbolic trig functions have useful applications in mathematics, engi-
neering, and physics, but these functions alone are not what hyperbolic trigonom-
etry is about. Hyperbolic trigonometry is the geometry of triangles in hyperbolic
geometry.
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7.16. Hyperbolic Trigonometry 151

Let us begin our investigation with the geometry of right triangles. By side-
angle-side, all triangles ∆ABC with right angle at C and sides of length |AC| = b
and |BC| = a are congruent. Thus, we should be able to find the angles A and B,
and the length c of the side AB. In Euclidean geometry, we find these values using
the Pythagorean theorem and the trigonometric functions. In hyperbolic geometry,
we have similar results.

Theorem 7.112 (The Hyperbolic Pythagorean Theorem). Let
∆ABC be a right angle triangle in hyperbolic geometry with right angle at C and
sides of length a, b, and c opposite points A, B, and C. Then

cosh c = cosh a cosh b.

Before we prove this theorem, let us establish a model right triangle which will
facilitate the proofs of the following two theorems.

We first recall that a point P = iep in H is a distance p away from i. Recall
too that

φ =

[
1 −i
−i 1

]
sends H to D. Note that φ(i) = 0, and that

φ(iep) =
iep − i
ep + 1

= i tanh(p/2).

Thus, a point which is a hyperbolic distance p away from zero in D is a Euclidean
distance tanh(p/2) away from zero.

Hence, without loss of generality, we may choose our right triangle ∆ABC with
right angle at C and sides of length |AC| = b and |BC| = a to be the triangle in the
Poincaré disc model D with vertices C = 0, A = tanh(b/2), and B = i tanh(a/2).
A better choice though is one with A at zero (see Figure 20). So let us find the
proper isometry γ of D which sends A to 0 and the line AC to itself. That is, let
γ(A) = 0, γ(1) = 1 and γ(−1) = −1. Then,

(z,A; 1,−1) = (γz, 0; 1,−1)

from which we get

γ =

[
−1 A
A −1

]
.

Applying this to B, we get

γ(B) =
−B +A

AB − 1
=
−i tanh(a/2) + tanh(b/2)

i tanh(a/2) tanh(b/2)− 1
.

So, in the following, let us use the triangle ∆ABC in D with

A = 0

B =
−i tanh(a/2) + tanh(b/2)

i tanh(a/2) tanh(b/2)− 1

C = − tanh(b/2).
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C

B

A

Figure 20. A well chosen right angle triangle in the Poincaré disc.

Proof of the hyperbolic Pythagorean theorem. Let ∆ABC be the right tri-
angle described above. Since B is a distance tanh(c/2) away from zero, we get

tanh(c/2) =

∣∣∣∣−B +A

AB − 1

∣∣∣∣
tanh2(c/2) =

tanh2(a/2) + tanh2(b/2)

tanh2(a/2) tanh2(b/2) + 1
.

Note that sech 2 x = 1− tanh2 x (see Exercise 7.117), so

sech 2(c/2) = 1− tanh2(c/2)

=
tanh2(a/2) tanh2(b/2)− tanh2(a/2)− tanh2(b/2) + 1

tanh2(a/2) tanh2(b/2) + 1

=
(tanh2(a/2)− 1)(tanh2(b/2)− 1)

tanh2(a/2) tanh2(b/2) + 1

cosh2(c/2) = (tanh2(a/2) tanh2(b/2) + 1) cosh2(a/2) cosh2(b/2)

= sinh2(a/2) sinh2(b/2) + cosh2(a/2) cosh2(b/2)

= 2 cosh2(a/2) cosh2(b/2)− cosh2(a/2)− cosh2(b/2) + 1.

Note also that cosh 2x = 2 cosh2 x− 1 (see Exercise 7.118), so

cosh c = 2 cosh2(c/2)− 1

= 4 cosh2(a/2) cosh2(b/2)− 2 cosh2(a/2)− 2 cosh2(b/2) + 1

= (2 cosh2(a/2)− 1)(2 cosh2(b/2)− 1)

= cosh a cosh b. �

To find the angles A and B, we use the following analogue of the definitions of
the sine and cosine functions:

AMS Open Math Notes: Works in Progress; Reference # OMN:202006.110830; Last Revised: 2020-07-11 09:32:23



7.16. Hyperbolic Trigonometry 153

Theorem 7.113. Let ∆ABC be a right angle triangle in hyperbolic geometry with
right angle at C and sides of length a, b, and c opposite angles A, B, and C. Then

sinA =
sinh a

sinh c
and cosA =

cosh a sinh b

sinh c
.

Unfortunately, our choice of notation has now caught up with us. We have
used and will use the notation A, B, and C to represent both the points A, B, and
C and the angles A, B, and C. I hope that this does not cause too much confusion,
and that the intended use will be obvious from the context.

Proof. We again use the triangle described above. Since A is at zero, the hyper-
bolic lines AB and AC are Euclidean lines. Thus, we can use regular trigonometry
to find the angle at A.

Rationalizing the denominator for B, we get

B =
(tanh2(a/2) + 1) tanh(b/2) + i tanh(a/2)(tanh2(b/2)− 1)

tanh2(a/2) tanh2(b/2) + 1
.

Note that

tanh2(b/2)− 1 = −sech 2(b/2)

tanh2(a/2) + 1 =
sinh2(a/2) + cosh2(a/2)

cosh2(a/2)
=

cosh a

cosh2(a/2)
.

Thus,

B =
cosh a tanh(b/2) cosh2(b/2)− i tanh(a/2) cosh2(a/2)

sinh2(a/2) sinh2(b/2) + cosh2(a/2) cosh2(b/2)

=
cosh a sinh b− i sinh a

2(sinh2(a/2) sinh2(b/2) + cosh2(a/2) cosh2(b/2))
.

Hence

cosA =
cosh a sinh b√

cosh2 a sinh2 b+ sinh2 a

sinA =
sinh a√

cosh2 a sinh2 b+ sinh2 a
.

We note that

cosh2 a sinh2 b+ sinh2 a = cosh2 a cosh2 b− cosh2 a+ sinh2 a

= cosh2 a cosh2 b− 1

= cosh2 c− 1

= sinh2 c,

where cosh a cosh b = cosh c by the hyperbolic Pythagorean theorem. Thus,

cosA =
cosh a sinh b

sinh c
and sinA =

sinh a

sinh c
. �

With these two theorems, we can solve SSS, SAS, and ASA problems if one of
the angles is a right angle. In general, given the three pieces of information required
of either SSS, SAS, or ASA, we should be able to determine all the sides and angles
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of the triangle. In Euclidean geometry, this is done using the Law of Sines, the Law
of Cosines, and in the case of ASA, we use the fact that the angles sum to π. In
hyperbolic geometry, we have some similar results.

Theorem 7.114 (The Hyperbolic Law of Sines). Let ∆ABC be a triangle in hy-
perbolic geometry with sides a, b, and c opposite the angles A, B, and C. Then

sinh a

sinA
=

sinh b

sinB
=

sinh c

sinC
.

Theorem 7.115 (The Hyperbolic Law of Cosines for Sides). Let
∆ABC be a triangle in hyperbolic geometry with sides a, b, and c opposite the
angles A, B, and C. Then

cosh c = cosh a cosh b− sinh a sinh b cosC.

The proofs of both these theorems are almost identical to the proofs in Eu-
clidean geometry, so we leave the proofs as exercises.

Note that, just like the Law of Cosines in Euclidean geometry, the hyperbolic
Law of Cosines includes the hyperbolic Pythagorean theorem as its first term. This
is not too surprising, since hyperbolic and Euclidean geometry look alike locally. We
can see this in the Law of Cosines. Recall that the Taylor series for the exponential
function is

ex = 1 + x+
x2

2!
+
x3

3
+ ....

For very small values of x, the higher order terms contribute very little to the value
of ex. Thus, we can write the Law of Cosines as

1 +
c2

2
+ (higher order terms) = 1 +

a2

2
+
b2

2
− ab cosC + (higher order terms).

Ignoring the higher order terms, we get

c2 = a2 + b2 − 2ab cosC,

which is the Law of Cosines in Euclidean geometry.

In hyperbolic geometry the sum of the angles is not constant so we need a
different result to solve ASA problems.

Theorem 7.116 (The Hyperbolic Law of Cosines for Angles). Let
∆ABC be a triangle in hyperbolic geometry with sides a, b, and c opposite the
angles A, B, and C. Then

cosC = − cosA cosB + sinA sinB cosh c.

Recall that, by Theorem 6.12, similar triangles are congruent in hyperbolic
geometry. Thus, we should be able to solve AAA problems. This is in fact done
using the hyperbolic Law of Cosines for angles.

Exercise 7.117. Prove sech 2 x = 1 − tanh2 x. Compare this with the identity
sec2 x = 1 + tan2 x.

Exercise 7.118. Prove the multiple angle formulas

cosh(x+ y) = coshx cosh y + sinhx sinh y

sinh(x+ y) = sinhx cosh y + sinh y coshx.
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7.17. The Angle of Parallelism 155

Use the first to find formulas for cosh2 x and sinh2 x.

Exercise 7.119. Let ∆ABC be a right angle triangle with right angle at C. Prove
that

cosA = cosh a sinB.

Exercise 7.120. Let ∆ABC be a right angle triangle with right angle at C. Prove
that

cotA cotB = cosh c.

Exercise 7.121. Prove the hyperbolic Law of Sines.

Exercise 7.122. Prove the hyperbolic Law of Cosines for sides.

Exercise 7.123. Prove the hyperbolic Law of Cosines for angles.

Exercise 7.124. Verify that the Pythagorean theorem, sine and cosine rules, and
the Law of Sines are consistent with the corresponding rules in Euclidean geometry
if a, b, and c are very small lengths.

Exercise 7.125. What does the Law of Cosines for angles say if c is very small?

Exercise 7.126 (* (The Extended Law of Sines in Hyperbolic Geometry)). Sup-
pose a triangle ∆ABC has a circumcircle with radius R. Prove that

tanhR =
tanh(a/2)

cos
(
B+C−A

2

) =
tanh(b/2)

cos
(
A+C−B

2

) =
tanh(c/2)

cos
(
A+B−C

2

) .
Exercise 7.127 (*). Suppose ACBD is a quadrialteral with right angles at A, B,
and C. Let a = |BC| and b = |AC|. Prove

cosD = sinh a sinh b.

Exercise 7.128 (* (Heron’s Formula in Hyperbolic Geometry)). Since the area of
a triangle is determined by its angles, and since the sides of a triangle determine
the angles, there must exist a formula for the area of a triangle in terms of its sides.
That is, there must be a version of Heron’s formula in hyperbolic geometry. State
and prove this formula. [H][A]

7.17. The Angle of Parallelism

In Section 7.16, our investigation of the geometry of triangles omitted the class of
asymptotic triangles. In a singly asymptotic triangle ∆ABM with M at infinity,
we know M = 0. We also know AM and BM are infinite, but knowing that is not
helpful, since not all singly asymptotic triangles are congruent. However, given two
of A, B, and m = |AB|, we can solve for the third. The relation between them is,
in fact, the Law of Cosines for angles.

Theorem 7.129 (Law of Cosines for Asymptotic Triangles). Let
∆ABM be a singly asymptotic triangle with M at infinity and m = |AB|. Then

1 = − cosA cosB + sinA sinB coshm.

AMS Open Math Notes: Works in Progress; Reference # OMN:202006.110830; Last Revised: 2020-07-11 09:32:23



156 7. The Poincaré Models of Hyperbolic Geometry

Though this looks like a special case of the Law of Cosines, it is not covered
by the proof sought for in the previous section. We will establish this relation in
the special case when B is a right angle, and leave the general result as an exercise.
In the special case when B is a right angle, the angle A is the angle of parallelism
Π(m) defined in Chapter 6.

Theorem 7.130. The angle of parallelism Π(m) is given by

sin Π(m) = sech m.

Proof. The angle of parallelism Π(m) is the angle at A of a singly asymptotic
triangle ∆ABM with a right angle at B. Since all such triangles are congruent,
we can calculate Π(m) by investigating a conveniently chosen singly asymptotic
triangle.

A

B = i

θ 



0 1− 1

m

Figure 21.

Let us choose B = i and M =∞ in H, as in Figure 21. Since the angle at B is
a right angle, A must lie on the Euclidean half circle centered at 0 and with radius
1. Thus, A = eiθ = cos θ + i sin θ for some θ. Note that the angle ∠MAB is the
angle between the tangent to the circle and the vertical line, and that this is the
same as the angle made by the real axis and the Euclidean line joining A and 0.
Hence, θ = A. (Note again the dual role of the symbol A. Sometimes A is meant
to be the point A, and at other times, it is the angle ∠MAB.)

Let us now find the length of m:

m = | ln(B,A; 1,−1)|.
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For notational simplicity, let us write c = cosA and s = sinA. Then,

m = |ln(i, c+ is; 1,−1)|

=

∣∣∣∣ln( i− 1

i+ 1

/c+ is− 1

c+ is+ 1

)∣∣∣∣
=

∣∣∣∣ln( i(1 + i)(c+ is+ 1)(c− 1− is)
(i+ 1)((c− 1)2 + s2)

)∣∣∣∣
=

∣∣∣∣ln( i(c2 − (1 + is)2)

c2 − 2c+ 1 + s2

)∣∣∣∣
=

∣∣∣∣ln( i(c2 − 1− 2is+ s2)

2− 2c

)∣∣∣∣
=

∣∣∣∣ln( s

1− c

)∣∣∣∣.
Hence,

coshm =
em + e−m

2

=
1

2

(
s

1− c +
1− c
s

)
=
s2 + (1− c)2

2s(1− c)

=
2− 2c

2s(1− c)

=
1

s
=

1

sinA
,

or equivalently,

sin Π(m) = sech m. �

Exercise 7.131. Prove the Law of Cosines for asymptotic triangles.

Exercise 7.132. Prove that

cos Π(m) = tanhm.

Exercise 7.133. Prove that ∆ABC has a circumcircle if and only if

C < Π(a/2) + Π(b/2).

Exercise 7.134. There is a different proof of Theorem 7.17. Consider the triangle
∆ABC with right angle at C. Solve for sinA in terms of a and b, and take the
limit as a goes to infinity.

7.18. Curvature

Notice that the arclength element for the Poincaré upper half plane model

ds =

√
dx2 + dy2

y
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contains no units. Thus, we get exactly the same model if we use instead the
arclength element

ds = k

√
dx2 + dy2

y
.

With this new arclength element, the area of a triply asymptotic triangle becomes
k2π. The quantity k is just a scaling factor and may even contain units, like miles or
kilometers. The curvature of a particular model of hyperbolic space is the quantity
−1/k2. Thus, if k is very large, then the curvature is very small. By observing
distant stars (as in Exercise 1.1, Chapter 1), Kulczycki decided that if we live in
a hyperbolic space, then k > 9.6 × 1014 km [Gre93]. In Exercise 1.1 of Chapter
1, we assumed that our universe is Euclidean so that we would know that the
triangle formed by the Earth at the spring and fall solstices and the distant star
has angles which sum to 180◦. Using Kulczycki’s result, for Alpha Centauri (the
nearest star, 4.3 light years away), the sum of the angles differs from 180◦ by less
than one-trillionth of a degree. Though the third angle in the triangulation for this
star is tiny – about one one-thousandth of a degree – it is very large compared to
the difference from 180◦ and the sum of the angles in the triangle. Thus, for this
star (and other near stars), we may as well assume our universe is Euclidean.

Exercise 7.135. How does scaling the arclength element by k change the Pytha-
gorean theorem?

Exercise 7.136. How does scaling the arclength element by k change the Law of
Cosines for sides?

Exercise 7.137. How does scaling the arclength element by k change the formula
for the area of a circle?
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Chapter 8

Tilings and Lattices

In our study of regular and semiregular polyhedra, we noted that some choices
led to flat vertices. These choices give tilings of the plane. In this chapter, we
investigate the regular and semiregular tilings of the Euclidean plane. Like the
regular polyhedra, there are only a finite number of such tilings. All regular tilings
induce a lattice in the plane, where the individual tiles are fundamental domains.
However, the fundamental domains or individual tiles need not be regular, and in
fact, lend themselves quite well to artistic expression.

Finally, we will investigate regular tilings in the hyperbolic plane. Unlike the
Euclidean plane, there exist an infinite number of regular tilings of hyperbolic space.
There are also other tilings which do not have analogues in the Euclidean plane.

8.1. Regular Tilings

We say a tiling is regular if each tile is a regular n-gon for a fixed n. There exist
tilings with equilateral triangles, squares, and regular hexagons, and no others (see
Figure 1).

Figure 1. The three regular tilings.

159
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160 8. Tilings and Lattices

Exercise 8.1. Prove that these three tilings are the only regular tilings of Euclidean
space.

Exercise 8.2. The idea of duality introduced for Platonic solids extends to regular
tilings. What are the duals of each of the regular tilings?

8.2. Semiregular Tilings

A tiling is semiregular if each tile is a regular n-gon and each vertex is identical. The
number of tiles to a vertex is largest if the corners of each tile have the smallest
possible angular measure – namely 60◦. Thus, there are at most six tiles to a
vertex, and this can happen only if each tile is triangular, so we have the regular
tiling pictured above. So let us first study the possibility that there are exactly
five tiles to a vertex. Not all five can be triangles, so consider first that four are
triangles. The last must then be a hexagon, since the remaining corner must have
an angular measure of 120◦.

The representation of semiregular polyhedra introduced in Chapter 5 can be
used for tilings too. Hence, the tiling with four triangles and a hexagon at each
vertex is represented by (3, 3, 3, 3, 6) (see Figure 2).

Figure 2. The tiling (3, 3, 3, 3, 6).

If there are three triangles to a vertex, then the other two must at least be
squares and cannot be larger than squares. This gives the tilings in Figure 3

If there are two triangles to a vertex, then the other three are at least squares,
so each vertex has more than 360◦. For the same reason, there cannot be fewer
than two triangles at each vertex.

Let us now consider the possibility that there are four tiles to a vertex. At most
two can be triangles. Note that the angular measure of the corner of a regular n-gon

is (n−2)180◦

n . Thus, if two tiles are triangles and the other two tiles are respectively
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8.2. Semiregular Tilings 161

Figure 3. The two tilings with three triangles and two squares to a vertex.

an n-gon and an m-gon, then we get the equation

2(180◦)
3

+
(n− 2)180◦

n
+

(m− 2)180◦

m
= 360◦

2

3
+ 1− 2

n
+ 1− 2

m
= 2

1

3
=

1

n
+

1

m
.

The only solution to this last equation in the integers is n = m = 6. This gives the
tiling (3, 6, 3, 6) in Figure 4, and also the tiling (3, 3, 6, 6).

Figure 4. The tiling (3, 6, 3, 6).

Now, suppose only one tile is a triangle. If two others are squares, then the
last must be a hexagon (see Figure 5).

If only one other is a square, then the two remaining tiles are at least pentagons,
and the angles sum to more than 360◦. If no tiles are triangles, then the rest are
at least squares, and four squares already have angles which sum to 360◦.

AMS Open Math Notes: Works in Progress; Reference # OMN:202006.110830; Last Revised: 2020-07-11 09:32:23



162 8. Tilings and Lattices

Figure 5. The tiling (3, 4, 6, 4).

Finally, suppose there are three tiles to a vertex – an n-gon, m-gon, and l-gon.
Then, we get the equation

1− 2

n
+ 1− 2

m
+ 1− 2

l
= 2

1 =
2

n
+

2

m
+

2

l
.

This makes for an interesting number theoretic question. If we further assume
l ≤ m ≤ n, then we get the solutions (l,m, n) = (3, 7, 42), (3, 8, 24), (3, 9, 18),
(3, 10, 15), (3, 12, 12), (4, 5, 20), (4, 6, 12), (4, 8, 8), (5, 5, 10), and (6, 6, 6). Of these,
only (3, 12, 12), (4, 6, 12), (4, 8, 8), and (6, 6, 6) are possible.

Exercise 8.3. Show that if a semiregular tiling has three tiles to a vertex and
includes an n-gon for n odd, then the other two tiles must be identical. Explain why
this eliminates all possibilities for (l,m, n) above, except those which we claimed
are possible.

Exercise 8.4. Construct the tiling with a square, hexagon, and dodecagon, at each
vertex.

Exercise 8.5. Construct the tiling with a square and two octagons at each vertex.

Exercise 8.6. Explain why the tilings (3, 3, 6, 6) and (3, 6, 4, 4) do not exist.

8.3. Lattices and Fundamental Domains

The notion of a lattice comes from linear algebra. A lattice Λ in a vector space V
is the set

Λ = {a1~v1 + ...+ an~vn : ai ∈ Z},
where {~v1, ...,~vn} is a basis for V . For example, in the Euclidean plane, the set of
integer pairs (m,n) forms a lattice. In geometry, we have a more general notion of
a lattice.

Let G be a subgroup of the group of isometries in Euclidean geometry (or
hyperbolic geometry). We say G is a discrete subgroup if for any point P , the
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8.3. Lattices and Fundamental Domains 163

image of P under G is isolated. That is, if

inf{d(P,Q) : Q ∈ G(P ), Q 6= P} > 0.

A set F is a fundamental domain if for any point Q, there exists an isometry σ ∈ G
and a unique point P ∈ F so that Q = σP . We call Λ a lattice if there exists
a point P and a discrete subgroup G of isometries such that Λ = G(P ) and the
fundamental domain for G has finite area.

Let Λ be a lattice in the Euclidean plane viewed as a vector space. Then Λ
is generated by two independent vectors ~v1 and ~v2. This lattice, under our new
definition, is given by the group G generated by the two translations by ~v1 and
~v2, and is the image of the origin. For example, the set of integer pairs is a lattice
generated by the group G which is generated by the two translations by ~v1 = (1, 0)
and ~v2 = (0, 1). It can also be described by the group G′ generated by translation
by (1, 0) and rotation by 90◦ about the origin. Three fundamental domains for G
(F1, F2, and F3) are illustrated in Figure 6. (Actually, only part of the boundary of
these figures belong to the fundamental domain. For example, F1 should include,
perhaps, the left and top edges and the top left lattice point, but neither the
bottom nor right edges, nor the other three lattice points on its boundary. We
must make these exclusions so that every point is the image of a unique point
in the fundamental domain. We will not mention these distinctions again.) The
fundamental domains of G′ have a quarter of the area, and two examples, F4 and
F5, are shown in Figure 6. Fundamental domains are the generalizations of tiles.

F1 F2

F3

F4 F5

Figure 6.
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8.4. Tilings in Hyperbolic Space

We call a polygon in hyperbolic geometry a regular polygon if all edges have the
same length and every angle has the same measure. In Euclidean geometry, the
angles of a regular n-gon depend only on n. In hyperbolic geometry, the angles
depend on both n and the length of each side. The longer the edge, the smaller the
angle. The angle is largest when the edges are small, which is when the polygon
resembles a polygon in Euclidean space. That is, the upper bound on the angles is
the angle in a regular Euclidean polygon. Thus, there exists a regular n-gon whose

angles are equal to α for any α such that 0 < α <
(n− 2)180◦

n
.

So, for example, we cannot tile the hyperbolic plane with ‘squares’ such that
four squares are at each vertex, since it is impossible to construct a regular 4-gon
with every angle equal to 90◦. However, it is possible to tile the hyperbolic plane
with regular 4-gons such that five or more squares are at each vertex.

A regular tiling of the upper half plane with six squares to a vertex is shown
in Figure 7. The same tiling in the disc model is shown in Figure 8.

Recall that the dual tiling is derived by joining the centers of the tiles. The
dual tiling to Figure 8 is shown in Figure 9, which has four hexagons at each vertex.

In Figure 10, we depict a semiregular tiling with two squares and two hexagons
at each vertex. This tiling was obtained from Figure 9 by joining the midpoints of
the edges of the tiles in that tiling.

Unlike Euclidean geometry, in hyperbolic geometry we have a notion of asymp-
totic triangles. We can in fact tile the hyperbolic plane with such triangles, as
shown in Figure 11.

One of the most common tilings in modern mathematics is of interest because
of its related group of isometries. This is the tiling whose vertices are the image of

the sixth root of unity ρ = e2πi/6 = 1+
√

3
2 under the action of SL2(Z). The tiling is

shown in Figure 12.

Exercise 8.7. What is the area of each square tile in Figure 8?

Exercise 8.8. What is the area of each hexagonal tile in Figure 9?

Figure 7. A tiling of the Poincaré upper half plane model with six squares to a vertex.
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8.4. Tilings in Hyperbolic Space 165

Figure 8. The same tiling as in Figure 7, but in the Poincaré disc model.

Exercise 8.9. What is the area of each regular triangular tile if H can be tiled
with seven of these triangles at each vertex? [S]

Exercise 8.10. In this exercise, we find the vertices of a square ABCD centered
at P = i which gives a tiling of H with six squares to a vertex. Let one of the
vertices be at A = ia. Where is the diagonal vertex C? Use rotation through π/2
(see Section 7.9) to find the other two vertices. Find a formula in terms of a to find
the angle ∠PAB. Use this to solve for a. [A]

Exercise 8.11. Write a Geometer’s Sketchpad script which inverts a point in a
circle. The input can vary, but one possibility is the circle of inversion and the
point.

Exercise 8.12. Write a script that draws the line through two points in H. Sug-
gested input is the two points and the real line.

Exercise 8.13. The solution for a found in Exercise 8.10 is a constructible length.
Construct the point A = ia in a Geometer’s Sketchpad sketch. Construct the other
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Figure 9. The dual to the tiling in Figure 8 – four hexagons at each vertex.
The vertices in this tiling are the centers of the squares in the tiling in Figure 8.

three vertices. (Hint: Construct the diagonal point C and the circumcircle for the
square.) Use the scripts found in Exercises 8.11 and 8.12 to tile around one of the
vertices.

Exercise 8.14. Use Exercise 8.10 and the map φ =

[
1 −i
−i 1

]
which sends H to

the disc model to find the vertices of the square centered at 0 which tiles the plane
with six squares to a vertex. Repeat Exercises 8.11, 8.12, and 8.13 to tile a portion
of the disc. Compare your sketch with Figure 8. [A]

Exercise 8.15 (*). Find a if A = ia is the vertex of a regular n-gon in H centered
at i and of the appropriate shape to tile H with m tiles at each vertex. [S]

Exercise 8.16. Tile the disc with four hexagons to a vertex, but with one hexagon
centered at 0.

Exercise 8.17 (*). Tile the disc with three squares and three triangles at each
vertex.
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8.4. Tilings in Hyperbolic Space 167

Figure 10. A semiregular tiling, with two squares and two hexagons at each
vertex. This tiling was obtained from the tiling in Figure 9 by joining the

midpoints of the sides of the hexagon.

Exercise 8.18 (*). Let the regular pentagon ABCDE in H be centered at i and
let A = ir. If the length r is chosen so that this pentagon can tile H with four
pentagons to a vertex, then r is constructible. Find it, and use it to tile around the
vertex A.

Exercise 8.19. Let the Poincaré disc model be drawn in the complex plane cen-
tered at 0. Let A1A2...An be an n-gon with center 0, A1 real, and such that the
hyperbolic plane can be tiled with these n-gons with m such tiles at a vertex. Show
that A1 and A2 are constructible (in the Euclidean plane) if and only if both the
n-gon and m-gon can be constructed.

Exercise 8.20 (*). The notion of constructibility is equally valid in hyperbolic
geometry. The hyperbolic straightedge is used to make the hyperbolic line through
two constructed points, and the hyperbolic compass is used to make the circle
centered at a constructed point and going through a constructed point. Suppose
that we begin with the points 0 and 1/2 in the Poincaré disc D. Show that every
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Figure 11. A tiling of the Poincaré disc model with triply asymptotic triangles.

point which is constructible in D using the hyperbolic tools is also constructible
using Euclidean tools. Are all points which are in D and are constructible using
Euclidean tools also constructible using hyperbolic tools?

8.5. Tilings in Art

The master of creative tilings is M.C. Escher (1898 –1972). Creative tiling, in
Euclidean geometry, can be fun for anyone and makes an appropriate art or math
project for middle school students.

Hyperbolic tilings are a little more complicated. Inspired by the work of Cox-
eter, Escher produced a couple of hyperbolic tilings. These appear in Figures 14
and 15. Circle Limit IV is based on a regular tiling with four hexagons to a ver-
tex. Circle Limit III is based on a semiregular tiling with three squares and three
triangles to each vertex.

Exercise 8.21. What is the area of each fish in Escher’s Circle Limit III (Fig-
ure 15)? [S]
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ρ ρ2

Figure 12. The tiling of the Poincaré upper half plane induced by the action
of SL2(Z). The tiles are singly asymptotic triangles. The usual choice for the

fundamental domain is the triangle with vertices at ∞, the sixth root of unity

ρ = e2πi/6 = 1+i
√
3

2
, and the cube root of unity ρ2 = e2πi/3 = −1+i

√
3

2
.

[Removed for copyright consideration.]
c©2000 Cordon Art B.V.-Baarn-Holland. All rights reserved.

Figure 13. A triangular tiling with rotational symmetry, M.C. Escher’s Sym-

metry Drawing E21 (Human figures).

[Removed for copyright consideration.]
c©2000 Cordon Art B.V.-Baarn-Holland. All rights reserved.

Figure 14. M.C. Escher’s Circle Limit IV.

[Removed for copyright consideration.]
c©2000 Cordon Art B.V.-Baarn-Holland. All rights reserved.

Figure 15. M.C. Escher’s Circle Limit III, a semiregular tiling of hyperbolic space.

Exercise 8.22. Create an artistic tiling that has translational symmetry in two
directions. The example in Figure ?? was created by Sasha Neugebauer.

Exercise 8.23. Create an artistic tiling that has translational and rotational sym-
metry.
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Exercise 8.24 (*). Create an artistic tiling in the Poincaré disc.
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Chapter 9

Foundations

Historically, an expansive theory like geometry (or calculus or set theory) must
first prove itself useful before it is ever developed in depth. The development of a
field does not begin with definitions, but with intuition. A definition is a carefully
crafted creation of a mind which already has an intuitive grasp of the subject and
has discovered the need of a precisely defined object. In this chapter, our aim is to
use our intuitive grasp of geometry to come up with a set of definitions and axioms
from which all else can be derived.

9.1. Theories

An axiom is a statement which we accept as true without proof. A set of axioms
is consistent or coherent if there are no statements which can be proven to be both
true and false. A theory is the set of results which follow from a set of definitions
and consistent axioms. Two sets can generate the same theory. For example, in
Chapter 1 we accepted a set of axioms to define Euclidean geometry, and we also
accepted on faith that the intersection of two circles contains at most two points
(Lemma 1.20). This statement is really a theorem in Euclidean geometry, but since
we accepted it without proof, we were in essence thinking of it as an axiom. Thus,
there is no unique or canonical choice of axioms one picks to define a geometry, and
the particular set of assumptions one chooses is essentially a matter of personal
taste. The advantage of accepting Lemma 1.20 without proof in Chapter 1 is that
we avoided a complicated proof of a result which certainly was not very difficult to
accept as being true. There are also disadvantages, the most fundamental of which
is that we are asked to accept more on faith.

In Chapter 6, we began a development of the theory of hyperbolic geometry.
At that point, we did not know whether the theory even existed, or if our set of
axioms led to a contradiction. In Chapter 7, we developed a model and showed
that it satisfied the axioms presented in Chapter 6. The existence of this model
is the proof that the set of axioms is consistent, and that the theory of hyperbolic
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172 9. Foundations

geometry is valid. It also showed that Euclid’s fifth postulate could not follow from
the first four, since if it did, then the parallel postulate of hyperbolic geometry
would contradict the first four postulates, since it clearly contradicts Euclid’s fifth
postulate. This also points out the disadvantage of accepting an extraneous result
like Lemma 1.20. To show that the set of axioms which includes Lemma 1.20 is
consistent, we must find a model which satisfies these axioms. In particular, we
must show that Lemma 1.20 is satisfied, and this is usually no easier than deriving
it from the other axioms.

Another advantage of a simple set of axioms is that such a set is easier to
accept on faith – it is easier to believe that they do not lead to a contradiction.
Furthermore, if the set of axioms is simple enough, it is more likely that changing
only one axiom (like the parallel postulate) might lead to a consistent set of axioms,
and consequently a different but equally valid theory. If, in our set of axioms which
defines Euclidean geometry, we included as an axiom the theorem that the angles
in a triangle sum to 180◦, then to ‘discover’ hyperbolic geometry, we must discard
two axioms.

9.2. The Real Line

A fundamental component of the foundations we develop for planar geometry is
the existence and properties of the real line, which may be thought of as one-
dimensional Euclidean geometry. A formal development of the real line is probably
best left to a course in real analysis, so in this section, we will only briefly review
the steps, with the understanding that this is a review for the reader. If the reader
has never seen such a development, the reader may safely skip this section after
accepting that the reals exist and have the following two properties:

(1) The reals are totally ordered or just ordered. That is, for any two real numbers
a and b, we can say either a = b, a < b or b < a. This property gives us a
notion of betweeness: c is between a and b if either a ≤ c ≤ b or b ≤ c ≤ a.

(2) The reals are complete. Naively, this means that any decimal representation
represents a real number. We will use this property to define the completeness
of planar geometries.

We develop the reals by starting with the natural numbers, zero, and the oper-
ations of addition and multiplication. We note that 0 is the additive identity, and
that 1 is the multiplicative identity. We postulate the existence of additive and
multiplicative inverses, and the other field axioms, to arrive at the rationals Q. We
note that the rationals are ordered.

The rationals have gaps in them. For example, it is possible to find a rational
number p/q such that p2/q2 < 2 and is as close to 2 as we desire, yet it is not
possible to find a rational p/q such that p2/q2 = 2. We fill in these gaps by defining
Cauchy sequences.

Definition 9.1 (Cauchy’s criterion). A sequence {an}∞n=1 = {a1, a2, a3, ...} is
Cauchy if for any ε > 0 there exists an M (which may depend on ε) such that
for any m, n > M , we have

|am − an| < ε.
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We will be interested only in rational Cauchy sequences. That is, sequences
{an}∞n=1 with an ∈ Q for all n. Note that a rational Cauchy sequence may not
converge in the rationals.

We say two rational Cauchy sequences {an}∞n=1 and {bn}∞n=1 are equivalent if

lim
n→∞

(an − bn) = 0,

and define the equivalence class [{an}∞n=1] of the sequence {an}∞n=1 to be the set of
all Cauchy sequences which are equivalent to {an}∞n=1. We define the reals R to be
the set of all equivalence classes of rational Cauchy sequences.

An example of a rational Cauchy sequence is the sequence

{an}∞n=1 = {1.4, 1.41, 1.414, 1.4142, ...}.
The general definition of an is given by

an =
a

10n

where a is the largest integer such that

a2

102n
< 2.

The sequence {an}∞n=1 is Cauchy since given any ε > 0, there exists an M such that

ε > 10−M > 0,

and for any n, m > M ,

|an − am| ≤ 10−M < ε,

as desired.

We usually denote the equivalence class which contains this rational Cauchy
sequence with

√
2.

9.3. The Plane

As we mentioned before, the set of axioms one accepts on faith can be a matter
of personal taste. Euclid’s set of postulates for Euclidean geometry are by far the
most famous but are not quite adequate. Let us reintroduce them here so that we
may use them for guidance and discover both their virtues and failings.

(1) We can draw a unique line segment between any two points.

(2) Any line segment can be continued indefinitely.

(3) A circle of any radius and any center can be drawn.

(4) Any two right angles are congruent.

(5) If a line meets two other lines so that the sum of the angles on one side is less
than two right angles, then the two other lines meet at a point on that side.

These axioms already presuppose several primitive concepts. They presuppose
a notion of length; definitions of points, line segments, lines, and circles; and even
that the Euclidean plane is two dimensional.

We will start our development with the following definition: Let E be a set
of elements which we call points, and let E have several properties which we will
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define in the following (through Section 9.8). We will call E the Euclidean plane.
The first property we require of E is that it contain at least two points.

9.4. Line Segments and Lines

The first notion we want to define on this set is the notion of a line segment. In
Chapter 1, we used the definition ‘A line segment between two points is the shortest
path between the two points.’ Not a bad definition, but what do we mean by a
path, and how do we define shortest? So let us begin with a notion of distance.

Definition 9.2 (Distance). We call a function d a distance function on E if

d : E×E→ R

and

d(P,Q) = d(Q,P )

d(P,Q) ≥ 0 with equality if and only if P = Q,

d(P,R) + d(R,Q) ≥ d(P,Q) (the triangle inequality).

Such a function may not exist on E, so let us further assume that one exists.
Such a function may not be unique, but this is not a problem, as long as we fix
one such function. Let us call that function d. The quantity d(P,Q) is called the
distance between P and Q, and is usually denoted with |PQ|.

A line segment PQ should have the property that for any R on the segment,
the triangle ∆PRQ is degenerate. That is

d(P,R) + d(R,Q) = d(P,Q).

One might even define a line segment to be exactly the set of all such R. With such
a definition, Euclid’s first axiom is vacuous. By definition, between any two points
P and Q there exists a unique line segment PQ. However, what we have defined
to be a line segment does not a priori look anything like what we have in mind for
a line segment. For example, suppose there exists a pair of points P and Q which
we would normally say has two line segments joining it (for example, choose the
North and South Pole on a sphere, between which every line of longitude would
be considered a line segment). Then our definition of PQ would be (at least) the
union of these two line segments (and in the example of the sphere, the line segment
would be the whole sphere, which is not even one dimensional!)

We can distinguish between two paths by further demanding that if R1 and R2

are on the line segment PQ, then there exists an ordering {i, j} of {1, 2} so that

(9.1) d(P,Ri) + d(Ri, Rj) + d(Rj , Q) = d(P,Q).

This gives us a better definition for a line segment. With this refined definition,
the line segment PQ always exists, so the only content of Euclid’s first axiom is
that the line segment is unique. However, the line segments may still not be what
we expect. For example, there may not be any point R other than P and Q which
produce a degenerate triangle. The line segment PQ would in this case be just the
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P Q

R1

R2

Figure 1. How Equation 9.1 distinguishes between two paths.

set of two points {P,Q}, which is not what we have in mind for line segments. To
ensure our line segments have content, we will further refine our definition using
the completeness of the reals:

Definition 9.3 (Line segment). A line segment PQ between P and Q is a set of
points with the following two properties:

(1) For any points R1 and R2 in PQ, there is a reordering {i, j} of {1, 2} such
that

|PRi|+ |RiRj |+ |RjQ| = |PQ|,
(2) and for any real number r with 0 ≤ r ≤ |PQ|, there exists an R such that

|PR| = r.

Now, line segments are what we expect, but there is no reason why any should
exist, nor that they should be unique. We will therefore adopt Euclid’s first axiom
as our first axiom:

(1) For any two points P and Q in E, the line segment PQ exists and is unique.

Note that we have incorporated the completeness of the reals into our defini-
tion of a line segment, and consequently, Axiom 1 indirectly postulates a type of
completeness of the plane. In many texts, this property is treated separately in its
own set of axioms.

Note also that our notation for line segments implies that they are unique. This
is fine in Euclidean geometry, since we have Axiom 1. However, this notation can
be misleading in a geometry like spherical geometry.

We now direct our attention to defining a line. Using Euclid’s second axiom
as inspiration, we should think of a line as being an indefinite extension of a line
segment. Thus, a line should have the property that if any two points lie on the
line, then the line segment joining those two points should also be on the line. The
entire plane E has this property, so we need a bit more. Using our definition of a
line segment as inspiration, let us define a line as follows:

Definition 9.4 (Line). A line is a set of points l ⊂ E so that if P and Q are in l,
then PQ ⊂ l. Furthermore, for any point P ∈ l and any real number r > 0, there
exist exactly two points R and R′ in l so that

d(P,R) = d(P,R′) = r.

The second statement guarantees that our lines are one dimensional, and the
first guarantees that a line is an indefinite extension of a line segment. However,
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we do not know that any lines exist, so we still need an axiom like Euclid’s second
axiom. Let us adopt it as our second axiom:

(2) Every line segment can be realized as a subset of a unique line.

Exercise 9.5. Show that if |PR| + |RQ| = |PQ|, then R lies on the line segment
PQ. Hint: Since this is not true in spherical geometry, any solution will require
Axiom 1 or 2.

9.5. Separation Axioms

Notice that, so far, we have not addressed the issue of making sure our space E is
two dimensional. Review what we have set up, and check that everything is valid
for a three-dimensional space. We will restrict our space E to two dimensions via
two separation axioms.

Definition 9.6 (Same side). We say two points P and Q not on l are on the same
side of the line l if the line segment PQ and the line l do not intersect. If there is
a point of intersection, then we say P and Q are on opposite sides of l.

We further ask that the notion of ‘same side’ be an equivalence relation on E\l,
and that there be only two equivalence classes. That is, we postulate

(3) If P and Q are on the same side of l, and Q and R are on the same side of l,
then P and R are on the same side of l.

(4) For any line l, there exists a point P not on l. If P and Q are on opposite
sides of l and Q and R are also on opposite sides of l, then P and R are on
the same side of l.

We have specified that there exists a point P not on l, for otherwise E could
be just a line. The line l separates E into two sides, a property that lines in three
dimensions do not have. Note that Euclid’s fifth axiom (as he stated it) now makes
sense, since we can now talk about a side of a line.

Exercise 9.7. We postulate that there exists a point P not on l. Show that there
exists a point Q on the other side of l.

Exercise 9.8 ( (Pasch’s Theorem)). Suppose a line l intersects ∆ABC and that
none of A, B, or C lie on l. Show that l intersects exactly two of the three sides of
∆ABC. [S]

Exercise 9.9. Define the interior of an angle ∠BAC. [A]

Exercise 9.10. Define the interior of a triangle.

Exercise 9.11. Suppose P is inside ∠BAC, and that Q is on the ray AP . Prove
that Q is inside ∠BAC.

Exercise 9.12. Suppose D is on the line segment BC. Prove that D is inside
∠BAC.

Exercise 9.13. Suppose the segments BB′ and CC ′ intersect at A. Prove that
the interiors of the four angles ∠BAC, ∠CAB′, ∠B′AC ′, and ∠C ′AB are disjoint.
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Exercise 9.14. Suppose the segments BB′ and CC ′ intersect at A. Suppose P is
inside ∠BAC. Let P ′ be a point on the line AP such that A is between P and P ′.
Show that P ′ is inside ∠B′AC ′.

Exercise 9.15 (**). Suppose A lies on l and that there exists a point P on l such
that P is inside ∆ABC. Prove that l intersects the side BC. [S]

Exercise 9.16 (**). Come up with a definition of when two nondegenerate tri-
angles have the same orientation. Prove that, by your definition, orientation is
an equivalence relation with two equivalence classes on the set of nondegenerate
triangles. [H][A]

Exercise 9.17 (*). Suppose f is an isometry, and f preserves the orientation of a
nondegenerate triangle ∆ABC. Prove that f is a direct isometry. That is, prove
that f preserves the orientation of all nondegenerate triangles.

Exercise 9.18. We are in the process of defining Euclidean geometry in the plane.
How should the separation axioms read in three dimensions? How should they read
in one dimension?

9.6. Circles

Our definition of a circle is rather natural:

Definition 9.19 (Circle). The circle CP (r) centered at P and with radius r > 0 is
the set of points

CP (r) = {Q : d(P,Q) = r}.

Note that any circle with any radius exists by definition, so we do not need
Euclid’s third axiom.

Exercise 9.20. Using the above definition, what is a ‘circle’ in three dimensions?
What is it in one dimension?

Exercise 9.21 (*). Let CP (r) be a circle and suppose R and S are points such
that |PR| < r and |PS| > r. Show that the line segment RS intersects the circle
CP (r).

Solution. We expect this result to be true, but what is at the heart of the question
is the completeness of the plane. It therefore should not surprise us that a solution
involves Cauchy sequences. Our method of proof is common in real analysis. We
successively bisect the line segment to hone in on the required point. More precisely,
we define several sequences of points Rn, Sn, and Tn recursively as follows: We set
R0 = R and S0 = S. We let Tn be the midpoint of Rn−1Sn−1. If for some n we
have |PTn| = r, then we are finished. Otherwise, either |PTn| < r or |PTn| > r.
If |PTn| < r, then we set Rn = Tn and Sn = Sn−1. Otherwise, we set Rn = Rn−1

and Sn = Tn.

If |PTn| 6= r for all n, then we can define the infinite sequence of reals {|RTn|}∞n=1.
For any n and m with n > m, we have

(9.2) ||RTn| − |RTm|| = |TnTm| < 2−n|RS|,
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where we have the first equality since R, Tn, and Tm are collinear, and R is not
between Tn and Tm. But from Equation 9.2, it follows that {|RTn|}∞n=1 is Cauchy,
so converges to some t. We let T be the point on RS such that |RT | = t. Note that
the existence of T is guaranteed by the definition of line segments, and because
Axiom 1 guarantees that RS is a line segment.

We claim that |PT | = r. To see this, we first suppose |PT | < r. Then there
exists an n such that

2|RS|2−n < r − |PT |.
We know

|TTn| < 2−n|RS|
|TnSn| < 2−n|RS|.

Thus, using the triangle inequality, we get

r < |PSn| ≤ |PTn|+ |TnSn|
< |PT |+ |TTn|+ 2−n|RS|
< (r − 2|RS|2−n) + 2−n|RS|+ 2−n|RS|
< r,

which is a contradiction. Thus, |PT | ≥ r. In a similar fashion, we can show
|PT | ≤ r. Thus |PT | = r. That is, T is on both the circle CP (r) and the line
segment RS, as desired. �

Exercise 9.22 (*). We say three values a, b, and c are triangular if there exists
a triangle with sides of length a, b, and c. That is, a, b, and c are triangular if
a ≤ b + c, b ≤ a + c, and c ≤ a + b. Suppose CP (r) and CQ(s) are two circles and
that r, s, and |PQ| are triangular. Show that these two circles intersect. [H]

Though the previous exercise guarantees that there is a point of intersection,
we also need to know that there are no more than two points of intersection. This
was Lemma 1.20, whose proof we deferred until now.

Lemma 9.23 (Lemma 1.20). Two distinct circles intersect in zero, one, or two
points. If there is exactly one point of intersection, then that point lies on the line
joining the two centers.

Proof. Let the two circles have centers A and B. Note that the circles cannot be
concentric, for if they are, they cannot have a point of intersection unless they have
the same radius, in which case they are not distinct. Thus, we may assume A 6= B,
and draw the line through these two points.

Suppose there exists exactly one point of intersection C. If C does not lie on
AB, then C and its image C ′ under reflection through AB (the isometry guaranteed
by Axiom 8) are distinct. But |AC| = |AC ′|, so C ′ is on the circle with center A,
and similarly, C ′ is on the circle with center B. Thus, the circles have two points
of intersection, which is a contradiction. Thus, C must lie on the line AB.

To finish the proof, we need only show that there cannot be three points of
intersection. Let us assume there exists a point of intersection C on the line AB
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that lies between A and B. If there exists another point of intersection C ′ not on
AB, then by the triangle inequality,

|AC ′|+ |C ′B| > |AB| = |AC|+ |CB| = |AC ′|+ |C ′B|,
and we arrive at a contradiction. We leave as an exercise the case when C lies on
the line AB but does not lie between A and B.

So let us now assume that there are no points of intersection on AB, and
that there are at least three points of intersection. Then two of these points of
intersection, say C and C ′, lie on the same side of the line AB. There are two
possible cases to consider. Either A and B are on opposite sides of CC ′, as in
Figure 2(a), or they are on the same side of CC ′, as in Figure 2(b). We will
investigate the first case and leave the other case as an exercise.

C

CC ′
D

BA

C ′

BA

(a) (b)

Figure 2.

In the first case, since C and C ′ are on the same side of AB, and A and B are
on opposite sides of CC ′, one of C or C ′ is inside the triangle formed by the other
three points (see Exercise 9.25). Without loss of generality, we may assume C ′ is
inside ∆ABC. Let AC ′ intersect BC at D (we are using Exercise 9.15 here). From
the triangle inequality and Exercise 9.5 applied to ∆BC ′D,

(9.3) |C ′D|+ |DB| > |C ′B|,
and applied to ∆ACD,

|AC|+ |CD| > |AD| = |AC ′|+ |C ′D|.
But |AC| = |AC ′|, since both C and C ′ lie on the circle centered at A. Hence,

|CD| > |C ′D|
|BD|+ |CD| > |BD|+ |C ′D|

|BC| > |BD|+ |C ′D|.(9.4)

Finally, we note that |BC ′| = |BC|, since they too are both radii of the circle
centered at B, and so Equations (9.3) and (9.4) give us a contradiction. �

This result implies SSS, SAS, and ASA, as seen in Section 1.3. Thus, these
theorems are results in both Euclidean and hyperbolic geometry.
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Exercise 9.24. Fill in the details of the second case in the proof of Theorem 9.23.

Exercise 9.25. Suppose C and C ′ are on the same side of AB, and that A and
B are on opposite sides of CC ′. Prove that either C or C ′ is inside the triangle
formed by the other three points.

9.7. Isometries and Congruence

In the Euclidean plane, we want every point to look like any other point. We
say this by defining a notion of congruence, which, as in Chapter 1, we define via
isometries.

Definition 9.26 (Isometry). An isometry of the plane is a map

f : E→ E

from the plane to itself which preserves distances. That is, f is an isometry if for
any P and Q in the plane, we have

d(f(P ), f(Q)) = d(P,Q).

Definition 9.27 (Congruence). Two sets of points (defining a triangle, angle, or
some other figure) are congruent if there exists an isometry which maps one set
onto the other.

In particular, we say two angles are congruent (or equal) if there exists an
isometry which sends one angle to the other.

Exercise 9.28. We have not yet formally defined angles. Come up with a defi-
nition. Does your definition work in the hyperbolic plane? Does it work on the
sphere? Come up with a refinement which works in these cases.

Our notion of congruence is completed by the following axiom which guarantees
the existence of the isometries we desire:

(6) Given any line l, there exists an isometry which fixes every point in l but fixes
no other points in the plane.

In Chapter 1, we included two more axioms. They, in fact, follow from this
axiom.

Lemma 9.29. Given any points P and Q, there exists an isometry which sends P
to Q.

Proof. If P = Q, then the identity works. Otherwise, let us assume P 6= Q.
By Exercise 9.22, the circles CP (|PQ|) and CQ(|PQ|) intersect, say at A. Since
A cannot be between P and Q, there exists another point of intersection B, by
Lemma 1.20. By Axiom 6, there exists an isometry f which fixes every point on
the line AB and fixes no other points. Since f preserves the distance |AP |, the
point P ′ = f(P ) must lie on the circle CA(|AP |). Similarly, P ′ lies on CB(|BP |).
These two circles intersect at two points, P and P ′. But Q is also on both these
circles, since |QA| = |QP | = |QB|. Finally, since P does not lie on AB, P ′ 6= P , so
P ′ = Q, as desired. �
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9.8. The Parallel Postulate 181

Lemma 9.30. Given a point P and any two points Q and R which are equidistant
from P , there exists an isometry which fixes P and sends Q to R.

We leave the proof as an exercise. We can now define right angles:

Definition 9.31 (Right angle). Two lines l1 and l2 intersect at right angles if
any two adjacent angles at the point of intersection are congruent. That is, they
intersect at right angles if there exists an isometry which sends an angle to one of
its adjacent angles.

Exercise 9.32. Prove that any two right angles are congruent. Thus, we do not
need to state Euclid’s fourth postulate as an axiom.

The last axiom we need to define Euclidean geometry is the parallel postulate.
Since this is the axiom we change when we develop hyperbolic geometry, let us
first contemplate how much we have established without that axiom. Note that
these results are equally valid in hyperbolic geometry. Such results are sometimes
referred to as results in neutral geometry.

Let us add two more results to our list of results in neutral geometry. The first
was proved in Section 1.4. Though this is the section on parallel lines, the proof
does not involve the parallel postulate, so this is a result in neutral geometry.

Lemma 9.33 (Lemma 1.35). Let l be a line and P a point not on l. Then there
exists a Q on l so that PQ is perpendicular to l.

Lemma 9.34. A line and circle intersect in either zero, one, or two points. There is
exactly one point of intersection if and only if the radius to the point of intersection
is perpendicular to the line.

This is a nice complement to Lemma 9.23. We leave the proof as an exercise.

Exercise 9.35. We have not formally defined angular measure. Come up with a
definition.

Exercise 9.36. How should Axiom 6 read in one dimension?

Exercise 9.37. How should Axiom 6 read in three dimensions? Is the full group
of isometries in three dimensions guaranteed to exist using this revised version of
Axiom 6?

Exercise 9.38. Prove Lemma 9.34.

9.8. The Parallel Postulate

Finally, we introduce the parallel postulate, Euclid’s fifth axiom:

(5) If a line meets two other lines so that the sum of the angles on one side is less
than two right angles, then the two other lines meet at a point on that side.

Exercise 9.39. Let l1, l2, and l3 be three distinct lines. Prove that if l1 is parallel
to l2, and l2 is parallel to l3, then l1 is parallel to l3. [H]
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9.9. Similar Triangles

In our treatment of Euclidean geometry, we saw that the following result and its
converse Theorem 1.66 are indispensable:

Theorem 9.40. Let ∆ABC be a triangle. Let B′ be on AB, and let the line through
B′ and parallel to BC intersect AC at C ′. Then

|AB′|
|AB| =

|AC ′|
|AC| .

In Chapter 1, we deferred the proof of this result until now. Our proof will be
via a sequence of lemmas, some of whose proofs we leave as exercises. We remind
the reader of two important results, both of which were proved before we began
discussing similar triangles. These are (1) opposite interior angles of a transversal
of two parallel lines are equal and (2) angle-side-angle (ASA).

Lemma 9.41. Let ABCD be a parallelogram. Then

|AB| = |CD|.
Lemma 9.42. Let B′ be the midpoint of ∆ABC, and suppose the line through B′

which is parallel to BC intersects AC at C ′. Then C ′ is the midpoint of AC.

A

B ′

B A′

C ′

C 

Figure 3.

Proof. We first note that the line through B′ intersects AC, by Pasch’s theorem
(Exercise 9.8). Similarly, the line through B′ which is parallel to AC intersects BC,
say at A′, as in Figure 3. Note that ∠AB′C ′ = ∠ABC, and ∠BB′A′ = ∠BAC, so
∆AB′C ′ ≡ ∆B′BA′, by ASA. In particular,

|AC ′| = |B′A′|.
By Lemma 9.41, |B′A′| = |C ′C|, so

|AC ′| = |C ′C|.
That is, C ′ is the midpoint of AC. �

Lemma 9.43. Let ABCD be a trapezoid with parallel sides AD and BC. Let B′

be the midpoint of AB, and let the line through B′ and parallel to BC intersect DC
at C ′. Then C ′ is the midpoint of DC.
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Lemma 9.44. Let B′ be a point on AB in ∆ABC such that

|AB′|
|AB| =

p

2n

for some positive integers p and n. Let the line through B′ and parallel to BC
intersect AC at C ′. Then

|AB′|
|AB| =

|AC ′|
|AC| .

We are now ready to prove Theorem 9.40.

Proof of Theorem 9.40. Again, we point out that, by Pasch’s theorem, the line
through B′ and parallel to BC intersects AC. Suppose

|AB′|
|AB| 6=

|AC ′|
|AC| .

Let |AB
′|

|AB| = λ and |AC
′|

|AC| = µ. Without loss of generality, we may assume λ < µ.

But then, there exists a p and n such that

λ <
p

2n
< µ.

Let B′′ be the point on AB such that

|AB′′|
|AB| =

p

2n
,

and let the line through B′′ and parallel to BC intersect AC at C ′′. Then, by
Lemma 9.44,

|AC ′′|
|AC| =

p

2n
.

Since λ < p
2n , we know that A and B′ are on the same side of B′′C ′′. Since p

2n < µ,
we have that C ′ and C are on the same side of B′′C ′′. But A and C are on opposite
sides of B′′C ′′, so B′ and C ′ must also be on opposite sides of B′′C ′′. Thus,
B′C ′ intersects B′′C ′′, a contradiction, since the two lines are parallel. Hence, our
assumption must be false, and therefore λ = µ. That is,

|AB′|
|AB| =

|AC ′|
|AC| . �

Exercise 9.45. Prove Lemma 9.41. [H]

Exercise 9.46. Prove Lemma 9.43.

Exercise 9.47. Prove Lemma 9.44.
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Chapter 10

Spherical Geometry

In Chapters 6 and 7, we developed hyperbolic geometry by first setting forth the
axioms of the geometry and then constructing a model which we eventually showed
satisfies the axioms. We are already familiar with a model of spherical geometry, so
in this chapter our investigation will be in the reverse order. We first study a model
and describe a few results and then describe a set of axioms which are satisfied by
this model.

10.1. The Area of Triangles

Our model is a sphere S in 3-space, centered at O and with radius ρ. The distance
between two points on the sphere is given by

|PQ| = ρ∠POQ

where ∠POQ ≤ π and is measured in radians. This is just the length of the arc of
the great circle between P and Q.

On a sphere, we will have occasion to talk about antipodal points. Given a
point P , the antipodal point to P is the point P ′ such that PP ′ is a diameter of
the sphere.

We will also refer to lunas. A luna is the section of a sphere between two half
great circles which make an angle θ with each other (like an orange peel, or the
lighted portion of the moon visible from the Earth). Recall that the area of a sphere
is 4πρ2, so the area of a luna of angle θ is

θ

2π
4πρ2 = 2θρ2.

Our first main result is to show that the area of a triangle on the sphere depends
only on its angles.

185
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186 10. Spherical Geometry

Figure 1. A spherical triangle, represented as the intersection of three lunas.

Theorem 10.1. Suppose ∆ABC is a triangle on the sphere of radius ρ. Then the
area of ∆ABC is given by

|∆ABC| = ρ2(A+B + C − π),

where the angles A, B, and C are measured in radians.

Proof. For a triangle ∆ABC on a sphere, sum up the three lunas associated to
the three angles A, B, and C (see Figure 1), together with the antipodal lunas. By
doing so, we have covered the entire sphere once and covered the triangle and its
antipodal an additional two times each. Thus, we get

2(2ρ2)(A+B + C) = 4πρ2 + 4|∆ABC|,
from which we get

|∆ABC| = ρ2(A+B + C − π). �

This result gives one pause for thought. Recall the similar result (page 147) for
triangles in hyperbolic geometry:

|∆ABC| = k2(π −A−B − C),

where the arclength element is

ds = k

√
dx2 + dy2

y
.

This suggests a possible interpretation for hyperbolic space: Might hyperbolic space
just be a sphere with imaginary radius ik? How should we interpret that statement?

Exercise 10.2. What is the area of a quadrilateral ABCD on the sphere? What
is the area of a polygon on the sphere?
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10.2. The Geometry of Right Triangles 187

Exercise 10.3. Show that the area A of a circle of radius r on the sphere of radius
ρ is

A = 4πρ2 sin2

(
r

2ρ

)
. [H]

Exercise 10.4. Compare the formula for the area of a circle in spherical geometry
with the one in hyperbolic geometry, which is

A = 4πk2 sinh2
( r

2k

)
.

(We derived this for k = 1 in Exercise 7.106.) Show that the formula for the area
on the sphere gives the formula for the area in H if we substitute ρ = ik. (Hint:
Use Euler’s formula to show that i sin θ = sinh iθ.)

Exercise 10.5. Substitute the linear approximation for sin θ for θ near zero into
the formula for the area of a circle on the sphere (see Exercise 10.3). This shows
that this formula is consistent with the Euclidean formula for small circles on the
sphere. This should be no surprise, since locally, spherical and Euclidean geometry
are alike.

10.2. The Geometry of Right Triangles

As mentioned in Section 1.1, the Pythagorean theorem is a theorem in Euclidean
geometry, and not in either spherical or hyperbolic geometry. There is, however, a
spherical version.

Theorem 10.6 (Spherical Pythagorean Theorem). Let ∆ABC be a right angle
triangle on the unit sphere with right angle at C. As usual, let a, b, and c be the
lengths of the sides opposite A, B, and C, respectively. Then

cos c = cos a cos b.

There is, not surprisingly, more than one way of proving this. We will use
coordinate geometry,1 which is a decidedly modern approach. The result dates
back to Ptolemy (ca. 100 A.D.), whose approach is featured in Exercises 10.21 –
10.23.

Proof. Let the unit sphere S be centered at (0, 0, 0) in R3. Let ~A and ~B be the
vectors in R3 which represent the points A and B on the sphere S. Without loss
of generality, we may place C at the North Pole (0, 0, 1), place A in the xz-plane,
and place B in the yz-plane. Then,

~A = (sin b, 0, cos b)

~B = (0, sin a, cos a).

Note that c is the angle between ~A and ~B. Thus, taking the dot product of ~A and
~B, we get

~A · ~B = cos a cos b = ||~A||||~B|| cos c = cos c. �

There is also an analogue of trigonometry on the sphere:

1A review of results in coordinate geometry appears in Appendix A.2.
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C

A
B

ab

c

Figure 2. A spherical right angle triangle.

Theorem 10.7. Let ∆ABC be a right angle triangle on the unit sphere with right
angle at C. Then

sinA =
sin a

sin c

cosA =
cos a sin b

sin c
.

Proof. The angle A is the angle between the xz-plane and the plane spanned by
~A and ~B. The vector

~A× ~B = (− cos b sin a,− sin b cos a, sin b sin a)

is perpendicular to the plane spanned by ~A and ~B, and points up in Figure 2. Its
length is the sine of the angle between, which is c. The angle A is therefore the

angle between (0,−1, 0) and ~A× ~B. Taking the dot product, we get

(0,−1, 0) · (~A× ~B) = ||~A× ~B|| cosA

sin b cos a = sin c cosA

cosA =
sin b cos a

sin c
.
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10.3. The Geometry of Spherical Triangles 189

To get the formula for sinA, we can take the cross product, or use the identity
sin2A+ cos2A = 1. We opt to use the cross product:

||(0,−1, 0)× (~A× ~B)|| = ||~A× ~B|| sinA
||(sin a sin b, 0, sin a cos b)|| = sin c sinA

sinA =
sin a

sin c
.

We leave verification of the signs up to the reader. �

In Section 1.1, we pointed out that the Euclidean Pythagorean theorem looks
correct when drawn on a piece of paper, even if that paper is thought of as being
part of the spherical Earth. That is, the spherical Pythagorean theorem should
approximate the Euclidean Pythagorean theorem for very small lengths a, b, and
c. This is indeed the case. Recall that the Taylor expansion for cosx is

cosx = 1− x2

2
+
x4

4!
− x6

6!
+ ....

Thus, the equation

cos c = cos a cos b

becomes

1− c2

2
+ (higher-order terms) = 1− a2

2
− b2

2
+ (higher-order terms),

and for a, b, and c very small, we may ignore the higher order terms to get

c2 = a2 + b2.

Exercise 10.8. Let ∆ABC be a right angle triangle on the unit sphere with right
angle at C. Prove that

cosA = cos a sinB.

What is the corresponding result in Euclidean geometry? [A]

Exercise 10.9. Let ∆ABC be a right angle triangle on the unit sphere with right
angle at C. Prove that

cotA cotB = cos c.

Exercise 10.10. Show that the formulas for sinA and cosA give the usual defini-
tions for the sine and cosine if the lengths a, b, and c are very small.

Exercise 10.11. What is the Pythagorean theorem on a sphere of radius ρ? What
are the trigonometric formulas?

10.3. The Geometry of Spherical Triangles

Note that the side-side-side, side-angle-side, and angle-side-angle theorems can be
proved using only Axiom 6. Thus, all sides and angles of a triangle can be found
given only three appropriate pieces of information. In Euclidean geometry, the
other sides and angles are found using the Law of Sines and Law of Cosines. In
spherical geometry, there are similar laws.
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Theorem 10.12 (Spherical Law of Sines). Let ∆ABC be a triangle on the unit
sphere with sides a, b, and c opposite the angles A, B, and C, respectively. Then

sin a

sinA
=

sin b

sinB
=

sin c

sinC
.

The proof is essentially the same as one of the proofs in Euclidean geometry.

A
x

b

C

c−x
B

a

D

Figure 3.

Proof. Choose D on AB so that CD is perpendicular to AB, as in Figure 3. Let
|CD| = h. Then,

sinA =
sinh

sin b

sinB =
sinh

sin a
.

Thus,
sinA sin b = sinB sin a,

which gives us the first equality. By using the altitude at B, we can similarly show

sin a

sinA
=

sin c

sinC
. �

Theorem 10.13 (Spherical Law of Cosines for Sides). Let ∆ABC be a triangle
on the unit sphere with sides a, b, and c opposite angles A, B, and C, respectively.
Then

cos c = cos a cos b+ sin a sin b cosC.
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C
x

b

A

a−x
B

c

D

Figure 4.

Proof. Consider Figure 4. From ∆ADB and the Pythagorean theorem, we get

(10.1) cos c = cosh cos(a− x) = cosh cos a cosx+ cosh sin a sinx.

From ∆ACD, we get

cosC =
cosh sinx

sin b
and from the Pythagorean theorem,

cos b = cosx cosh.

Plugging these into Equation 10.1, we get

cos c = cos a cos b+ sin a sin b cosC. �

Note that if C = π/2, then we just get the spherical Pythagorean theorem.

These two laws allow us to completely solve SSS and SAS problems. In Eu-
clidean geometry, an ASA problem is solved by first finding the third angle and
then using the Law of Sines. Since the sum of the angles in a spherical triangle is
not constant, we cannot solve ASA problems that way. We need another result –
the Law of Cosines for angles:

Theorem 10.14. [Spherical Law of Cosines for Angles] Let ∆ABC be a triangle
with sides a, b, and c opposite angles A, B, and C. Then

cosC = − cosA cosB + sinA sinB cos c.
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Proof. Let us prove this in a rather uninspired way – let us just expand both sides
and compare them.

Consider Figure 3. Let D be on AB so that CD is perpendicular to AB. Let
C1 = ∠ACD and C2 = ∠DCB. Let AD = x and DB = c− x. Then

cosC = cos(C1 + C2)

= cosC1 cosC2 − sinC1 sinC2

=
cosx sinh

sin b

cos(c− x) sinh

sin a
− sinx

sin b

sin(c− x)

sin a

=
(cos c+ sinx sin(c− x)) sin2 h− sinx sin(c− x)

sin a sin b

=
cos c sin2 h+ sinx sin(c− x)(sin2 h− 1)

sin a sin b

=
cos c sin2 h− sinx sin(c− x) cos2 h

sin a sin b
.

Expanding the right-hand side of the Law of Cosines, we get

− cosA cosB+ sinA sinB cos c

= −cosh sinx

sin b

cosh sin(c− x)

sin a
+

sinh

sin b

sinh

sin a
cos c,

which is the same. �

Exercise 10.15. Show that the spherical Law of Sines is consistent with the Eu-
clidean Law of Sines for very small sides a, b, and c.

Exercise 10.16. Show that the spherical Law of Cosines is consistent with the
Euclidean Law of Cosines for very small sides a, b, and c.

Exercise 10.17. What are the Law of Sines and the Laws of Cosines on a sphere
of radius ρ?

Exercise 10.18 (* (The Extended Law of Sines on the Sphere)). Let R be the
radius of the circumcircle of an arbitrary triangle ∆ABC on the unit sphere. Prove
that

tanR =
tan(a/2)

cos
(
B+C−A

2

) =
tan(b/2)

cos
(
A+C−B

2

) =
tan(c/2)

cos
(
A+B−C

2

) .
Verify that, for small lengths a, b, and c, this gives the extended Law of Sines in
Euclidean geometry.

10.4. Menelaus’ Theorem

Recall the theorem of Menelaus introduced in Section 1.15. There is a similar result
in spherical geometry, which was also proved by Menelaus.

Theorem 10.19 (Menelaus’ Theorem on the Sphere). Let ∆ABC be a spherical
triangle and let D, E, and F be points on the extended sides BC, CA, and AB,
respectively, as in Figure 5. Then D, E, and F are collinear if and only if

sin |AF |
sin |FB|

sin |BD|
sin |DC|

sin |CE|
sin |EA| = −1.
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A
B

C

E

D
F

Figure 5.

Here, the lengths |AF |, etc., are taken to be signed lengths, as discussed in
Section 1.15. That is, if we take |AF | to be the oriented angle ∠AOF , then |FB|
is the oriented angle ∠FOB.

Lemma 10.20. Let A, B, and F be points on a unit circle centered at O and such
that AB is not parallel to OF . Let the line AB intersect OF at F ′. Then

|AF ′|
|F ′B| =

sin∠AOF
sin∠FOB

.

If we think of A, B, and F as points on a sphere with center O, then in the
language of spherical geometry, this lemma says

|AF ′|
|F ′B| =

sin |AF |
sin |FB| ,

where the lengths on the left-hand side are (signed) Euclidean lengths, and the
lengths inside the trigonometric functions are (signed) spherical lengths.

Proof. Let us first observe that F and its antipodal point F ′′ generate the same line
OF , and therefore the same F ′. But sin∠AOF ′′ = sin(π − ∠AOF ) = sin∠AOF ,
so we may as well assume that F is on the same side of O as the line AB. We will
further assume that F is on the shorter arc AB, as in Figure 6(a), and leave the
other case as an exercise.
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OO

A

F

F ′
A′

B ′

B

A

B

F F ′

(a) (b)

Figure 6.

Let the bases of the perpendiculars to OF from A and B be labeled A′ and B′,
respectively. Then

∆AA′F ′ ∼ ∆BB′F ′,

so
|AF ′|
|F ′B| =

|AA′|
|BB′| =

sin∠AOF
sin∠FOB

. �

Proof of Menelaus’ Theorem on the Sphere. Consider the plane through A,
B, and C. It is possible that one or more of the lines OD, OE, and OF are parallel
to this plane. We leave the proof for these possibilities as an exercise. So, in the
case we are considering, the lines OD, OE, and OF intersect this plane at D′, E′,
and F ′, respectively. The points D, E, and F are collinear on the sphere if and
only if the points O, D, E, and F are coplanar. That is, D, E, and F are collinear
on the sphere if and only if D′, E′, and F ′ are collinear on the plane through A,
B, and C. But by Menelaus’ theorem in Euclidean geometry, this is the case if and
only if

(10.2)
|AF ′|
|F ′B|

|BD′|
|D′C|

|CE′|
|E′A| = −1.

By Lemma 10.20, Equation 10.2 is equivalent to

sin |AF |
sin |FB|

sin |BD|
sin |DC|

sin |CE|
sin |EA| = −1. �

Theorem 10.7 and the spherical version of the Pythagorean theorem were first
proved by Ptolemy. His approach is to use Menelaus’ theorem for a particular
configuration, which we introduce here. The proofs are left as exercises. Note that
our proof of Menelaus’ theorem does not use either of these results, so we are not
entering a circular argument.

In a right angle triangle ∆ABC with right angle at C, we pick points E and F
on the extended sides AC and AB, respectively, and such that |AE| = |AF | = π/2,
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A

BC
D

E

F

A

a

b c

π/2−b

π/2−c

π/2−a

π/2−A

Figure 7.

as in Figure 7. Note that, if we think of A as a pole of the sphere, then the line
EF is the equator. We call the line EF the polar of A, and we call A and its
antipodal point A′ the poles of the line EF . Since EF is the polar of A, the angles
∠AEF and ∠AFE are both π/2. Let us extend EF so that it intersects CB at D.
Since both ∠ACD and ∠AED are right angles, the point D is a pole of AC. In
particular, |DC| and |DE| are both π/2.

Exercise 10.21. Derive the Pythagorean theorem by applying Menelaus’ theorem
to the triangle ∆ABC and the transversal DEF in Figure 7.

Exercise 10.22. Apply Menelaus’ theorem to the triangle ∆AEF and the transver-
sal CBD in Figure 7. Use the Pythagorean theorem to reduce the obtained expres-
sion into one of the formulas of Theorem 10.7.

Exercise 10.23. Apply Menelaus’ theorem to the triangle ∆DEC and the transver-
sal ABF in Figure 7. Use the results of Exercises 10.21 and 10.22 to reduce the
obtained expression into the other formula of Theorem 10.7.

Exercise 10.24. Prove Lemma 10.20 for the case shown in Figure 6(b).

Exercise 10.25. Prove Menelaus’ theorem on the sphere in the cases where one
or more of OD, OE, and OF are parallel to the plane through A, B, and C.

Exercise 10.26 ( (Ceva’s Theorem in Spherical Geometry)). State and prove
Ceva’s theorem on the sphere.
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196 10. Spherical Geometry

Exercise 10.27. Suppose ACBD is a quadrilateral with right angles at A, B, and
C. Let a = |BC| and b = |AC|. Prove

cosD = − sin a sin b.

10.5. Heron’s Formula

Though it is clear that there should be some relationship between the different
geometries, that relationship is made even more stunning by the vast array of results
in Euclidean geometry which have versions in spherical and hyperbolic geometry.
We have now seen spherical versions of the Pythagorean theorem, trigonometry,
the Law of Sines and Cosines, Menelaus’ theorem, and Ceva’s theorem. Let us now
add to that list a spherical version of Heron’s formula.

Since the area of a spherical triangle is determined by its angles and since we
can find those angles given the three sides of the triangle, there of course must exist
a formula for the area in terms of the three sides. What is very curious is the shape
of that formula and how it relates to Heron’s formula in Euclidean geometry.

Theorem 10.28 (Heron’s Formula on the Sphere). Let ∆ABC be a spherical

triangle with sides a, b, and c, and semiperimeter s =
a+ b+ c

2
. Let ∆ = |∆ABC|

be a shorthand for the area of ∆ABC. Then

1− cos ∆ =
4 sin s sin(s− a) sin(s− b) sin(s− c)

(1 + cos a)(1 + cos b)(1 + cos c)
.

The proof is left to the reader, with the guidance of the following exercises.

Exercise 10.29. Let us begin with a question of plausibility. Verify that for small
lengths a, b, and c, Heron’s formula on the sphere is approximated by Heron’s
formula in Euclidean geometry.

Exercise 10.30. Let ∆ABC be a right angle triangle with right angle at C and
area ∆. Prove that

sin ∆ =
sin a sin b

1 + cos c

cos ∆ =
cos a+ cos b

1 + cos c
.

Exercise 10.31. Let ∆ABC be a spherical triangle. Let the altitude at A be AD
and let h = |AD|. Prove that

1− cos ∆ =
sin2 h(1− cos a)

(1 + cos b)(1 + cos c)
.

What formula in Euclidean geometry is approximated by this formula for small
values of a, b, and c? [H][A]

Exercise 10.32. Using the proof of Heron’s formula in Euclidean geometry as a
guide (see page 35), use the Law of Cosines and Exercise 10.31 to find a formula
for 1− cos ∆ which depends only on the sides a, b, and c.
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Exercise 10.33. Prove the following trig identity, which is found in the inside
front or back cover of most calculus texts:

cosα− cosβ = −2 sin

(
α+ β

2

)
sin

(
α− β

2

)
.

Exercise 10.34. Finish the proof of Heron’s formula on the sphere by reducing
the answer found in Exercise 10.32. Use the proof of Heron’s formula in Euclidean
geometry as a guide, and when that is no longer helpful, use the trig identity in
Exercise 10.33.

10.6. Tilings of the Sphere

The angles of a regular n-gon in Euclidean geometry are all equal to

θn =
(n− 2)π

n
.

In hyperbolic geometry, there exists a regular n-gon whose angles are all equal to θ
provided θ < θn. In spherical geometry, there exists a regular n-gon whose angles
are all equal to θ provided θn < θ < π.

Suppose we have a tiling of the sphere with radius ρ = 1. Since there must
be at least three tiles to a vertex and since the sum of the angles at each vertex is
2π, the tiles have at most 5 sides. Suppose we have a tiling with pentagons. Then,
the angles of the regular pentagons are all 2π/3, so the area of each pentagon is
5(2π/3) − 3π = π/3 (We prove the area formula for a pentagon in Exercise 10.2.)
Since the surface area of the sphere is 4π, there must be twelve pentagons. This,
of course, is no surprise. After all, if we connect the vertices of the tiling with line
segments in 3-space, then we get a Platonic solid with pentagonal faces. Thus, we
get a dodecahedron.

More generally, there is a one-to-one correspondence between regular tilings
of the sphere and Platonic solids. Hence, there are only five regular tilings of the
sphere.

Similarly, there is a one-to-one correspondence between semiregular tilings of
the sphere and semiregular solids.

Exercise 10.35. What is the length of the edges of the triangles and pentagons in
the semiregular tiling of the unit sphere which has two triangles and two pentagons
at each vertex? [A][S]

Exercise 10.36. Find the percentage of the area of the sphere that is covered by
triangles if the sphere has a semiregular tiling with two triangles and two pentagons
at each vertex. [S]

Exercise 10.37. What percentage of the sphere is covered by squares in the semi-
regular tiling with representation (3, 4, 3, 4)?

Exercise 10.38 (*). Find the percentage of the area of the soccer ball which is
black. That is, find the percentage of the area of the soccer ball which is covered
with pentagons.
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10.7. The Axioms

Recall that our model is a sphere S in 3-space, centered at O and with radius ρ.
The distance between two points on the sphere is given by

|PQ| = ρ∠POQ

where ∠POQ ≤ π and is measured in radians.

In this section, we will check which of the axioms and definitions in Chapter 9
are satisfied by this model, and modify those that are not.

We begin with our definition of distance. We must check that it satisfies the
three properties of a distance function. The first two are clearly satisfied. The
third property, the triangle inequality, is also not too difficult to check. Consider
the vertex at O created by PO, QO, and RO. It is clear that we must have
∠POR+ ∠ROQ ≥ ∠POQ.

If ∠POQ < π, then the set of points R for which we have equality is a section
of the great circle that goes through P and Q. These sections satisfy the definition
of a line segment, and are unique. However, if P and Q are antipodal, then any
half great circle joining P and Q is a line segment joining them. Thus, we must
remove the uniqueness statement in Axiom 1:

(1) For any two points P and Q in S, there exists a line segment joining P and
Q.

In Chapter 9, we defined lines to be indefinite continuations of line segments.
It is clear that this cannot be done on the sphere. However, there is an alternate
definition which works in Euclidean, hyperbolic, and spherical geometry – it is just
a little more complicated to describe.

Definition 10.39 (Line). A line is a set of points l such that if P and Q are in l,
then there exists a line segment in l joining P and Q. Furthermore, there exists an
ε > 0 such that for any P ∈ l and any real number 0 < r < ε, there exist exactly
two points R and R′ in l such that

d(P,R) = d(P,R′) = r.

This definition is not too different than that given on page 175. We can think of
continuing a line segment with a ruler of length ε. On the plane, this continuation
continues indefinitely. On the sphere, it eventually ends. However, on the sphere,
we must be careful that our ruler is not as long as half a great circle.

With this definition of a line, Axiom 2 is satisfied.

The separation axioms are also satisfied on the sphere.

The definition for a circle is the same. Note that the circle with radius πρ has
exactly one point, and all circles with radius larger than πρ are empty sets. Note
also that if a circle centered at P has radius r < πρ, then it is identical to the circle
with radius πρ− r centered at P ′ where P ′ is the antipodal point to P .

The isometries of a sphere are induced by the isometries of R3 which fix O.
These are rotations about any line through O, and reflections through any plane
through O. On S, these maps correspond to rotations about two antipodal points,
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or reflection through a great circle. Every rotation can be expressed as the product
of two reflections.

Finally, we must modify Axiom 5, since every pair of lines on a sphere intersect
twice.

(5) Every pair of distinct lines intersect in exactly two points.

Thus, to define spherical geometry, we have to modify one definition (of a line)
and two axioms (Axioms 1 and 5). The modified definition of a line, though, works
well in all geometries, so if we had instead introduced that definition in Chapter 9,
then the modification would not have been needed.

Exercise 10.40 (*). Show that every direct isometry of the sphere has at least
two fixed points. Conclude that there are no translations on the sphere.

Exercise 10.41. Find an isometry of the sphere which has no fixed points. Write
this isometry as a product of reflections and rotations.

10.8. Elliptic Geometry

The three geometries, Euclidean, hyperbolic, and spherical geometry, are distin-
guished by the parallel postulate. At one extreme, we have hyperbolic geometry,
where parallels are not unique. In Euclidean geometry, the parallels are unique. In
spherical geometry, every pair of lines intersects twice. It seems we have missed a
possibility. Is it conceivable that there exists a geometry such that every pair of
lines intersect exactly once? In this section, we present a model of elliptic geometry
which satisfies this version of Axiom 5. Our study of elliptic geometry will be rather
cursory. However, the next chapter is devoted to projective geometry, which can
be thought of as elliptic geometry without a metric.

The model P of elliptic geometry that we will study is generated by taking
the sphere S and identifying antipodal points. That is, we consider P and P ′ to
be the same point. If P and Q are two points on the sphere, then the distance
between them in elliptic geometry is the smaller of ∠POQ and ∠POQ′ where Q
and Q′ are antipodal points. If ∠POQ = π/2, then ∠POQ = ∠POQ′, and the
line segment PQ in P is not unique. However, there are only two line segments –
the ones generated by PQ and PQ′ on S (which are the same as those generated
by P ′Q′ and P ′Q, respectively). Contrast this with spherical geometry, where the
number of line segments between P and P ′ is infinite. Thus, to generate elliptic
geometry, we must still modify Axiom 1.

With the definition of a line in Section 10.7, Axiom 2 is satisfied.

The separation axioms are not satisfied in elliptic geometry. The definition of
‘same side’ can be modified so that Axiom 3 (page 176) will still be satisfied, but
with an appropriate modification, there will be only one side of a line in elliptic
geometry, and hence, Axiom 4 will not be satisfied. However, the purpose of the
separation axioms is to make the geometry two dimensional. This is already guar-
anteed by the revised Axiom 5, where we demand that every pair of lines intersect.

Exercise 10.42. Do the separation axioms follow from the other axioms of spher-
ical geometry? That is, are they necessary or superfluous?
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Exercise 10.43. What is the difference between spherical and elliptic geometry
which makes Axiom 3 (with the given definition of ‘same side’) succeed in one and
fail in the other?

The isometries on P are those induced by the isometries on S.

Exercise 10.44. Find a nontrivial isometry of S which induces the identity on P.

Exercise 10.45. Suppose Φ is an improper isometry of S which induces the isom-
etry φ of P. Show that there exists a proper isometry Φ′ of S which induces the
same isometry φ of P.
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Chapter 11

Projective Geometry

The inspiration for projective geometry is the human experience and the artist’s
perspective. Projective geometry describes the way we see, or more precisely, the
way a pin-hole camera works. Given some object (say, a cube) in three dimensions,
the picture of this object is its projection onto a plane through the pin-hole of the
camera (see Figures 1 and 2).

Pin Hole

Object

Plane

P

O

P ′

Focal

A

Figure 1. The idea behind a pin-hole camera.

We say that the points of the object have been projected through a point onto
the plane. Such a picture is more realistic than a perpendicular projection since it
incorporates perspective.

Mathematically, given a point O and a plane A, a point P in three dimensions
is sent to the point P ′ where OP intersects A (see Figure 1). The point P ′ exists
provided P 6= O and OP is not parallel to A. Note that every point on the line

201
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202 11. Projective Geometry

Figure 2. A cube, projected onto a plane both perpendicularly and through a point.

OP is sent to P ′. Thus, lines through O which are not parallel to A have been
identified with points in the plane A. One of the main ideas of projective geometry
is the idea that we should not be constrained to lines not parallel to A. So let us
extend A to include a line at infinity, which corresponds to all lines parallel to A.
The plane A together with the line at infinity is called the projective plane and we
denote it with P2.

A line in A corresponds to a plane through O, so we call the intersection of
P2 with a plane through O a line in P2. Note that every pair of distinct planes
through O intersect in a line through O. Thus, every pair of distinct lines in P2

intersect at exactly one point. We should therefore not be surprised that projective
geometry and elliptic geometry are related. Note that the intersection of a sphere
S centered at O and a line through O is a pair of antipodal points on S. In the
elliptic geometry P, we identified antipodal points on a sphere S, so there exists
a one-to-one correspondence between points in P and points in P2. A line in P
corresponds to a great circle on S, which can be thought of as the intersection of S
with a plane through O. Thus, there is also a one-to-one correspondence between
lines in P and lines in P2. Since P includes a metric, there is a natural way to
induce a metric on P2, but there is actually a lot to be gained by resisting this
temptation.

Note that, on P, there is no distinguished line. Thus, when we think of P2 as
being the plane A together with a line at infinity, we should not give this line any
undue importance. It is just like any other line.

The plane A may be thought of as a Euclidean plane without a metric. When
thought of this way, we call it the affine plane.

11.1. Moving a Line to Infinity

Sometimes, carefully chosen definitions can be very powerful because of the way
they make us think about things. So far, we have only defined projective geometry,
and it appears all we have is Euclidean geometry together with a line at infinity
and without a metric. The proof of the following theorem illustrates just how
powerful and how much more our definitions actually contain. This theorem is
known as Pappus’ theorem, and was introduced in Section 4.5 as an example of a
result which we were not yet ready to prove but could be nicely demonstrated with
Sketchpad. We are now ready to prove this result.
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11.1. Moving a Line to Infinity 203

Theorem 11.1 (Pappus’ Theorem). Let P1, P2, and P3 be three points on the line
l1, and let Q1, Q2, and Q3 be three points on the line l2. Let R be the intersection
of P2Q3 and P3Q2; let S be the intersection of P1Q3 and P3Q1; and let T be the
intersection of P1Q2 and P2Q1. Then R, S, and T are collinear (see Figure 3).

RT S

Q2

P2

Q3

Q1

P3

P1

Figure 3.

Proof. Let us first suppose we have such a diagram on a plane A embedded in
three dimensions. Pick a point O not on A, and think of A as a subset of P2. Let us
think of each point and line on A as being lines and planes through O respectively.
Let l be the line through R and S. We want to show that T lies on l. Let the line
l corresponds to a plane L through O, and let T correspond to the line t through
O. We therefore want to show that t lies on L.

Let us now consider a different plane A′ not passing through O. The inter-
section of A′ with the lines and planes induced by the original diagram create a
different diagram on A′. Label these new points P ′1, P ′2, etc. Note that T lies on l if
and only if T ′ lies on l′ in the diagram on A′. Thus, it is enough to prove the result
for the diagram on A′. Our idea is to orient A′ in such a way that the diagram on
A′ is more convenient to work with.

Let us choose A′ so that A′ and L are parallel. Then the line l′ is the line at
infinity, so R′ and S′ are at infinity. That is, the lines P ′2Q

′
3 and P ′3Q

′
2 are parallel,

as are the lines P ′1Q
′
3 and P ′3Q

′
1. Hence, we get the convenient diagram pictured in

Figure 4. The point T ′ is at infinity if and only if P ′1Q
′
2 and P ′2Q

′
1 are parallel, so

let us now prove that.

Let l′1 and l′2 intersect at U . Let us think of A′ as a Euclidean plane, on which
there exists a notion of distance. Since P ′2Q

′
3 and P ′3Q

′
2 are parallel, we know

|UP ′2|
|UQ′3|

=
|UP ′3|
|UQ′2|

,
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Q1
′

Q3
′

Q2
′

P2
′

P1
′

P3
′

U

Figure 4.

and since P ′1Q
′
3 and P ′3Q

′
1 are parallel, we get

|UP ′1|
|UQ′3|

=
|UP ′3|
|UQ′1|

.

Combining these two, we get

|UP ′1|
|UQ′2|

=
|UP ′2|
|UQ′1|

,

from which it follows that P ′1Q
′
2 and P ′2Q

′
1 are parallel. Thus, T ′ is on the line at

infinity, so the line t is on the plane L, so T lies on the line l, as desired. �

The idea of choosing A′ so that it is parallel to L is called moving a line to
infinity. This technique can also be used to prove Desargues’ theorem, which was
introduced in Section 4.5 too.

Theorem 11.2 (Desargues’ Theorem). Let P be a point not on ∆ABC. Let A′,
B′, and C ′ be points on the lines PA, PB, and PC, respectively. Let the (extended)
sides BC and B′C ′ meet at R. Similarly, let AC and A′C ′ meet at S and let AB
and A′B′meet at T . Then R, S, and T are collinear (see Figure 5).

We say the triangles ∆ABC and ∆A′B′C ′ are perspective from a point (the
point P ), or perspective from a line (the line RS).

Exercise 11.3. Prove Desargues’ theorem by moving a line to infinity.

Exercise 11.4. Given a convex quadrilateral ABCD in a plane and a point O not
in the plane, show that there are points A′ on OA, B′ on OB, C ′ on OC, and D′

on OD such that A′B′C ′D′ is a parallelogram.

11.2. Pascal’s Theorem

This idea of moving a plane about in three-space to get a different perspective on
a diagram can be used in other ways. In this section, we prove Pascal’s theorem,
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which was proved by Blaise Pascal (1623 – 1662) when he was sixteen. We state
this result below in a slightly different way than when we first introduced it in
Section 4.5. The wording there was chosen to draw attention to its similarity with
Pappus’ theorem.

Theorem 11.5 (Pascal’s Theorem). Let ABCDEF be a hexagon inscribed in a
conic C. Let R be the intersection of the opposite sides AB and DE; let S be the
intersection of the opposite sides BC and EF ; and let T be the intersection of
the opposite sides CD and FA. Then the points R, S, and T are collinear (see
Figure 5).

R

D
E

B

A

C

F

S

T

Figure 5.

The proof is a bit complicated, so we break it down into a few steps. We begin
with a lemma, which we were asked to prove in Exercise 1.60.

Lemma 11.6. Let two circles Γ and Γ′ intersect at A and B. Let CD be a chord on
Γ. Let AC and BD intersect Γ′ again at E and F . Then CD and EF are parallel
(see Figure 6).

Proof. Using the Star Trek lemma twice, we note that

∠ACD = 180◦ − ∠ABD = ∠ABF = 180◦ − ∠AEF,
so CD and EF are parallel. �

We now prove Pascal’s theorem in a special case:

Theorem 11.7. Let ABCDEF be a hexagon inscribed in a circle C. Let R be
the intersection of the opposite sides AB and DE; let S be the intersection of the
opposite sides BC and EF ; and let T be the intersection of the opposite sides CD
and FA. Then the points R, S, and T are collinear (see Figure 7).

This proof is essentially due to van Yzeren [vY93].
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F

E 

D

C

B

A

Figure 6.

R

D
E

B

A

C

F

S

T

Figure 7.

Proof. As in Figure 8, let AB and CD intersect at G, and let DE and FA intersect
at H. Let Γ be the circumcircle of ∆EFH. Let BE intersect Γ at P , and let CF
intersect Γ at Q. By Lemma 11.6, BA is parallel to PH, CD is parallel to QH, and
BC is parallel to PQ. Thus, triangles ∆BGC and ∆PHQ are similar and have
parallel sides. Thus, by Exercise 1.75, BP , CQ, and GH are coincident. That is,
the two triangles ∆BGC and ∆PHQ are perspective from a point. But then, the
triangles ∆BGC and ∆EHF are also perspective from a point, so we can apply
Desargues’ theorem, from which we conclude that R, S, and T are collinear. �

Proof of Pascal’s Theorem. The conics are the ellipses, parabolas, and hyper-
bolas, and are so named because they can be realized as the intersection of a plane
with a right circular cone. Let the conic C be the intersection of a plane A with
a cone. Let the vertex of the cone be O, and think of A as a subset of P2. There
exists another plane A′ such that the intersection of the cone and A′ is a circle.
Thus, on A′, our diagram is just the circle case of Pascal’s theorem, which we just
proved. Thus, R, S, and T are collinear. �
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Q

P

H

G
D

E
B

A

C

F

Figure 8.

As we just saw, a conic in projective geometry can be thought of as just a
cone, and so all conics are essentially the same. The distinction between an ellipse,
parabola, or hyperbola in the affine plane A is dependent on whether the line at
infinity (which is the plane through O parallel to A) respectively intersects the cone
at exactly O; is tangent to the cone; or intersects the cone in two lines. Though
it is possible to choose A′ so that any conic becomes a circle, we can do this for
only one conic at a time. An easy way of seeing this is to note that it is possible
for two ellipses to intersect at four points, but a pair of circles intersect in at most
two points.

11.3. Projective Coordinates

We represent a point P ∈ P2 with the projective coordinates or homogeneous co-
ordinates P = (P0, P1, P2), a triple of real numbers, not all of which equal zero.
Two triples (P0, P1, P2) and (Q0, Q1, Q2) represent the same point if and only if
Pj = λQj for all j and some λ 6= 0. The set of points (λP0, λP1, λP2) ∈ R3 for
fixed P and all λ ∈ R is the line OP . Thus, a projective coordinate representation
for a point P in P2 is the coordinates of any point on the line through O in R3

represented by P . We sometimes write P = (P0 : P1 : P2). The colons in this
notation are to emphasize that any triple with the same ratios represents the same
point.

A polynomial curve in P2 is the set of solutions to a polynomial equation

(11.1) f(x, y, z) = 0

where f is a polynomial with the property that

f(λx, λy, λz) = λdf(x, y, z)

for some positive integer d. A polynomial with this property is called a homogeneous
polynomial of degree d. Note that if P ∈ R3 is a solution to Equation 11.1 and
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P 6= O, then so is every point on the line OP . Thus, this equation is well defined
on P2.

The homogeneous polynomial equations of degree one are all equations of the
form

f(x, y, z) = ax+ by + cz = 0.

These equations describe the planes through O, and hence the lines in P2.

Though we started with the projective plane, it is instructive to go down a
dimension. The projective line is the set of lines through O in R2. These are the
points with homogeneous coordinates (P0, P1). There is a natural embedding of
the affine line into the projective line: x 7→ (x, 1). Thus, to create the projective
line from an affine line, we must add the single point (1, 0) at infinity.

The affine plane maps naturally into P2: (x, y) 7→ (x, y, 1). The points which
are missing are all points of the form (x, y, 0), which describe a projective line.

In a similar fashion, we may define projective three-space P3. This is the set
of points with homogeneous coordinates (P0, P1, P2, P3). Projective three-space is
the same as affine three-space together with a copy of P2 at infinity.

When we write P2, we usually mean real projective space, and if necessary, we
emphasize this with the notation P2(R). Complex projective space is denoted P2(C)
and is the set of all points with homogeneous coordinates (z0, z1, z2) where zj ∈ C.

We have already investigated the complex projective line P1(C), though we did
not call it that. This is the set of all points with homogeneous coordinates (z0, z1)
where zj ∈ C. If z1 6= 0, then

(z0, z1) = (z0/z1, 1),

so P1(C) is just the complex plane together with the single point (1, 0) at infinity.
Recall that (in Chapter 7), we thought of the boundary of the upper half plane H
as the real line together with the point at infinity. The fractional linear transfor-
mations can also be thought of in terms of projective coordinates. The point z ∈ C
can be represented in P1(C) with (z, 1). Note that[

a b
c d

] [
z
1

]
=

[
az + b
cz + d

]
,

and that (az + b, cz + d) =
(
az+b
cz+d , 1

)
, provided cz + d 6= 0. The symbol that we

called ∞ in Chapter 7 is the projective point (1, 0). Note that Exercise 7.45 is now
trivial, since the composition of functions is just matrix multiplication, so the result
follows immediately from the associativity of matrix multiplication.

The cross ratio can be interpreted in projective terms too. The cross ratio of
the four points A, B, C and D ∈ P1 is

(A,B;C,D)

= ((A0C1 −A1C0)(B0D1 −B1D0), (A0D1 −A1D0)(B0C1 −B1C0)).

Thus, the cross ratio of four points in P1 is a point in P1. This point is well
defined provided at least three of the points A, B, C, and D are distinct. With this
definition, we do not need to invent the special symbol ∞ and define its algebra,
since ∞ is already represented by (1, 0).
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Just as the action of invertible linear maps on P1(C) proved interesting, so are
the actions of invertible linear maps on P2. Let T ∈ GL3(R). Since T is linear,
it sends lines through O to lines through O, so induces a map on P2. Because T
sends planes through O to planes through O, it sends lines to lines on P2, and since
T ∈ GL3(R), it is invertible. Thus, T sends one model of P2 to another model of
P2. We call T an isomorphism of P2.

Recall that given any three distinct points A, B, and C in P1(C) (or P1(R)), and
their distinct images A′, B′, and C ′, there exists a fractional linear transformation
γ such that γ(A) = A′, γ(B) = B′ and γ(C) = C ′. As one might imagine there
exists a similar result in P2:

Theorem 11.8. Suppose A, B, C, and D are four points in P2(R), no three of
which are collinear; and suppose A′, B′, C ′, and D′ are another set of four points in
P2(R), no three of which are collinear. Then there exists a T ∈ GL3(R) such that
T (A) = A′, T (B) = B′, T (C) = C ′, and T (D) = D′.

Proof. Let A, B, C, and D be represented with fixed projective coordinates, and
think of these representations as points in R3. Then A, B, and C form a basis of
R3, since they are not collinear, so we can find numbers a, b, and c such that

D = aA+ bB + cC.

Similarly, there exist numbers a′, b′, and c′ such that

D′ = a′A′ + b′B′ + c′C ′.

There exists a linear map T which sends the basis vectors aA, bB, and cC to the
basis vectors a′A′, b′B′, and c′C ′, respectively. This map T sends D to D′, as
desired. Thought of as an element of P2(R), A′ = (a′/a)A′, so

T (A) =
1

a
T (aA) =

a′A′

a
= A′.

Similarly, as elements of P2(R), T (B) = B′ and T (C) = C ′, as desired. �

This result extends in a couple of obvious ways. We can replace the reals R
with C, or any other field. Also, it is possible to let A, B, and C be noncollinear
points, but allow D to be collinear with two of them, provided A′, B′, and C ′ are
noncollinear, and D′ is collinear with the corresponding pair of points.

The consequence of this theorem is that, given some diagram, we can select any
four noncollinear points and rearrange them into another set of four noncollinear
points, giving a diagram which hopefully is more convenient to work with.

Exercise 11.9. In this exercise, we are asked to render a perspective drawing of a
cube. The points (x, y, z) where x ∈ {2, 3}, y ∈ {3, 4}, and z ∈ {1, 2} form a cube.
Project these points on the plane x = 1.

Exercise 11.10. Prove that three points P , Q, and R ∈ P2 are collinear if and
only if

det

P0 P1 P2

Q0 Q1 Q2

R0 R1 R2

 = 0.

AMS Open Math Notes: Works in Progress; Reference # OMN:202006.110830; Last Revised: 2020-07-11 09:32:23



210 11. Projective Geometry

Exercise 11.11. Prove that the equation of the line going through P and Q is

det

 x y z
P0 P1 P2

Q0 Q1 Q2

 = 0.

Exercise 11.12. Prove that the intersection of two lines

A0x+A1y +A2z = 0

B0x+B1y +B2z = 0

is the point

P =

(
det

[
A1 A2

B1 B2

]
,det

[
A2 A0

B2 B0

]
,det

[
A0 A1

B0 B1

])
.

Exercise 11.13. What is the general form of a homogeneous polynomial equation
of degree two in P2?

Exercise 11.14. The equation

f(x, y) = y2 − x3 + x+ 1 = 0

is a polynomial equation in the affine plane. Find a homogeneous polynomial
F (x, y, z) with the property that F (x, y, 1) = f(x, y). Does this new equation have
any points at infinity? Decide how to find the tangent line of F (x, y, z) at some
point P on the curve F (x, y, z) = 0. What is(are) the tangent line(s) to this curve
at the point(s) at infinity?

Exercise 11.15. Prove that the definition for the cross ratio given in this section
is consistent with the definition given in Chapter 7.

11.4. Duality

A remarkably intriguing property of the projective plane is the notion of dual-
ity. This says that the roles of points and lines are interchangeable. Let us first
investigate why this should be possible.

We can think of a point P in P2 as being a line through O. There exists a unique
plane p which passes through O and is perpendicular to P . If P = (P0, P1, P2),
then the equation of this plane is P0x + P1y + P2z = 0. The plane p represents a
line in P2. Thus, we have a natural way of mapping points in P2 to lines in P2. We
call the line p (represented by the plane p) the dual to the point P , or the polar of
P . The point P is the dual or pole of the line p.

Suppose P and Q are two distinct points in P2. They describe a line PQ, which
is represented with a plane l through O. Let L be the line perpendicular to l. We
call the point L the dual to PQ. Note that the plane p perpendicular to P contains
L, and similarly, the plane q perpendicular to Q contains L. Since P and Q are
distinct, the planes p and q intersect in a line, which must be L.

Thus, under the dual map, points are sent to lines and lines are sent to points.
Furthermore, if two points are on a line, then the intersection of the duals of the
two points is the dual of the line through those two points. Similarly, if two lines
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11.5. Dual Conics and Brianchon’s Theorem 211

intersect at a point, then the dual of that point is the line through the duals of the
two lines.

For example, let us dualize Desargues’ theorem. We begin with triangles ∆ABC
and ∆A′B′C ′. The duals of A, B, and C are lines. Their points of intersection
are the duals of the lines BC, AC, and AB. Let us call these points D, E, and
F , respectively. Thus, the dual of ∆ABC is ∆DEF . Similarly, let ∆D′E′F ′ be
the dual of ∆A′B′C ′. The duals of the lines AA′, BB′, and CC ′ are three points.
Let us call them U , V , and W . Since these three lines are coincident, their three
dual points must be collinear. But the dual of the line AA′ is the intersection of
the edges EF and E′F ′. That is, the edges EF and E′F ′ intersect at U . Similarly,
the pairs of edges DF and D′F ′ intersect at V , and DE and D′E′ intersect at
W . We let the intersection of BC and B′C ′ be R. The dual of BC is D and the
dual of B′C ′ is D′, so the dual of R is the line DD′. Similarly, the dual of S is
the line EE′, and the dual of T is the line FF ′. And finally, for the conclusion.
The statement that R, S, and T are collinear dualizes to the statement that DD′,
EE′, and FF ′ are coincident. Thus, by dualizing Desargues’ theorem, we get the
following theorem:

Theorem 11.16. Let ∆DEF and ∆D′E′F ′ be two triangles. Let EF and E′F ′

intersect at U ; let DF and D′F ′ intersect at V ; and let DE and D′E′ intersect at
W . If U , V , and W are collinear, then the lines DD′, EE′, and FF ′ are coincident.

That is, the dual of Desargues’ theorem is just the converse of Desargues’
theorem. Recall, a shortened statement of Desargues’ theorem is ‘Two triangles
which are perspective from a point are perspective from a line.’ The notions of
perspective from a point and perspective from a line are dual notions.

Exercise 11.17. Find the dual theorem to Pappus’ theorem.

Exercise 11.18. Come up with new definitions of rotations and translations that
are duals of each other, are well defined in Euclidean, hyperbolic, and elliptic ge-
ometry, and are consistent with our definitions of rotations and translations in
Euclidean geometry. [A]

Exercise 11.19 (* (Sylvester’s Problem)). Suppose a set of n points in the plane
has the property that a line through any two points goes through a third. Prove
that the points are collinear.

11.5. Dual Conics and Brianchon’s Theorem

Consider the cone

(11.2) ax2 + by2 = cz2.

The tangent plane to a point (P0, P1, P2) on this cone is the plane

2aP0x+ 2bP1y + 2cP2z = 0.

The dual of this line is the point (2aP0, 2bP1, 2cP2). Note that this is a solution to
the equation

(11.3)
x2

a
+
y2

b
=
z2

c
.

AMS Open Math Notes: Works in Progress; Reference # OMN:202006.110830; Last Revised: 2020-07-11 09:32:23
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Thus, the duals of the tangent lines to the cone given by Equation 11.2 are points on
the cone given by Equation 11.3, and similarly, the duals of the points on Equation
11.2 are the tangent lines of Equation 11.3. We call Equation 11.3 the dual conic
to Equation 11.2.

Equation 11.2 is not the general equation of a cone, but the result is true in
general. We may think of the dual of a conic as being another conic, and that the
duals of the points on the original conic are tangent lines of the dual conic, and vice
versa. A consequence of this is the following theorem, which was originally proved
this way.

Theorem 11.20 (Brianchon’s Theorem). Suppose it is possible to inscribe a conic
in the hexagon ABCDEF . Then the diagonals AD, BE, and CF are coincident
(see Figure 9).

E
D

C 

B

A

F

Figure 9.

Proof. This is the dual of Pascal’s theorem. Let us dualize the conditions of the
theorem. We can think of the edges of the hexagon as tangent lines of the conic,
so the dual scenario is six points on a conic, with edges a, b, c, d, e, and f . The
dual of the diagonal AD is the intersection R of the lines a and d; the dual of the
diagonal BE is the intersection S of the lines b and e; and the dual of CF is the
intersection T of c and f . By Pascal’s theorem, these three points R, S, and T are
collinear. The dual of the line RS is the point of intersection of AD and BE; and
the dual of ST is the intersection of BE and CF . But the lines RS and ST are the
same, so their duals are the same. That is, AD, BE, and CF are coincident. �

Exercise 11.21. This question requires some knowledge of linear algebra. We may
write a general polynomial equation of degree two in the form

F (x, y, z) = ax2 + by2 + cz2 + 2exy + 2fyz + 2gxz = 0,

which we may in turn write in the form

[
x y z

] a e g
e b f
g f c

xy
z

 = 0.
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Let us define

A =

a e g
e b f
g f c

.
Let us also write X = (x, y, z), so

F (x, y, z) = XTAX.

Since A is symmetric, we know that it is diagonalizable. Prove that the curve
F (X) = 0 describes a nondegenerate conic in P2(R) if and only if two of the
eigenvalues of A are positive and one is negative, or if one is positive and two are
negative. Prove that the tangent line at P = (P0, P1, P2) is the line

PTAX = 0.

Finally, prove that the dual conic to F (X) = 0 is the conic

XTA−1X = 0.

11.6. Areal Coordinates

For the most part, we think of projective geometry as being useful to prove results
in Euclidean geometry only if the result does not really involve the metric. In
this section, we investigate a coordinate system which garners some of the utility
of projective geometry but also keeps some of the consequences of the metric in
Euclidean geometry.

We must first generalize our notion of area. The signed area of a triangle ∆ABC
has the magnitude of the area of the triangle together with a sign which is positive
if the points A, B, and C are oriented counterclockwise, and negative if they are
oriented clockwise. We will use the same notation for the signed area as we have
for the area of a triangle – namely |∆ABC|. In this section, all areas of triangles
will be signed areas.

A point P in the Euclidean plane is given the areal coordinates P = (P0, P1, P2)
with respect to a nondegenerate reference triangle ∆ABC where

P = (P0, P1, P2) =

( |∆PBC|
|∆ABC| ,

|∆APC|
|∆ABC| ,

|∆ABP |
|∆ABC|

)
.

This coordinate system is called areal since it involves areas. Note that the vertices
of the reference triangle have the coordinates

A = (1, 0, 0)

B = (0, 1, 0)

C = (0, 0, 1).

Note also that, for any point P , we have P0 + P1 + P2 = 1, since

|∆PBC|+ |∆APC|+ |∆ABP | = |∆ABC|.
Remember, these are signed areas.

There is a way to realize areal coordinates in terms of projective coordinates.
Let us think of the Euclidean plane as being represented by the plane z = 1 in R3,
so a point P is represented with P = (p1, p2, 1). Since ∆ABC is nondegenerate,
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there exists a unique T ∈ GL3(R) such that T (A) = (1, 0, 0), T (B) = (0, 1, 0), and
T (C) = (0, 0, 1). This is of course the map T such that

T−1 =

a1 b1 c1
a2 b2 c2
1 1 1

.
Though this map sends A, B, and C to the appropriate points, it is not clear that
it sends an arbitrary point P = (p1, p2, 1) to the areal coordinates of P . Let us
establish this.

Lemma 11.22. The signed area of an arbitrary triangle ∆ABC in the plane z = 1
in R3 is given by

|∆ABC| = 1

2
det

a1 a2 1
b1 b2 1
c1 c2 1

.
The reader may recall that the absolute value of the determinant of three

vectors is the volume of the parallelepiped they subtend. The proof of this result
is very similar.

Proof. Let us think of the points A, B, and C as vectors in R3. Let us emphasize

this by writing ~A, etc. Recall that

det

a1 a2 1
b1 b2 1
c1 c2 1

 = ~A · (~B× ~C) = ±||~A||||~B||||~C|| sin θ cosφ,

where θ is the angle between ~B and ~C and φ is the angle between ~A and the normal

vector to ~B and ~C. The volume V of the tetrahedron with vertices O, A, B, and
C is the area of the triangle with vertices O, B, and C, times one-third the height
from this triangle to A. That is,

V =
1

3
(||~A|| cosφ)

(
1

2
||~B||||~C|| sin θ

)
=

∣∣∣∣∣∣16 det

a1 a2 1
b1 b2 1
c1 c2 1

∣∣∣∣∣∣.
But we can also think of the volume V as the area of ∆ABC times one-third the
distance from the plane z = 1 to O. This height is just one, so we also have

V =

∣∣∣∣13 |∆ABC|
∣∣∣∣.

Finally, we note that the determinant is positive if ~A, ~B, and ~C obey the right-hand
rule, and negative otherwise. That is, the determinant is positive if A, B, and C
are ordered counterclockwise, and negative otherwise. Thus, we get

|∆ABC| = 1

2
det

a1 a2 1
b1 b2 1
c1 c2 1

,
as desired. �
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Corollary 11.23. Let ∆PQR be a triangle in the plane z = 1 in R3. Let T ∈
GL3(R). Let us use the notation P = (p1, p2, 1) and T (P ) = (P0, P1, P2), etc. Then

det

P0 Q0 R0

P1 Q1 R1

P2 Q2 R2

 = 2 detT |∆PQR|.

Proof. Note that

det

P0 Q0 R0

P1 Q1 R1

P2 Q2 R2

 = det

T
p1 q1 r1

p2 q2 r2

1 1 1

 = 2 detT |∆PQR|. �

Corollary 11.24. Let ∆ABC be a nondegenerate triangle on the plane z = 1 in
R3. Let T ∈ GL3(R) be the map that sends the points A, B, and C to the unit basis
vectors. Let P = (p1, p2, 1) and let T (P ) = (P0, P1, P2). Then (P0, P1, P2) are the
areal coordinates of P with respect to the reference triangle ∆ABC.

Proof. Let P = A, Q = B, and R = C in Corollary 11.23. Then

1 = det

1 0 0
0 1 0
0 0 1

 = 2 detT |∆ABC|.

If we let P = P , Q = B, and R = C in Corollary 11.23, then we get

P0 = det

P0 0 0
P1 1 0
P2 0 1

 = 2 detT |∆PBC|.

Dividing, we get

P0 =
|∆PBC|
|∆ABC| .

Similarly,

P1 =
|∆APC|
|∆ABC| and P2 =

|∆ABP |
|∆ABC| . �

Corollary 11.25. Suppose P , Q, and R are expressed in areal coordinates with
respect to the reference triangle ∆ABC. Then

|∆PQR|
|∆ABC| = det

P0 Q0 R0

P1 Q1 R1

P2 Q2 R2

.
Proof. Divide the conclusion of Corollary 11.23 by 1 = 2 detT |∆ABC|. �

To help us familiarize ourselves with areal coordinates, let us do a quick exercise.

Exercise 11.26. What are the areal coordinates of I, the incenter of ∆ABC?

Solution. Let r be the inradius. Then, as can be seen in Figure 10,

I0 =
|∆IBC|
|∆ABC| =

1
2ra

1
2r(a+ b+ c)

=
a

a+ b+ c
.
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r

a

I

A

C B

Figure 10.

We can similarly find I1 and I2, giving

I =

(
a

a+ b+ c
,

b

a+ b+ c
,

c

a+ b+ c

)
,

or in projective coordinates,

I = (a, b, c).

Note that ∆ABC and ∆IBC will always have the same orientation, so the com-
ponents of I are all positive. �

Suppose P , Q, and R are collinear. Recall that we defined the signed ratio of

lengths to be the ratio
|PQ|
|QR| together with a positive sign if Q is between P and

R, and a negative sign otherwise. This definition was introduced in Section 1.15 on
Menelaus’ and Ceva’s theorems.

The following theorem is a generalization of Ceva’s theorem.

Theorem 11.27 (Routh’s Theorem). Let D, E, and F be points on the sides BC,
AC, and AB, respectively, as in Figure 11. Let

λ =
|BD|
|DC| , µ =

|CE|
|EA| and ν =

|AF |
|FB|

be signed ratios of lengths. Let BE and CF intersect at P ; let AD and CF intersect
at Q; and let AD and BE intersect at R. Then

|∆PQR| = (λµν − 1)2|∆ABC|
(λµ+ λ+ 1)(µν + µ+ 1)(νλ+ ν + 1)

.

Proof. We first note that |∆DBC| = 0, so D0 = 0. Also,

|DC| = 1

λ+ 1
|BC|,

so

|∆ADC| = |BC|h
2(λ+ 1)

,

where h is the altitude of ∆ABC at A. Since |∆ABC| = 1
2 |BC|h, we get

D1 =
1

λ+ 1
.
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R

Q
P

F

E

D C B

A

Figure 11.

Since

|BD| = λ

λ+ 1
|BC|,

we similarly get

D2 =
λ

λ+ 1
.

Thus,

D =

(
0,

1

λ+ 1
,

λ

λ+ 1

)
,

or in projective coordinates,

D = (0, 1, λ).

Similarly, in projective coordinates, we get

E = (µ, 0, 1)

F = (1, ν, 0).

We might as well work with projective coordinates for now, since we can convert
back to areal coordinates by dividing through by the sum of the components, since
in areal coordinates, the sum of the components is one. We now calculate the
equation of the line AD. These are the set of points X = (X0, X1, X2) such that
|∆ADX| = 0. That is,

det

1 0 X0

0 1 X1

0 λ X2

 = X2 − λX1 = 0.

Similarly, BE has the equation X0−µX2 = 0, and CF has the equation X1−νX0 =
0. The intersection of BE and CF is therefore

P =

(
det

[
0 −µ
1 0

]
,det

[
−µ 1
0 −ν

]
,det

[
1 0
−ν 1

])
= (µ, µν, 1).

Similarly,

Q = (1, ν, λν) and R = (λµ, 1, λ).
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Thus,

|∆PQR|
|∆ABC| =

det

 µ 1 λµ
µν ν 1
1 λν λ


(1 + µ+ µν)(1 + ν + λν)(1 + λ+ λµ)

=
(λµν − 1)2

(1 + µ+ µν)(1 + ν + λν)(1 + λ+ λµ)
.

The quotient in the above result comes from converting P , Q, and R back to areal
coordinates. �

As mentioned earlier, Routh’s theorem is a generalization of Ceva’s theorem,
since the latter is a corollary of the former:

Corollary 11.28 (Ceva’s Theorem). Let D, E, and F divide the segments BC,
CA, and AB by the ratios of λ to 1, µ to 1, and ν to 1, respectively. Then AD,
BE, and CF are coincident if and only if

λµν = 1.

Proof. The three points P , Q, and R are coincident if and only if the area of
∆PQR is zero. �

Exercise 11.29. Show that the centroid G has areal coordinates

G = (1/3, 1/3, 1/3).

Exercise 11.30. Show directly that the orthocenter H has areal coordinates

H = (cotB cotC, cotA cotC, cotA cotB).

Conclude that, if A+B + C = 180◦, then

tanA+ tanB + tanC = tanA tanB tanC.

Exercise 11.31. Prove that the areal coordinates of the circumcenter O is

O = u(sin 2A, sin 2B, sin 2C),

where 1/u = sin 2A+ sin 2B + sin 2C.

Exercise 11.32. What are the areal coordinates of the excenter Ia? [A]

Exercise 11.33. Use areal coordinates to prove Menelaus’ theorem.

Exercise 11.34. In the same way that Routh’s theorem is a generalization of
Ceva’s theorem, there exists a generalization of Menelaus’ theorem. Find and prove
it.

Exercise 11.35. Let D, E, and F divide each of the sides BC, CA, and AB in
the ratio of 2 to 1. Let P , Q, and R be the intersections of BE with CF , CF with
AD, and AD with BE, respectively. Prove that the area of ∆PQR is one-seventh
of the area of ∆ABC.
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Chapter 12

The Pseudosphere in Lorentz
Space

We have seen on several occasions that hyperbolic geometry might be thought of
as a sphere of radius i. There are several interpretations of this analogy, none
of which are entirely satisfactory (as analogies). In this chapter, we study one
such interpretation, the pseudosphere imbedded in three-dimensional Lorentz space.
Minkowski’s study and development of four-dimensional Lorentz space (sometimes
called Minkowski space-time) was of fundamental importance to the work of his
student, Albert Einstein. Like the Poincaré models of hyperbolic geometry, the
pseudosphere is also in common use today.

We begin our investigation with the study of a particular model of spherical
geometry.

12.1. The Sphere as a Foil

We can think of the sphere S as the set of points in Cartesian 3-space a distance 1
away from the origin. This is the set of points (x, y, z) ∈ R3 which satisfy

(12.1) x2 + y2 + z2 = 1.

This model inherits the arclength element of Euclidean three-space:

(12.2) ds =
√
dx2 + dy2 + dz2.

Just like our definition for the upper half plane H, this is a complete description of
the sphere.

Let us interpret Equations 12.1 and 12.2 in terms of matrix products:

~xT I~x = 1

ds2 = d~xT Id~x,

219
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220 12. The Pseudosphere in Lorentz Space

where ~x = (x, y, z) and I is the identity matrix. It is not necessary to include the
identity I in either equation above. We include it because we want to think of this
model as a foil for the pseudosphere. In our model of the pseudosphere, the matrix
I in these equations and the following equations will be substituted with something
else.

Suppose a matrix T satisfies

TT IT = I.

Then

(Td~x)T ITd~x = d~xT (TT IT )d~x = ds2,

so T preserves the arclength element. Furthermore, and not surprisingly, for ~x ∈ S,

(T~x)T IT~x = ~xT I~x = 1.

Thus, T is an isometry of S.

The group

O3(R) = {T ∈ GL3(R) : TT IT = I}
is called the orthogonal group on R3. Note that

det(TT IT ) = det I = 1

(detT )2 = 1,

so detT = ±1. The group O3(R) is the full group of isometries on S (see Exercise
12.1). The subgroup SO3(R) is the group of orthogonal matrices with determinant
one and is the group of proper isometries on S (see Exercise 12.2).

A line on S is a great circle, which can be thought of as the intersection of S
with a plane through the origin O. The distance |PQ| between two points P and

Q on S is the angle ∠POQ. If we think of P and Q as vectors ~P and ~Q, then the
angle ∠POQ is the angle between them, so

~P · ~Q = ||~P||||~Q|| cos |PQ| = cos |PQ|.

Note that the dot product is invariant under the action of O3(R). To see this,
suppose T ∈ O3(R). Then

T~P · T ~Q = (T~P)T IT ~Q = ~PT (TT IT )~Q = ~PT I~Q = ~P · ~Q.
Exercise 12.1. Let P be a point on S. Define

RP (~x) = ~x− 2(~P · ~x)~P.

Prove that RP (~x) is reflection through the polar of P . Prove that RP is in O3(R) (or
more precisely, show that the matrix which represents RP is in O3(R)). Conclude
that O3(R) is the full group of isometries of S.

Exercise 12.2. Suppose T ∈ SO3(R) and T 6= I. Prove that T has exactly two
fixed points, so is a rotation on S.

Exercise 12.3. Suppose T ∈ O3(R) and detT = −1. Prove that T is not a
rotation, so must be an improper isometry.
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12.2. The Pseudosphere 221

Exercise 12.4. Show that the arclength element on S in polar coordinates is given
by

ds2 =
dr2

1− r2
+ r2dθ2

(for r 6= 1).

Exercise 12.5. Recall that the location of a point P in R3 can be described using
spherical coordinates. The spherical coordinates of P are (ρ, φ, θ), where |OP | = ρ,
φ is the angle OP makes with the z-axis, and θ is the angle that the projection
of OP onto the xy-plane makes with the x-axis. Recall also that the Cartesian
coordinates (x, y, z) of P are given by

(x, y, z) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ).

Prove that the arclength element in three-space is

ds =

√
ρ2 sin2 φdθ2 + ρ2dφ2 + dρ2.

Conclude that the arclength element on the sphere of radius one is

ds =

√
sin2 φdθ2 + dφ2.

Exercise 12.6. The map −I is an isometry of S. Write it as a product of reflections
in S.

Exercise 12.7. Prove the following properties of the cross product:

~u× (~v × ~w) = (~u · ~w)~v − (~u · ~v)~w

(~u× ~v) · (~w × ~x) = det

[
~u · ~w ~u · ~x
~v · ~w ~v · ~x

]
.

In the following sections, we will define analogues of the dot and cross products.

12.2. The Pseudosphere

Let us consider the surface V described by the equation

x2 + y2 − z2 = −1,

which is a hyperboloid of two sheets (see Figure 1). Using the previous section as
a guide, let us write

~xTJ~x = −1,

where

J =

1 0 0
0 1 0
0 0 −1

.
This surface is imbedded in R3, which we usually think of as having a metric. Let
us abandon that metric and instead define

(12.3) ds2 = d~xTJd~x = dx2 + dy2 − dz2.

Unlike the arclength element on S, it is not so clear that this arclength element
is well defined. That is, it is conceivable that the right-hand side of Equation 12.3
might sometimes be negative. This is in fact not possible, as seen in Exercise 12.8.
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222 12. The Pseudosphere in Lorentz Space

Figure 1. A hyperboloid of two sheets.

Again, we note that if

TTJT = J,

then T preserves the arclength element, and furthermore, sends V to itself, so is an
isometry of V.

Unlike the sphere, V has two components, so there are no lines (on V) joining
points on one sheet with points on the other sheet. We will therefore restrict our
attention to one sheet, the sheet V+ with z > 0. We call V+ the pseudosphere. The
surface V+ can equivalently be thought of as V where every point P is identified

with its antipodal point P ′ (the point P ′ represented by the vector −~P). In this
respect, the surface V+ is more of an analogue of elliptic geometry.

The group of isometries on V can be classified as follows:

OJ = {T ∈ GL3(R) : TTJT = J}
O+
J = {T ∈ OJ : T (V+) = V+}

SO+
J = {T ∈ O+

J : detT = 1}.

The group OJ is called the Lorentz group, O+
J is the group of isometries on V+,

and SO+
J is the group of proper isometries on V+ (see Exercises 12.13 and 12.14).

We expect that lines on V+ are the intersection of V+ with planes through the
origin O. We verify this in Exercise 12.12.
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12.2. The Pseudosphere 223

Let us consider a particular line on V+, the line created by the intersection of
V+ with the plane y = 0. This is the curve

x2 − z2 = −1,

which can be parameterized as

~x(φ) = (sinhφ, 0, coshφ).

The arclength of this curve for φ ∈ [0, φ0] is

s =

∫ φ0

0

√(
dx

dφ

)2

+

(
dy

dφ

)2

−
(
dz

dφ

)2

dφ

=

∫ φ0

0

√
cosh2 φ− sinh2 φ dφ

= φ0.

Thus, the distance between the ‘North Pole’N = (0, 0, 1) and the point (sinhφ0, 0, coshφ0)
is φ0. More generally, since both V and ds are radially symmetric with respect
to the z-axis, the distance from N to an arbitrary point P = (P1, P2, P3) is
|NP | = arccoshP3.

The use of the parameter φ hints at another important analogy. For any values
θ and φ, the point

~x = (cos θ sinhφ, sin θ sinhφ, coshφ)

lies on the surface V+.

The Lorentz inner product is our analogue of the dot product and is given by

~x ◦ ~y = ~xTJ~y.

If T ∈ O+
J , then

T~x ◦ T~y = (T~x)TJ(T~y) = ~xT (TTJT )~y = ~x ◦ ~y,
so the Lorentz inner product is invariant under the action of O+

J . In particular,
taking the dot product of N = (0, 0, 1) and P = (P1, P2, P3), we get

~N ◦ ~P = −P3 = − cosh |NP |.
For any points P and Q, there exists an isometry T ∈ O+ which sends Q to N . Let
P ′ = T (P ). Since T preserves the Lorentz product,

~P ◦ ~Q = ~P′ ◦ ~N = − cosh |P ′N |,
and since T is an isometry, it preserves lengths, so

|P ′N | = |PQ|.
Thus, for any two points P and Q on V+, we have

cosh |PQ| = −~P ◦ ~Q.

The space R3 equipped with the Lorentz inner product is called a Lorentz space
and is sometimes denoted R2,1. The ‘length’ of a vector ~x in this space is defined
to be

||~x|| =
√
~x ◦ ~x.
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224 12. The Pseudosphere in Lorentz Space

The equation for the surface V can be written as

~x ◦ ~x = −1,

so it is the set of points a distance i away from the origin. That is, V is a sphere of
radius i.

Exercise 12.8 (). Prove that the arclength element on V is given by

ds2 =
1

z2

(
dx2 + dy2 + (ydx− xdy)2

)
. [S]

Exercise 12.9. Let ~x(t) be a piecewise smooth curve on V+ such that ~x(0) = N =
(0, 0, 1) and ~x(t0) = P = (x0, 0, z0). Prove that the arclength of ~x(t) for t ∈ [0, t0]
is at least arccosh(z0). Conclude that the line through N and P is the intersection
of V+ with the plane y = 0.

Exercise 12.10. Let Rθ rotate V an angle θ about the z-axis. What is the matrix
representation of Rθ? Prove that Rθ ∈ O+

J . [A]

Exercise 12.11. Prove that the map

Tφ =

coshφ 0 sinhφ
0 1 0

sinhφ 0 coshφ


is in O+

J .

Exercise 12.12. Let P and Q be points on V+. Use Exercises 12.10 and 12.11
to prove that there exists a T ∈ O+

J such that TQ = N and TP = P ′ where the
y component of P ′ is zero. Use Exercise 12.9 to conclude that the line NP ′ is
the intersection of V+ with the plane y = 0. Conclude that the line PQ is the
intersection of V+ with the plane through P , Q and the origin O.

Exercise 12.13 (†). Let ~a ◦~a = 1. Prove that the plane

~a ◦ ~x = 0

intersects V. Define the map

R~a(~x) = ~x− 2(~a ◦ ~x)~a.

Prove that the matrix which represents R~a is in O+
J , and that it is reflection through

the line described by the intersection of V+ with the plane ~a◦~x = 0. Conclude that,
if V+ is a model of hyperbolic geometry, then O+

J is the full group of isometries of
V+.

Exercise 12.14. Suppose T ∈ O+
J . Prove that T is a proper isometry if and only

if detT = 1. [H]

Exercise 12.15. Show that the arclength element on V expressed in polar coordi-
nates is given by

ds2 =
dr2

1 + r2
+ r2dθ2.

Exercise 12.16. Recall, the surface V can be parameterized by

~x(θ, φ) = (cos θ sinhφ, sin θ sinhφ, coshφ).

What is the arclength element on V expressed in terms of θ and φ?

AMS Open Math Notes: Works in Progress; Reference # OMN:202006.110830; Last Revised: 2020-07-11 09:32:23



12.3. Angles and the Lorentz Cross Product 225

Exercise 12.17. Suppose ~u = (u1, u2, u3) and ~v = (v1, v2, v3) are two vectors with
u3, v3 > 0 and ~u ◦ ~u < 0, ~v ◦ ~v < 0. Let us define φ ≥ 0 such that

~u ◦ ~v = ||~u||||~v|| coshφ.

Prove that φ is well defined and depends only on the directions of ~u and ~v, and not
on their magnitudes.

Exercise 12.18. We have discovered that the distance between two points P and
Q on V+ is given by

|PQ| = arccosh(−~P ◦ ~Q).

Prove directly that this distance function satisfies the triangle inequality.

12.3. Angles and the Lorentz Cross Product

An angle between two lines on the sphere S is the angle between the two planes
which define the lines. We would therefore expect something similar on the pseu-
dosphere V+.

In Exercise 12.13, we saw that a plane which intersects V+ can be written as

~a ◦ ~x = 0,

where ~a◦~a = 1. More generally, a plane is defined by a vector ~a where ~a◦~a > 0. We
therefore expect that the angle between two intersecting lines defined by ~a ◦ ~x = 0

and ~b◦~x = 0 should be some quantity that depends only on ~a and ~b; is independent
of the magnitudes of these vectors; and is invariant under the action of O+

J .

Let us begin with ~a and ~b such that ||~a|| = ||~b|| = 1. There exists a T ∈ O+
J

such that T~a = (1, 0, 0) and T~b = ~b′ = (b′1, b
′
2, 0) (see Exercise 12.19). Both points

lie on the surface

x2 + y2 − z2 = 1

and have the z component equal to zero, so lie on the curve

x2 + y2 = 1.

This is a circle, so it can be parameterized by θ via (x, y, z) = (cos θ, sin θ, 0). In

particular, there exists a θ such that ~b′ = (cos θ, sin θ, 0). Then,

~a ◦ ~b = (1, 0, 0) ◦ (cos θ, sin θ, 0) = cos θ.

Now, let us suppose that ~a and ~b both have positive lengths. By dividing through
by their lengths, we get vectors with length one, and since the Lorentz product is
linear, we get

~a ◦ ~b
||~a||||~b||

=

(
~a

||~a||

)
◦
(

~b

||~b||

)
= cos θ

for some angle θ which is independent of the length of the vectors ~a and ~b, and is
independent of the action of O+

J . Thus, we define the angle between two intersecting

lines on V+ described by the equations ~a ◦ ~x = 0 and ~b ◦ ~x = 0 to be the angle θ
such that

~a ◦ ~b = ||~a||||~b|| cos θ.
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226 12. The Pseudosphere in Lorentz Space

Note that, if we restrict θ to the range [0, π], then for any two planes there are two
possible angles, depending on whether one of the planes is described by ~a or −~a.
These two angles are, of course, supplementary angles.

Let us now turn our attention to finding ~a. Given points P and Q on V+, let
the line through P and Q be defined by the plane ~a ◦ ~x = 0. Note that

~a ◦ ~x = ~aTJ~x = J~a · ~x.

Thus, we can choose ~a so that

J~a = ~P× ~Q.
We therefore define the Lorentz cross product to be

~P⊗ ~Q = J−1(~P× ~Q).

Exercise 12.19. Suppose ||~a|| = ||~b|| = 1 and that the lines defined by ~a◦x = 0 and
~b◦x = 0 intersect on V+. Prove that there exists a T ∈ O+

J such that T~a = (1, 0, 0)

and T~b = ~b′ = (b′1, b
′
2, 0). [H]

Exercise 12.20. Prove the following properties of the Lorentz cross product:

~u⊗ ~v = J~v × J~u
~u⊗ ~v = −~v ⊗ ~u

~u ◦ (~v ⊗ ~w) = det

u1 u2 u3

v1 v2 v3

w1 w2 w3


~u⊗ (~v ⊗ ~w) = (~u ◦ ~v)~w − (~u ◦ ~w)~v

(~u⊗ ~v) ◦ (~w ⊗ ~x) = det

[
~u ◦ ~x ~u ◦ ~w
~v ◦ ~x ~v ◦ ~w

]
.

Exercise 12.21. Suppose ~a and ~b have positive lengths. Prove that

||~a⊗ ~b|| = i||~a||||~b|| sin θ,

where θ is the angle defined by ~a ◦ ~b = ||~a||||~b|| cos θ.

Exercise 12.22. Construct a proof of the hyperbolic Pythagorean theorem and
Theorem 7.113 which is in the spirit of the proofs of the spherical Pythagorean
theorem and Theorem 10.7 given in Section 10.2. [H]

Exercise 12.23. We saw that the surface V+ can be parameterized by φ and θ so
that a point P (φ, θ) has the coordinates

P (φ, θ) = (sinhφ cos θ, sinhφ sin θ, coshφ).

The appropriate analogue on the sphere S is

P (φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ).

What is the analogue of this parameterization in Euclidean geometry? [A]
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12.4. A Different Perspective

Though we have frequently referred to the pseudosphere as a model of hyperbolic
geometry, we have not yet proved this assertion. We will do so in this section.

We begin by taking a second look at the Poincaré disc model. In this model,
the disc represents the entire plane, and distances get longer as we approach the
boundary of the disc. We might imagine that we are looking down at the hyperbolic
plane, and that the plane is curving away from us.

Now, let us take the pseudosphere and rotate it away from us, until we are
looking up along the z-axis, as in Figure 3. What we see is a disc. Thus, it appears
as though the Poincaré disc model might just be the pseudosphere viewed from a
different perspective. This is indeed the case, as we shall see.

We project V+ onto the plane z = 0 using stereographic projection through the
point (0, 0,−1). If we use polar coordinates, then the angle θ remains unchanged
under the projection, so we really have a two-dimensional problem. That is, we
can think of V+ as the surface of revolution found by rotating the top half of the
hyperbola r2 − z2 = −1.

)(

(r,z)

(t,0)

(0,−1)

Figure 2.

In Figure 2, let us denote a point on the hyperbola with (r, z) and a point on
the line z = 0 with (t, 0). Then, the vector from (0,−1) to (r, z) is a multiple of
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228 12. The Pseudosphere in Lorentz Space

Figure 3. We rotate the pseudosphere V+ away from us until we are looking

down the z-axis. In the last figure, which looks like a disc, we choose our point
of view to be a particular point on the z-axis. From this vantage, a hyperbolic

line looks like an arc of a circle. Furthermore, in this last figure we are looking
at all of V+, not just a portion of it. The boundary of the disc is the ‘horizon’
of the plane.

the vector from (0,−1) to (t, 0), so

(r, z + 1) = λ(t, 1)

r = λt(12.4)

z = λ− 1.(12.5)

The set of points on the top half of the hyperbola are mapped to the interval (−1, 1),
and the bottom half is mapped to (−∞,−1) ∪ (1,∞). No points are mapped to
±1. Thus, V+ is mapped to the unit disc, not including its boundary. This gives
us a disc model, but not necessarily the Poincaré disc model. To see that this is in
fact the case, it is enough to check that the arclength elements are the same.
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12.5. The Beltrami-Klein Model 229

In polar coordinates, the arclength element on V+ is given by (see Exercise
12.15)

ds2 =
dr2

1 + r2
+ r2dθ2.

The arclength element on the Poincaré disc D (in polar coordinates using t to
represent the distance from the origin) is given by (see Exercise 7.99)

ds2 =
4dt2 + 4t2dθ2

(1− t2)2
.

Let us plug Equations 12.4 and 12.5 into the equation of the hyperbola to get

λ(λt2 − λ+ 2) = 0.

It is no coincident that λ = 0 is a solution. This gives the point (0,−1), which
we carefully chose to be on the hyperbola. We are interested in the solutions with
λ 6= 0, so we get

λ =
2

1− t2 ,
and hence

r =
2t

1− t2 and z =
1 + t2

1− t2 .
Hence,

dr =
2(1− t2)dt+ 4t2dt

(1− t2)2
=

2(1 + t2)dt

(1− t2)2
,

so

ds2 =
4(1 + t2)2dt2(1− t2)2

(1− t2)4((1− t2)2 + 4t2)
+

4t2dθ2

(1− t2)2

=
4dt2 + 4t2dθ2

(1− t2)2
,

as desired. Thus, the geometry of the surface V+ is the same as the geometry of
the Poincaré disc D. In particular, we now know that the pseudosphere V+ is a
model of hyperbolic geometry.

Exercise 12.24. Suppose the intersection of V+ with ~a ◦ ~x = d is bounded and
nonempty. Prove that this intersection is a (hyperbolic) circle. What are the
necessary and sufficient conditions on ~a and d for this to happen? What is the
center of this circle? [H]

12.5. The Beltrami-Klein Model

The success of the projection done in the previous section depends very much on the
vantage point of our perspective. That is, the choice of the point (0, 0,−1) through
which we project is very important. In this section, we will instead project onto the
plane z = 1 and through the point (0, 0, 0). The surface V+ again projects to a unit
disc, not including its boundary. This time, rather than investigate the arclength
element, let us just ask what happens to lines under this projection. Since lines on
V+ are the intersection of V+ with planes through the origin, the projection of a
line is just the intersection of the plane that describes the line together with the
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230 12. The Pseudosphere in Lorentz Space

unit disc on the plane z = 1. That is, lines in this new model are just chords of the
unit disc (see Figure 4).

l

l2

l1
P

Figure 4. The Klein model of hyperbolic geometry together with some lines

and a point which illustrate the fifth axiom.

This model was first developed by Eugenio Beltrami (1835 – 1900). The model
is called the Beltrami-Klein model or Klein model, after Beltrami and Felix Klein
(1849 – 1925). The formula for distance in this model was developed by Klein. This
model predates both the Poincaré models and the pseudosphere.

12.6. Menelaus’ Theorem

By now, the similarities between the sphere and the pseudosphere should be quite
apparent, so it should not be any surprise that there is a version of Menelaus’
theorem in hyperbolic geometry.

Theorem 12.25 (Menelaus’ Theorem in Hyperbolic Geometry). Let ∆ABC be a
triangle in hyperbolic geometry. Let D, E, and F be points on the extended sides
BC, AC, and AB, respectively. Then D, E, and F are collinear if and only if

sinh |AF |
sinh |FB|

sinh |BD|
sinh |DC|

sinh |CE|
sinh |EA| = −1.

Again, in keeping with the convention concerning signed lengths introduced in
Section 1.15, we give the ratio

sinh |AF |
sinh |FB|

a positive sign if F is between A and B, and a negative sign otherwise.

To prove Menelaus’ theorem, we need an analogue of Lemma 10.20:

Lemma 12.26. Let A, B, and F be collinear points on V+. Let F ′ be the inter-
section of the (Euclidean) lines OF and AB. Then

|AF ′|
|F ′B| =

sinh |AF |
sinh |FB| ,
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12.6. Menelaus’ Theorem 231

where the lengths on the left are Euclidean lengths, the lengths inside the hyperbolic
trigonometric functions are hyperbolic lengths, and the ratios are signed ratios.

B ′

F ′

F

A′
A

B

Figure 5.

Proof. Let us first consider a special case – the case where F is the ‘North Pole’
(0, 0, 1) and A and B lie on the plane y = 0, as in Figure 5. Then, as we saw in
Section 12.2, the points A and B have the coordinates (± sinh |AF |, 0, cosh |AF |)
and (± sinh |BF |, 0, cosh |BF |), respectively. Let the bases of the perpendiculars
to OF from A and B be A′ and B′, respectively. Then, |AA′| = sinh |AF | and
|BB′| = sinh |BF |, where the lengths on the left are Euclidean, and the lengths
inside the trig functions are hyperbolic. We note that ∆AFA′ ∼ ∆BFB′, so we
get the following equality of unsigned ratios:

|AF |
|FB| =

|AA′|
|B′B| =

sinh |AF |
sinh |FB| .

Applying the correct signs to the ratios at either end, we note that F ′ is between
A and B if and only if F is between A and B, so the signed ratios are equal too.

Now, suppose F is not the point (0, 0, 1), or that either A or B is not on the
plane y = 0. Then, there exists an isometry T ∈ O+

J such that the T (F ) = (0, 0, 1)
and T (A) lies on the plane y = 0. Since A, B, and F are collinear, the point T (B)
also lies on the plane y = 0. Thus,

|T (A)T (F )′|
|T (F )′T (B)| =

sinh |T (A)T (F )|
sinh |T (F )T (B)| ,

where T (F )′ is the intersection of T (F )O with T (A)T (B). Since T is an isometry,

sinh |T (A)T (F )′|
sinh |T (F )′T (B)| =

sinh |AF |
sinh |FB| .

Since T is linear, it sends lines to lines, so T (F )′ = T (F ′). Also, if we set

λ =
|AF ′|
|AB| ,

(together with the appropriate sign), then, as vectors,

~F′ = ~B + λ(~A− ~B) = λ~A + (1− λ)~B,
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and
|AF ′|
|F ′B| =

λ

1− λ.

But since T is linear,

T~F′ = T (λ~A + (1− λ)~B) = λT ~A + (1− λ)T ~B,

so
|T (A)T (F ′)|
|T (F ′)T (B)| =

λ

1− λ =
|AF ′|
|F ′B| .

Thus,
|AF ′|
|F ′B| =

sinh |AF |
sinh |FB| ,

as claimed. �

Menelaus’ theorem in hyperbolic geometry now follows in the same way that it
does in spherical geometry, so we leave the proof as an exercise.

Exercise 12.27. Prove Menelaus’ theorem in hyperbolic geometry.

Exercise 12.28 ( (Ceva’s Theorem in Hyperbolic Geometry)). State and prove
Ceva’s theorem in hyperbolic geometry.

Exercise 12.29. Despite the similarities, not everything in spherical geometry
translates nicely to the pseudosphere. Explain why Ptolemy’s proof of the spherical
Pythagorean theorem (see Exercise 10.21) cannot be adapted to the pseudosphere.
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Chapter 13

Finite Geometries

Geometry has an inherent algebraic structure. We first saw this in Chapter 3 when
we studied the algebra of constructions. In this chapter, we present another stun-
ning example of the relationship between these two apparently diverse subjects. We
will present both algebraic and geometric definitions of finite affine and projective
planes. Though the two definitions look very different, they in fact define the same
objects. The core arguments of this amazing result are due to David Hilbert (1862 –
1943) who used a geometrically defined algebra discovered by Karl Georg Christian
von Staudt (1798 – 1867).

13.1. Algebraic Affine Planes

As was stressed in Chapter 9, the choice of axioms one uses to define a particular
theory can be a matter of taste. In this section, we present an algebraic set of
axioms to define affine planes. Our model is the real affine plane R2, on which lines
are defined via the equations

ax+ by = c,

where a and b are not both zero. To come up with new geometries, we merely
replace R with an arbitrary field.

Definition 13.1 (Field). A set F together with two binary operations + and · is
called a field if for any a, b, and c in F , we have

(1) a+ b ∈ F (Closure under addition.)

(2) a · b ∈ F (Closure under multiplication.)

(3) (a+ b) + c = a+ (b+ c) (Associativity of addition.)

(4) a+ b = b+ a (Commutativity of addition.)

(5) There exists an element 0 ∈ F such that a+ 0 = a for all a ∈ F .
(Existence of an additive identity.)

(6) For any element a ∈ F , there exists an element −a ∈ F such that
a+ (−a) = 0. (Existence of additive inverses.)

233
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234 13. Finite Geometries

(7) (a · b) · c = a · (b · c) (Associativity of multiplication.)

(8) a · b = b · a (Commutativity of multiplication.)

(9) There exists an element 1 ∈ F such that a · 1 = 1 · a = a for any a ∈ F .
(Existence of a multiplicative identity.)

(10) For any a ∈ F with a 6= 0, there exists an element a−1 ∈ F such that
a · a−1 = a−1 · a = 1. (Existence of multiplicative inverses.)

(11) a · (b+ c) = a · b+ a · c (The distributive laws.)
(a+ b) · c = a · c+ b · c

The notation · for multiplication is often omitted.

Given a field F , we define the algebraic affine plane F 2 to be the set of points
denoted by ordered pairs of elements of F :

F 2 = {(a, b) : a, b ∈ F}.
We define a line in F 2 to be a subset l of F 2 given by

l = {(x, y) ∈ F 2 : ax+ by = c},
for any elements a, b, and c in F such that a and b are not both zero. Note that two
lines are equal if they are equal as sets. Thus, two distinct equations ax + by = c
and a′x+ b′y = c′ might define the same line.

The reader might note that this definition apparently contains no axioms. This
is because there is little distinction between definitions and axioms. For example,
consider a set F together with two operations + and ·. In the above, we define F to
be a field if it satisfies the listed properties. We could have instead taken the point
of view that F is a field, and that we assume it satisfies these properties. Because
of this point of view, the properties of a field are sometimes called the field axioms.

There are as many different algebraic affine planes as there are fields. The
smallest finite field is Z/2Z, the integers modulo two.1 The geometry (Z/2Z)2 can
be modeled abstractly as in Figure 1. Note that the ‘diagonals’ do not intersect.

(0,0) (1,0)

(0,1) (1,1)

Figure 1. An abstract rendering of the four point geometry (Z/2Z)2.

This model has a couple of familiar geometric properties: (1) For any two
distinct points P and Q, there exists a unique line l through P and Q. (2) For any

1See Section A.4 in the Appendix A for a quick review of modular arithmetic.
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13.2. Algebraic Projective Planes 235

line l and any point P not on l, there exists a line l′ through P which does not
intersect l.

These two properties are, in fact, satisfied by any algebraic affine plane F 2:

Theorem 13.2. Given any two points P and Q in F 2, there exists a unique line
l which contains both P and Q.

Theorem 13.3. Given a line l and a point P not on l, there exists a unique line
l′ which contains P and does not intersect l.

We leave the proofs as exercises.

As is shown in most (if not all) undergraduate texts in modern algebra, for
every prime power q = pr with r ≥ 1, there exists exactly one field with q elements.
This field is usually denoted with Fq. There are no fields with n elements for n not
a power of a prime. For r = 1, the field Fp is just Z/pZ. In Exercise 13.11, we
develop the field with four elements.

There are therefore algebraic affine planes F2
q with q2 = p2r elements for any

prime p and integer r ≥ 1.

Exercise 13.4. Prove Theorem 13.2.

Exercise 13.5. Prove Theorem 13.3.

Exercise 13.6. Let P and Q be distinct points in (Z/nZ)2. Prove that there exists
a line l which goes through P and Q.

Exercise 13.7. Find two distinct points P and Q in (Z/6Z)2 such that there exist
two distinct lines through both of them. [H]

Exercise 13.8. Find lines l, l2, and l3 in (Z/6Z)2 such that l2 and l3 intersect,
but neither intersect l.

Exercise 13.9. Prove that every line in (Z/pZ)2 has p points on it.

Exercise 13.10. Draw an abstract rendering of the nine point affine geometry
(Z/3Z)2.

Exercise 13.11. Though (Z/4Z)2 is not an affine plane, there does exist a sixteen
point affine plane. This is constructed by first finding a four point field. Let α
satisfy

α2 + α+ 1 = 0

and define

F4 = {a+ bα : a, b ∈ Z/2Z}.
Verify that every nonzero element (there are only three) has a multiplicative inverse.
Verify that F4 is a field.

13.2. Algebraic Projective Planes

Recall that we define the set of points in P2(R) to be the set of lines which go
through the origin in R3. A line in P2(R) is represented by a plane in R3 which
goes through the origin. For an arbitrary field F , we define P2(F ) in a similar

AMS Open Math Notes: Works in Progress; Reference # OMN:202006.110830; Last Revised: 2020-07-11 09:32:23



236 13. Finite Geometries

fashion. A point in P2(F ) is represented by a line through the origin in F 3, and a
line in P2(F ) is represented by a plane in F 3 which goes through the origin.

Just as in P2(R), we represent a point P ∈ P2(F ) with the homogeneous coor-
dinates (P0, P1, P2), a triple of elements in F , not all of which are zero. The triple
(P ′0, P

′
1, P

′
2) represents the same point if P ′i = λPi for all i and some nonzero λ ∈ F .

A line in P2(F ) is the set of solutions to the equation

a0x+ a1y + a2z = 0.

Again, using the smallest field F = Z/2Z, we get the smallest algebraic projec-
tive plane P2(Z/2Z), the seven point geometry shown in Figure 2. The points are
labeled with homogeneous coordinates, though in this case, there is no distinction
between homogeneous coordinates and coordinates in (Z/2Z)3.

(0,1,0)

(1,1,1)

(1,0,0) (0,0,1)(1,0,1)

(0,1,1)(1,1,0)

Figure 2. An abstract rendering of the seven point projective geometry.

Finite algebraic projective planes also satisfy several familiar geometric prop-
erties:

Theorem 13.12. For every pair of points P and Q in P2(F ), there exists a unique
line l through both.

Theorem 13.13. Every pair of distinct lines intersect in exactly one point.

The proofs of these two we leave as exercises.

Theorem 13.14 (Desargues’ Theorem). Let F be a field. Two triangles ∆ABC
and ∆A′B′C ′ in P2(F ) are perspective from a point if and only if they are perspective
from a line.

We gave a proof of Desargues’ theorem in Euclidean geometry on page 83. That
proof involves visualization in three-dimensional Euclidean geometry. In Exercise
11.3, we asked for another proof, but the proof sought for there involves a compar-
ison of similar triangles, in the fashion of the proof of Pappus’ theorem given on
page 203. Thus, neither proof is applicable to our current situation.

Proof. Let ~A be a vector in F 3 which represents the point A in P2(F ), and so on.
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P

A′

A

B ′

B

C ′

C

T

S

R

Figure 3.

Suppose first that ∆ABC and ∆A′B′C ′ are perspective from the point P , as
in Figure 3. This figure is meant to be helpful, but keep in mind that it is a figure
in Euclidean geometry and only models our finite geometry. Since A′ is on the line

PA, ~A′ is in the plane spanned by ~P and ~A. By Exercise 13.15, we can write ~A′ as

a linear combination of ~P and ~A, so

~A′ = r~P + s~A.

If we multiply ~A′ by r−1, we get another vector which also represents A′. Thus,
without loss of generality, we may write

~A′ = ~P + a~A

for some a ∈ F . We can similarly write

~B′ = ~P + b~B and ~C′ = ~P + c~C.

Let R be the point represented by

~R = b~B− c~C.
Note that ~R is a linear combination of ~B and ~C, so R is on the line BC. Note also
that

~R = (~P + b~B)− (~P + c~C) = ~B′ − ~C′,
so R is on the line B′C ′. Hence, R is the point of intersection of the lines BC and
B′C ′. Similarly, the points S and T represented by

~S = a~A− c~C and ~T = a~A− b~B
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238 13. Finite Geometries

are the points of intersection of the pairs of lines AC and A′C ′, and BC and B′C ′,
respectively. But then,

~T = a~A− b~B = (a~A− c~C)− (b~B− c~C) = ~S− ~R,
so ~T is in the plane spanned by ~R and ~S. That is, T is on the line RS, so ∆ABC
and ∆A′B′C ′ are perspective from a line.

Finally, recall that the dual of the above result is its converse, so follows by
Exercise 13.18. �

Exercise 13.15. Let A, B, and C be points on the plane

ax+ by + cz = 0

in F 3. Let ~A be the vector OA, and so on. Prove that there exist elements r and
s in F such that

~C = r~A + s~B.

Exercise 13.16. How many points are in P2(Z/3Z)? Draw an abstract rendering
of this geometry.

Exercise 13.17. How many points are in P2(Fq)?

Exercise 13.18. Define the duals of points and lines in P2(F ). Suppose that if P
and Q are points whose duals are p and q, then the point of intersection of p and q
is the dual of the line PQ. Conclude that the dual of any theorem in P2(F ) is also
a result in P2(F ).

Exercise 13.19 (*). A linear automorphism of an affine or projective geometry
G is an invertible map f from G to itself which sends lines to lines. Every linear
transformation T ∈ GL2(F ) gives a linear automorphism of F 2. Can there be a
linear automorphism of F 2 which is not a linear transformation?

Exercise 13.20. How many linear automorphisms are there in P2(Fp)? [H]

Exercise 13.21 (*). We define a conic in P2(Fq) to be the set of solutions to an
equation of the form

XTAX = 0,

where X = (X0, X1, X2) and A is a symmetric invertible 3× 3 matrix with entries
in Fq. How many points are on such a conic? Hint: Read up on stereographic
projection in Chapter 15.

13.3. Weak Incidence Geometry

Though the algebraically defined finite planes of the previous two sections satisfy
several familiar geometric properties, it does not seem possible that they should
be the only finite geometries, so we should probably take the point of view that
they are only models of certain finite planes. In general, finite geometries should
be defined geometrically. In this section, we define weak incidence geometries via a
set of geometric axioms.

Let G be a set of points on which there are subsets called lines. We call G a
weak affine plane if it satisfies the following axioms:
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(1) Given any two distinct points P and Q in G, there exists a unique line l
through P and Q.

(2) Every line l contains at least two points.

(3) There exist at least two lines.

4a. Given a line l and a point P not on l, there exists a unique line l′ through P
which does not intersect l.

In Section 13.1, we verified that all algebraic affine planes satisfy these prop-
erties, so we have a large number of examples. The smallest example has four
points. It is not hard to see that there are no weak affine planes with three points
(see Exercise 13.27). This is perhaps our first indication that this set of axioms is
somewhat restrictive. In fact, every weak affine plane contains n2 points for some
n (see Corollary 13.25).

Let us consider more sets G. We call G a weak projective plane if it satisfies
Axioms 1 and 3, and

2p. Every line l contains at least three points.

4p. Every pair of lines intersect.

Again, in Section 13.2, we verified that all algebraic projective planes satisfy
these axioms.

There is a strong relationship between affine and projective planes:

Theorem 13.22. Suppose G is a weak projective plane and L is a line on G. Let
G′ = G \ L and call a subset l′ of G′ a line if there exists a line l in G such that
l′ = l ∩ G′. Then G′ is a weak affine geometry.

Proof. Axioms 1 and 3 are trivially satisfied by G′. To see that Axiom 2 is satisfied,
we note that every line l intersects L exactly once (by Axioms 1 and 4p), so l′ = l∩G′
contains one less point then l, and hence at least two points. Now, suppose l′ is
a line in G′ and P ∈ G′ is a point not on l′. Let l intersect the line L at Q ∈ G.
Then there exists a unique line l1 = PQ. The line l′1 does not intersect l. Suppose
there exists another line l′2 which goes through P and does not intersect l′. But l2
intersects l, so that point of intersection must be on L. That is, l2 intersects l at
Q. Hence, l2 = PQ = l1. Thus, there is a unique line l′1 through P which does not
intersect l. �

Given a weak affine plane G′, one can also construct a weak projective plane
(see Exercise 13.30).

There are several properties that we would like all geometries to satisfy. For
example, we would like all lines and points to look the same. In geometries for which
we have a metric, we express this notion via isometries. In incidence geometries,
we have no metric so cannot talk about isometries. The following theorem shows
that all lines in finite affine and projective geometries potentially look alike.

Theorem 13.23. Suppose G is a finite weak projective geometry, and suppose l is
a line on G which contains n points. Then every line on G contains n points.
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Proof. Let l′ be another line and let l and l′ intersect at P . By Axiom 2p, there
exist points Q and Q′ on l and l′, respectively, neither of which is P . Also by Axiom
2p, there exists a third point R on QQ′. This point R does not lie on either l or l′.
We now use stereographic projection from l to l′ through R. For every point S on
l, let S′ be the point on l′ where RS and l′ intersect (note that S′ exists by Axiom
4p, and is uniquely defined by Axiom 1). This defines an invertible map from l to
l′. Hence, l and l′ contain the same number of points. That is, l′ contains n points.
Since l′ was arbitrary, every line in G contains n points. �

Corollary 13.24. Suppose G is a finite weak projective geometry and suppose l is
a line on G which contains n points. Then G contains n2 − n+ 1 points.

Corollary 13.25. Suppose G is a finite weak affine geometry. Then G contains n2

points for some integer n ≥ 2.

We leave the proofs of these as exercises. Note that there are algebraic affine
planes with 22, 33, 42, 52, and 72 points, but none with 62 points. This raises the
question: Are there any weak affine planes with 36 points?

In 1782, Euler posed a similar problem, the thirty-six officer problem. Suppose
there are six regiments, each with six officers. Suppose that each officer has one
of six different ranks and that no two officers in the same regiment have the same
rank. Is there a way to arrange these officers in six rows and columns such that
no two officers in the same row or column are from the same regiment or have the
same rank?

This question is related to weak affine geometries in the following way:

Theorem 13.26. Suppose there exists a weak affine geometry with n2 points where
n > 2. Then there is a way of organizing n regiments of n officers with n different
ranks in n rows and n columns such that no two officers in any row or column are
from the same regiment or have the same rank.

The answer to Euler’s problem is no, which was shown by exhaustive search
in 1900. Consequently, there are no weak affine planes with thirty-six points. This
is our second indication that the set of axioms which define weak affine planes is
rather restrictive.

Before we continue, let us say a little about finite hyperbolic geometries. The
weakest form of such a geometry G satisfies Axioms 1 – 3 and the following:

4h. For any line l and P not on l, there exist at least two lines through P which
do not intersect l.

The smallest such geometry has five points. Since there is no analogue of Theorem
13.23, we often also require that Axiom 2 be modified so that it reads,

2h. Every line contains exactly n points.

Even with this modification, it is clear that we are not yet defining satisfactory ana-
logues of hyperbolic geometry. For example, the geometries (Z/3Z)3 and P3(Z/2Z)
both satisfy Axioms 1, 2h with n = 3, 3, and 4h, but are more properly analogues
of three-dimensional affine and projective geometries. Let us add an axiom which
will ensure that our geometry is two dimensional. For any three points A, B, and
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C in G, let p(A,B,C) be the smallest subset of G which contains A, B, and C, and
has the property that for every pair of points P and Q in p(A,B,C), the line PQ
lies entirely within p(A,B,C). For noncollinear points A, B, and C, this set may
be thought of as the plane that contains them. Let us now assume

5h. For any three noncollinear points A, B, and C in G, the set p(A,B,C) is all
of G.

This axiom eliminates the three-dimensional examples given above. It is not too
hard to show that the smallest geometry which satisfies these axioms (Axioms 1,
2h, 3, 4h, and 5h) with n = 3 must have at least thirteen points (see Exercise
13.34). Such a geometry exists and is developed in Exercise 13.38.

Exercise 13.27. Prove that there is only one three point geometry which satisfies
Axioms 1 – 3.

Exercise 13.28. Find all four point geometries which satisfy Axioms 1 – 3. [H]

Exercise 13.29. How many lines are there in an affine geometry with n2 points?

Exercise 13.30 (*). Suppose G is a weak affine plane. Describe how to add a
line at infinity to G to get a weak projective geometry G′. Prove that G′ is a weak
projective geometry.

Exercise 13.31. Prove Corollary 13.24. [S]

Exercise 13.32. Prove Corollary 13.25.

Exercise 13.33 (*). Prove Theorem 13.26. [H]

Exercise 13.34. Prove that any geometry which satisfies Axioms 1, 2h, 3, and 4h
with n = 3 has at least thirteen points. [S]

Exercise 13.35. Let G be a geometry which satisfies Axioms 1, 2h with n = 3,
and 3. Let A, B, and C be three noncollinear points in G. Prove that p(A,B,C)
contains at least seven points.

Exercise 13.36. Suppose G is a weak projective geometry and that A, B, and C
are three noncollinear points in G. Prove that p(A,B,C) = G. That is, prove that
Axiom 5h is a theorem in weak projective geometry.

Exercise 13.37. Suppose G is a weak affine geometry with at least three points on a
line. Let A, B, and C be three noncollinear points in G. Prove that p(A,B,C) = G.
What happens if there are only two points on a line?

Exercise 13.38 (*). In this exercise, we develop the thirteen point hyperbolic
geometry. Let G = {P0, ..., P12}. Let the twenty-six lines on G be the sets lk =
{P0+k, P1+k, P4+k} and l′k = {P0+k, P2+k, P7+k} for k = 0, 1, ..., 12 (and indexing
modulo 13). Prove that G satisfies Axioms 1, 2h, 3, 4h, and 5h. [H]

13.4. Geometric Projective Planes

In a finite weak projective plane, every line contains the same number of points.
There exist algebraic projective planes for which every line contains q + 1 points
where q is a power of a prime. There does not exist a weak projective plane with
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7 points on each line. A natural question to ask is, Are there any weak projective
geometries with n+1 points on each line where n is not a power of a prime? Though
we will not answer this question, we will prove something a little more impressive
but on a smaller set of geometries.

A geometric projective plane is a weak projective plane which satisfies one more
axiom:

5. Desargues’ theorem holds.

Since we proved Desargues’ theorem for P2(F ), every algebraic projective plane
is a geometric projective plane. In the rest of this chapter, we will show that
every finite geometric projective plane is an algebraic projective plane. Thus, our
algebraic and geometric descriptions of finite projective planes are equivalent.

We prove this in several steps. Let G be a geometric projective plane and let
l be a line in G. Let P be a point on l and let l∗ = l \ {P}. We first define von
Staudt’s addition and multiplication on l∗. Following Hilbert, we prove that l∗ is
a division ring, which is an object that satisfies all the properties of a field except
possibly commutativity of multiplication (that is, properties 1 – 7 and 9 – 11 on
page 233). If G is finite, then l∗ is finite, so by Wedderburn’s theorem (a rather
deep result in abstract algebra), l∗ must in fact be a field. We will then build a
coordinate system on G to show that G is equivalent to P2(l∗).

Exercise 13.39. The principle of duality is an important property of the projective
plane. Dualize the statements of these axioms. Prove each of these dual statements
from this set of axioms. Conclude that the dual statement of any theorem in the
projective plane is in fact a theorem.

13.5. Addition

Let G be a geometric projective plane. Let us choose three distinct lines l, l′, and
l′′ in G. Let l and l′′ intersect at P , let l′ and l′′ intersect at P ′, and let l and l′

intersect at O. Let l∗ = l \ {P} and let l′∗ = l′ \ {P ′}. Let us think of l′′ as a ‘line
at infinity’ so that when we talk about parallel lines, we mean lines which intersect
at a point on l′′. We will construct an algebra on l∗ (and in passing, on l′∗ too).
The point O will be our zero element.

Let A and B be points on l∗, and let A′ 6= 0 be an arbitrary point on l′∗ (see
Figure 4). Construct the line through A′ and parallel to l. That is, construct the
line A′P . Construct also the line through B and parallel to l′ (i.e., BP ′). Let these
two lines intersect at D. The point C where the line through D and parallel to AA′

intersects l is the point we call A+B.

Let us first check that this addition is well defined. Suppose A′′ is another
nonzero point on l′∗. Let A′′P intersect the line BD at D′. Our definition of
addition is well defined if D′C is parallel to AA′′. To see this, we apply Desargues’
theorem to the triangles ∆AA′A′′ and ∆CDD′. The lines AC, A′D, and A′′D′ are
parallel, so are coincident at infinity. Thus, the two triangles are perspective from
a point, and are therefore perspective from a line. Since AA′ is parallel to CD and
A′A′′ is parallel to DD′, the line of perspectivity is the line at infinity. Thus, AA′′

and CD′ intersect at infinity. That is, they are parallel, as desired.
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A

O

A′

A′′

B

D

D ′

C l

l ′

Figure 4.

Lemma 13.40. Addition on l∗ is commutative.

Proof. Let A and B be points on l∗. Let A′ be an arbitrary point on l′∗ and let
B′ be the point on l′∗ such that BB′ is parallel to AA′. In Figure 5, the points D
and D′ are constructed so that A′D and B′D′ are parallel to l, and AD′ and BD
are parallel to l′. The point A+B is the intersection of l with the line through D
and parallel to AA′. The point B +A is the intersection of l with the line through
D′ which is parallel to BB′. Thus, A+ B = B + A if DD′ is parallel to AA′. Let
A′D and AD′ intersect at A′′, and let BD and B′D′ intersect at B′′. We apply
Desargues’ theorem to ∆AA′A′′ and ∆BB′B′′. These two triangles are perspective

B ′

A′

O

A B

A′′ D

D ′ B ′′

Figure 5.
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from the line at infinity, so are perspective from a point. That is, O, A′′, and B′′

are collinear. We now apply Desargues’ theorem to ∆AA′A′′ and DD′B′′, which
are perspective from the point O, so are perspective from a line. That line is the
line at infinity, so DD′ is parallel to AA′, as desired. �

Lemma 13.41. Addition on l∗ is assosciative.

O

A′

A B D=A+B

B ′′
C ′

C E=B+C

E ′

F=(A+B)+C  

G G ′

Figure 6.

Proof. Let A, B, and C be points on l∗, and consult Figure 6. Choose A′ on
l′∗ and let B′ be the intersection of A′P and BP ′. Let D be the intersection of
l with the line through B′ and parallel to AA′. Then D = A + B. Let C ′ be
the intersection of A′B′ and CP ′, and let E be the intersection of l with the line
through C ′ and parallel to BA′. Then E = B + C. Let F be the intersection of l
with the line through C ′ and parallel to DA′. Then F = D + C = (A + B) + C.
Finally, let E′ be the intersection of A′B′ and EP ′. If E′F is parallel to AA′, then
F = A+ E = A+ (B + C), as desired. So let us show E′F is parallel to AA′. We
do this using Desargues’ theorem a couple of times. First, let G be the intersection
of BB′ and DA′, and let G′ be the intersection of EE′ and FC ′. The triangles
∆BGA′ and ∆EG′C ′ are perspective from the line at infinity, so are perspective
from a point, the point P at infinity. Thus, GG′ is parallel to l. The triangles
∆DB′G and ∆FE′G′ are perspective from the point P , so are perspective from a
line, the line at infinity. Thus, FE′ is parallel to DB′, which is parallel to AA′, as
desired. �

Exercise 13.42. Verify that O +A = A for all A.

Exercise 13.43. Describe how to find −A.

Exercise 13.44. Let I and I ′ be fixed nonzero points on l∗ and l′∗, respectively.
For any Q on l∗, define Q′ to be the point on l′∗ such that QQ′ is parallel to II ′.
Similarly, for a point Q′∗ on l′∗, define (Q′)′ to be the point Q on l∗ such that QQ′

is parallel to II ′. For any A and B on l∗, prove that

(A′ +B′)′ = A+B.

13.6. Multiplication

Recall the method of multiplying constructible lengths (see page 65). Our definition
of · is inspired by that construction. We first pick nonzero points I and I ′ on l∗

AMS Open Math Notes: Works in Progress; Reference # OMN:202006.110830; Last Revised: 2020-07-11 09:32:23



13.6. Multiplication 245

and l′∗, respectively. The point I will be our multiplicative identity. Let A and B
be points in l∗. Let B′ be the point on l′∗ such that BB′ is parallel to II ′ (see
Figure 7). The point C where the line through B′ and parallel to AI ′ intersects l
is the point we call A ·B.

O

I A B C=AB

I ′

B ′

Figure 7.

Lemma 13.45. Multiplication is assosciative.

E=(AB)C 

G
O

I A B D=AB C F=BC

G ′
I ′

B ′

C ′

F ′

Figure 8.

Proof. Given I, I ′, A, B, and C, as in Figure 8, we find the following points: B′

is the point on l′ such that BB′ is parallel to II ′; D is the point on l such that
DB′ is parallel to AI ′; C ′ is the point on l′ such that CC ′ is parallel to II ′; and
E is the point on l such that EC ′ is parallel to DI ′. By construction, D = AB
and E = DC = (AB)C. The point F is the point on l such that FC ′ is parallel
to BI ′; F ′ is the point on l′ such that FF ′ is parallel to II ′. By construction,
F = BC, and if EF ′ is parallel to AI ′, then E = AF = A(BC). We show this by
applying Desargues’ theorem twice. Let G be the intersection of DI ′ and BB′; and
let G′ be the the intersection of EC ′ and FF ′. Note that ∆BI ′G and ∆FC ′G′ are
perspective from the line at infinity, so they are perspective from a point. Hence,
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O, G, and G′ are collinear. Thus, ∆DGB′ and EG′F ′ are perspective from a point,
so they are perspective from a line. Hence EF ′ is parallel to DB′, which is parallel
to AI ′, as desired. �

Exercise 13.46. Show that IA = AI = A for all A.

Exercise 13.47. Describe how to find A−1.

Exercise 13.48. Let I and I ′ be fixed nonzero points on l∗ and l′∗, respectively.
For any Q on l∗, define Q′ to be the point on l′∗ such that QQ′ is parallel to II ′.
Similarly, for a point Q′ on l′∗, define (Q′)′ to be the point Q on l∗ such that QQ′

is parallel to II ′. For any A and B on l∗, prove that

(A′B′)′ = AB.

13.7. The Distributive Law

We will prove only one direction of the distributive law and leave the other case as
an exercise (Exercise 13.50).

Lemma 13.49. Let A, B, and C be points on l∗. Then

O

I ′
A′

B ′

D ′=A′B ′

E ′=A′C ′

I A B C G

F

H ′

Figure 9.

A(B + C) = AB +AC.

Proof. Let I 6= 0, A, B, and C be points on l∗. Let I ′ 6= 0 be a point on l′∗. Let
A′ and B′ be points on l′ such that AA′ and BB′ are parallel to II ′ (see Figure 9).
Let D′ and E′ be the points on l′ such that D′B and E′C are parallel to A′I. Then
D′ = A′B′ and E′ = A′C ′. Let F be the intersection of the lines D′P and CP ′.
(Recall that P and P ′ are the points at infinity on l and l′, respectively, so D′P and
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CP ′ are just shorthand notations for lines parallel to l and l′.) Let G and H ′ be
the points on l and l′, respectively, such that GH ′ goes through F and is parallel
to IA′. Note that B +C = G, and hence, H ′ = A′(B′ +C ′) (using Exercises 13.44
and 13.48). Thus, H (not shown) is A(B + C). Note also that E′ + D′ = H ′, so
H ′ = A′C ′ +A′B′. Hence, we also have H = AC +AB = AB +AC. Thus,

H = A(B + C) = AB +AC. �

Exercise 13.50 (*). Prove the other direction of the distributive law. That is,
prove that

(A+B)C = AC +BC.

13.8. Commutativity, Coordinates, and Pappus’ Theorem

In the last three sections, we have defined an algebra on l∗ and shown that all the
properties of a field are satisfied except one – we have not shown that multiplication
is commutative. That is, we have shown that l∗ is a division ring. If G is finite, then
this is in fact enough to show that l∗ is a field. This follows from Wedderburn’s
theorem:

Theorem 13.51 (Wedderburn’s Theorem). Every finite division ring is a field.

See any good textbook in algebra for a proof (e.g., [Her75]).

As suggested by the title of this section, the commutativity of multiplication
and Pappus’ theorem are related. They are, in fact, equivalent. Let us first recall
Pappus’ theorem, which is more correctly called a property, since we do not know
whether it holds or not.

Property (Pappus’ Theorem). Let P1, P2, and P3 be three points on the line l1,
and let Q1, Q2, and Q3 be three points on the line l2. Let R be the intersection
of P2Q3 and P3Q2; let S be the intersection of P1Q3 and P3Q1; and let T be the
intersection of P1Q2 and P2Q1. Then R, S, and T are collinear.

Theorem 13.52. Multiplication in the division ring l∗ is commutative if and only
if Pappus’ theorem is true.

In our proof that the commutativity of multiplication in l∗ implies Pappus’
theorem, we use a result in algebraic projective planes. So let us first establish that
if l∗ is a field, then G is equivalent to P2(l∗).

Let us begin by building a coordinate system on the affine subset G′ = G \ l′′.
Let P be an arbitrary point in G′. Let the line through P and parallel to l′ intersect
l at R. Similarly, let the line through P and parallel to l intersect l′ at S′, as in
Figure 10. We give the point P the coordinates (R,S) (where, as before, S is
the point on l such that SS′ is parallel to II ′). To show that this gives an affine
coordinate system, we must show that lines in G′ are described by the appropriate
equations.

Let A be a point on l and let B′ be a point on l′. Note that the coordinates
of A and B′ are (A, 0) and (0, B), respectively. Thus, both points lie on the curve
described by

BX +AY = AB.
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I ′

S ′

B ′

O C R D A

P

Figure 10.

Let P be on the line AB′ and let P have coordinates (R,S). We must show that

BR+AS = AB.

To see this, consider Figure 10. Let I ′ be the identity on l′. Let C and D be the
points on l such that CI ′ and DS′ are parallel to AB′. Then CB = A, CS = D,
and D +R = A. Thus, C = AB−1 and hence,

AB−1S +R = A

AS +BR = AB.

Thus, our choice of coordinates defines an affine coordinate system for G′. This
coordinate system can be extended to a projective coordinate system on G (see
Exercise 13.54). Thus G and P2(l∗) define the same geometry.

Let us now return to the proof of Theorem 13.52.

I ′

O

I A B C=AB

A′

B ′

Figure 11.
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Proof of Theorem 13.52. Let us first suppose that Pappus’ theorem is true. Let
the points I, I ′, A, and B be as in Figure 11. We construct A′ and B′ so that AA′

and BB′ are parallel to II ′. Let C be the point on l such that CB′ is parallel to
AI ′. Then, by construction, C = AB. The point BA is the intersection of l with
the line through A′ which is parallel to BI ′. Hence, to show AB = BA, we must
show that CA′ is parallel to BI ′. Let us apply Pappus’ theorem to the points A,
B, and C on l, and the points B′, A′, and I ′ on l′ (and in that order). Note that
AA′ and BB′ are parallel, and that AI ′ and CB′ are parallel, so the points we call
T and S are on the line at infinity. Thus, the point R, which is the intersection of
BI ′ and CA′, is also at infinity. That is, BI ′ and CA′ are parallel, as desired.

Let us now prove the other direction in the special case when the lines l1 and
l2 (as stated in the conditions of Pappus’ theorem) are the coordinate axis l and l′,
and the points R and T are on the line l′′ at infinity. Then, we have exactly the
situation in Figure 11, with P1 = A, P2 = B, P3 = C = AB, Q1 = B′, Q2 = A′, and
Q3 = I ′. Let S be the intersection of P1Q3 with RT = l′′. Then by definition, RB′

intersects l at the product BA. Since multiplication is commutative, AB = BA, so
RB′ intersects l at C, as desired.

Finally, let us consider an arbitrary case. Let l1 and l2 intersect at D. Let the
line RT intersect l1 and l2 at E and E′, respectively. Since G is equivalent to P2(l∗),
by the comments following Theorem 11.8, there exists a linear transformation T ∈
GL3(l∗) which sends D to O, E to P , E′ to P ′, and Q3 to I ′. This map sends
lines to lines, so in particular, preserves the constructions of our addition and
multiplication. Thus, if we were to develop an algebra on l1 and l2 with the line
RT at infinity, then we will get the same algebra as l∗. Hence, we may view l1 and
l2 as coordinate axes, and proceed as before. �

Remark 13.53. It is not necessary for l∗ to be a field in order to develop a
coordinate system, but more care must be taken in this case. Similarly, using a
little more care, one can define algebraic projective geometries for division rings. In
particular, Hamilton’s quaternion algebra H (which is developed in Exercise 13.55)
is a noncommutative division ring, and in the geometry P2(H), Pappus’ theorem is
not true.

Exercise 13.54. Extend the affine coordinate system on G′ to a projective coor-
dinate system on G.

Exercise 13.55. Hamilton’s quaternion algebra is the four-dimensional vector
space over R given by

H = {a+ bi+ cj + dk : a, b, c, d ∈ R},

and in which we define products using the rules i2 = j2 = k2 = −1, ij = k,
jk = i, ki = j, and using the associative and distributive laws. Prove that ji = −k,
kj = −i, and ik = −j. Evaluate

(a+ bi+ cj + dk)(a− bi− cj − dk).

For any nonzero element r = a+ bi+ cj + dk, find the inverse of r and express r−1

as a linear combination of 1, i, j, and k. Prove that H is a division ring.

AMS Open Math Notes: Works in Progress; Reference # OMN:202006.110830; Last Revised: 2020-07-11 09:32:23



250 13. Finite Geometries

13.9. Weak Projective Space and Desargues’ Theorem

When we treat Desargues’ theorem as an axiom, it might seem as if we are accepting
rather a lot, so there might be the inclination to search for a weaker set of axioms
from which Desargues’ theorem follows. We find a clue as to how to do this in the
proof of Desargues’ theorem given on page 83. This proof only involves intersections
of lines and planes in three-space, so can potentially be adapted to planes imbedded
in a weak projective space. Let us begin with its definition.

A weak projective space is a set G whose elements are called points and which
has subsets called lines and planes. The set G further satisfies the following axioms:

(1) Given any two distinct points P and Q in G, there exists a unique line l
through P and Q.

2s. Every line l contains at least three points.

3s. Given any three noncollinear points P , Q, and R in G, there exists a unique
plane α which contains all three.

4s. Every plane α contains at least two lines.

5s. If two points P and Q are in a plane α, then the line PQ is in α.

6s. Every pair of distinct lines in a plane α intersect.

7s. Every pair of distinct planes intersect in at least two points.

8s. There exist at least two planes.

In weak projective space, we have the following three results which we leave as
exercises.

Theorem 13.56. Let l be a line and let P be a point not on l. Prove that there
exists a plane which contains l and P .

Theorem 13.57. Prove that the intersection of two distinct planes is exactly a
line.

Theorem 13.58. Prove that three distinct planes intersect at exactly one point.

Theorem 13.59 (Desargues’ Theorem). Let α be a plane in a weak projective
space G. Let ∆ABC and ∆A′B′C ′ be two nondegenerate triangles in α. Let R be
the intersection of BC and B′C ′; let S be the intersection of AC and A′C ′; and
let T be the intersection of AB and A′B′. Then the lines AA′, BB′, and CC ′ are
coincident at a point P if and only if the points R, S, and T are collinear.

Proof. This proof is inspired by the proof given on page 83. Our idea is to lift a
line out of the plane to create a three-dimensional object. We begin by choosing a
point O in G which is not on the plane α. Think of this point as our point of view
– the point from which we are viewing the plane α and Figure 3.

Suppose the lines AA′, BB′, and CC ′ are coincident at a point P . Let B∗ be
a point on OB which is not on α. Such a point exists by Axiom 2s. Let β be the
plane which contains P , O, and B. That is, in the notation given on page 241,
β = p(P,O,B). Note that the line PB is on β, so B′ is on β, by Axiom 5s. The
lines OB′ and PB∗ are both on β, so by Axiom 6s, intersect at a point which we
label B′∗. Let γ = p(A,B∗, C) and γ′ = p(A′, B′∗, C

′). By Axiom 7s, these two
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planes intersect at a line l∗. Note that the line AC is on γ and the line A′C ′ is on
γ′, so their point of intersection S lies on l∗. Since B′∗ lies on PB∗ and A′ lies on
PA, the lines AB∗ and A′B′∗ both lie on the plane p(P,A,B∗), so they intersect.
Let this point be T∗. Since AB∗ lies on γ and A′B′∗ lies on γ′, the point T∗ lies on
l∗. Similarly, the lines CB∗ and C ′B′∗ intersect at a point R∗ on l∗. Now, consider
the planes p(A,B,O) and p(A′, B′, O). The points O and T are on both of them, so
the intersection of these planes is the line OT . But B∗ is in p(A,B,O) and B′∗ is in
p(A′, B′, O), so T∗ lies on OT . Similarly, R∗ lies on OR. Thus, the plane through
O and l∗ intersects the plane α at the line l through R and T . Since S is on l∗, S
is in this plane, so is also on l. That is, S is on the line RT , as desired.

Suppose now that R, S, and T are collinear. Let P be the intersection of BB′

and CC ′. Note that ∆BB′T and CC ′S are perspective from a point. Thus, by the
first part of this proof, the points A, A′, and P are collinear. That is, ∆ABC and
∆A′B′C ′ are perspective from a point, as desired. �

In light of Theorem 13.59, Desargues’ theorem no longer seems so difficult to
accept. But consider this fact: There exist weak projective planes for which De-
sargues’ theorem is not true (see [Hil71] §23). That is, there exist weak projective
planes which cannot be imbedded in a weak projective space. Such a geometry is
called a non-Desarguesian geometry.

Exercise 13.60. Prove Theorem 13.56.

Exercise 13.61. Prove Theorem 13.57.

Exercise 13.62. Prove Theorem 13.58.
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Chapter 14

Nonconstructibility

The algebra we developed for constructible lengths is adequate to prove that the
regular pentagon and even the regular 17-gon are both constructible. In principle,
it is powerful enough to show that the regular 257-gon is constructible, though such
a proof would be tedious. However, to prove that a point is not constructible, we
will need to identify more structure in the set of constructible points.1

The major failing of the algebra of constructible lengths is that we cannot con-
struct negative lengths, and consequently, this algebra does not have the structure
of a field. In this chapter, we direct our attention to the set of constructible numbers,
which do have the structure of a field.

14.1. The Field of Constructible Numbers

Recall that a complex number z ∈ C can be uniquely represented as

z = x+ iy

where i2 = −1 and both x and y are real numbers. We can therefore represent z with
the unique pair (x, y), which represents a point in the plane. This representation
of C is called the Argand plane.

In our rules for constructible points, we first select two distinct points. Let us
call these points 0 and 1 in C. Then, every constructible point P can be thought
of as a complex number in the Argand plane. If a point z ∈ C represents a con-
structible point, then we call z a constructible number. The set C of constructible
numbers is a subset of C, and so we can talk about the sums and products of con-
structible numbers. In this section, we will show that the constructible numbers,

1Note to the reader: In this chapter, we briefly touch on the notions of fields, vector spaces, the
dimension of vector spaces, irreducible polynomials, and groups. These topics are usually covered in
courses on modern algebra and linear algebra. We expect the reader to be at least familiar with vector
spaces. The reader should expect this chapter to be more difficult than other chapters, if the reader is
not familiar with at least some of the other topics.

253
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254 14. Nonconstructibility

together with the operations of addition and multiplication, form a field (see page
233 for the definition of a field).

Lemma 14.1. Suppose A and B are constructible numbers. Then so are A + B
and A−B.

A+B

0

A

B

Figure 1.

Proof. Recall, from Lemma 3.9, that it is possible to construct the line through B
which is parallel to OA, and similarly, it is possible to construct the line through
A which is parallel to OB. The point of intersection of these two lines is the
point A + B (see Figure 1). To construct A − B, first construct −B by finding
the intersection of the line 0B with the circle C0(|0B|). Now think of A − B as
A+ (−B). �

Lemma 14.2. Suppose A and B are constructible numbers. Then the product AB
is a constructible number. If B 6= 0, then the quotient A/B is also a constructible
number.

Proof. Let us write A = aeiα and B = beiβ . Then AB = abei(α+β), and A/B =
(a/b)ei(α−β). We saw in Chapter 3 that the lengths ab and a/b are constructible.
The angles α± β are constructible by Lemma 3.10. �

Theorem 14.3. Suppose K ⊂ F where F is a field. Then K is a field if and only
if K is closed under addition, subtraction, multiplication, and division.

If F is a field, K ⊂ F , and K is a field, then we call K a subfield of F (with
the addition and multiplication of F ).

Corollary 14.4. The set of constructible numbers C forms a field.

The field of constructible numbers C is sometimes called the surd field.

Let us also include the analogue of Lemma 3.23 here.

Lemma 14.5. Suppose A is a constructible number. Then so is
√
A.

Proof. We again write A = aeiα. Then
√
A =

√
aeiα/2. By Lemma 3.23,

√
a is

a constructible length, and of course, we know how to bisect the angle α (Lemma
3.6). �
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Exercise 14.6. Prove Theorem 14.3.

Exercise 14.7. Suppose K is a subfield of C. Show that Q is a subfield of K.

14.2. Fields as Vector Spaces

In the Argand representation of C, we think of z = x + iy as representing a point
(x, y) in R2. But note that if z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) + i(y1 + y2).

The addition in C therefore gives us an addition in R2, which is defined by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

This, of course, is just vector addition. Hence, C may be thought of as a vector
space over R. This is in fact true of any subfield of a field.

Theorem 14.8. Suppose K is a subfield of a field L. Then L is a vector space
over K.

Before we prove this, let us recall the definition of a vector space:

Definition 14.9 (Vector space). A vector space V over a field F is a set with
two operations, vector addition and scalar multiplication, and which satisfies the
following properties. For any ~u, ~v, and ~w ∈ V and any a and b ∈ F , we have

(1) ~u + ~v ∈ V . (Closure of vector addition.)

(2) (~u + ~v) + ~w = ~u + (~v + ~w).

(3) ~u + ~v = ~v + ~u.

(4) There exists a vector ~0 such that ~0 + ~v = ~v for any ~v ∈ V .

(5) For any ~v ∈ V , there exists an element −~v ∈ V such that ~v + (−~v) = ~0.

(6) a~v ∈ V . (Closure of scalar multiplication.)

(7) 1~v = ~v.

(8) a(~v + ~w) = a~v + a~w. (Distribution of scalar multiplication over vector
addition.)

(9) (a+ b)~v = a~v + b~v.

(10) (ab)~v = a(b~v).

Note that in property 9, the first + is addition in the field, while the second +
is vector addition. Also, in property 10, the first product is in the field, while both
products on the right-hand side are scalar products.

Proof of Theorem 14.8. We usually think of a vector as an ordered set of num-
bers. This is sometimes a limited view. We are now proposing, in this theorem,
that we think of some elements of a field as vectors, and a few, at times also as
scalars. Let us denote elements in L with Greek letters, and when we wish to think
of elements in K as scalars, let us denote them with lowercase letters.

Let us check that L satisfies the properties of a vector space. Property 1,
suitably translated, reads α+ β ∈ L. This is true since L is a field and is therefore
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closed under addition. Similarly, Properties 2 – 5 follow from the properties of the
field L. Property 6, again translated, reads aα ∈ L. This follows since a ∈ K ⊂ L,
so a ∈ L, and L is closed under multiplication. Similarly, Property 7 is true since
the multiplicative identity in K is the multiplicative identity in L, and Properties
8 – 10 follow since elements of K are elements of L and L is a field. �

The reason we want to think of fields as vector spaces is that we understand
the concept of dimension for vector spaces, and we would like to apply this concept
to fields. So let us recall some more linear algebra.

We call a vector space V over a field F finite dimensional if there exists a set
of vectors {~v1, ...,~vn} such that for any ~v ∈ V , there exist elements a1, ..., an ∈ F
such that

~v = a1~v1 + ...+ an~vn.

If we also have

a1~v1 + ...+ an~vn = ~0 if and only if a1 = a2 = ... = an = 0,

then we call the set {~v1, ...,~vn} a basis of V , and we call n the dimension of V .

Exercise 14.10. Prove that the definition of dimension is well defined. That is,
prove that if {~v1, ...,~vn} and {~w1, ..., ~wm} are both bases for V , then m = n.

If K is a subfield of L, then L is a vector space over K. We use the symbol
[L : K] to denote the dimension of L over K as a vector space, and call [L : K] the
degree of L over K. If L is not a finite dimensional vector space over K, then we
write [L : K] =∞. We call [L : K] the degree of L over K.

The main result of this section is the following:

Theorem 14.11. Suppose K, L, and M are fields such that K ⊂ L ⊂ M , and
both [M : L] and [L : K] are finite. Then

[M : K] = [M : L][L : K].

This theorem is true even if [M : L] or [L : K] is infinite, but we will not need
such a result.

Proof. Let us write elements of K with lowercase letters, elements of L with Greek
letters, and elements of M with uppercase letters. Let {α1, ..., αn} be a basis of
L over K, and let {A1, ..., Am} be a basis of M over L. Then, [L : K] = n and
[M : L] = m.

Let B be an element of M . Then there exist β1, ..., βm ∈ L such that

B = β1A1 + ...+ βmAm.

For each j, we can find elements bj1, ..., bjn in K such that

βj = bj1α1 + ...+ bjnαn.

Thus, we can write

B =

m∑
j=1

n∑
k=1

bjkαkAj .
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But αk can also be thought of as an element of M , so B can be written as a
linear combination of the elements {αkAj} ⊂M over the field K. This set has mn
elements.

Finally, suppose
m∑
j=1

n∑
k=1

bjkαkAj = 0.

Then, since {A1, ..., Am} is a basis of M , we know

bj1α1 + ...+ bjnαn = 0

for j = 1, ...,m. But since {α1, ..., αn} is a basis of L, we know bjk = 0 for every j
and k. Thus, the set {αkAj} is a basis of M over K. Hence,

[M : K] = mn = [M : L][L : K]

as desired. �

Exercise 14.12. Let

Q[
√

2] = {a+ b
√

2 : a, b ∈ Q}.
Prove that Q[

√
2] is a field and is a vector space over Q.

Exercise 14.13. Let

Q[
3
√

2] = {a+ b
3
√

2 + c(
3
√

2)2 : a, b, c ∈ Q}.
Prove that Q[ 3

√
2] is a field and that [Q[ 3

√
2],Q] = 3.

Let f(x) = anx
n + ...+ a1x+ a0 be a polynomial with coefficients ai in a field

F . We say f(x) factors over F if there exist polynomials g(x) and h(x) with degree
greater than 0 and coefficients in F such that f(x) = g(x)h(x). If there does not
exist any such factorization, we say f(x) is irreducible over F .

Exercise 14.14. Suppose α is a root of f(x) and g(x). Show that there exists a
polynomial h(x) such that h(α) = 0 and h(x) divides both f(x) and g(x).

Exercise 14.15. Let α satisfy the equation α3 + α2 − 2α− 1 = 0. Let

Q[α] = {a+ bα+ cα2 : a, b, c ∈ Q}.
Prove that Q[α] is a field and that [Q[α] : Q] = 3.

Solution. Let us first establish that the polynomial f(x) = x3 + x2 − 2x − 1 is
irreducible over Q. Suppose it is not. Then f(x) = g(x)h(x) for some polynomials
g and h with rational coefficients and degree greater than or equal to one. Since
the sum of the degrees of g and h is three, one of these factors must have degree
one. Thus, f(x) must have a rational root. Let this root be r/s where r and s are
relatively prime numbers. Then

s3f(r/s) = r3 + r2s− 2rs2 − s3 = 0.

Note that r divides the first three terms, so must also divide the last. Since r and
s are relatively prime, this is possible only if r = ±1. Similarly, s = ±1. Hence
the rational root must be ±1. But f(1) = −1 and f(−1) = 1, so neither is a root.
Thus, f(x) must be irreducible over the rationals.
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258 14. Nonconstructibility

To show Q[α] is a field, we must show it is closed under addition and multipli-
cation, and that the additive and multiplicative inverses are in Q[α].

It is clear that Q[α] is closed under addition, and that the additive inverses are
in Q[α].

If we multiply two elements in Q[α], we a priori get a fourth degree polynomial
in α. However, let us note that

α3 = −α2 + 2α+ 1

and

α4 = −α3 + 2α2 + α

= α2 − 2α− 1 + 2α2 + α

= 3α2 − α+ 1.

Hence, we can rewrite the product as a polynomial in α of degree two. Hence, Q[α]
is closed under multiplication.

To see that multiplicative inverses exist, we fix a0, a1, and a2, which gives us a
system of three linear equations in the three variables b1, b2, and b3. This system
of linear equations is solvable provided the matrix is invertible. If this matrix is
not invertible, then there exists some nonzero vector (b0, b1, b2) which is sent to
(0, 0, 0). But this means

(a0 + a1α+ a2α
2)(b0 + b1α+ b2α

2) = 0.

Since both numbers are numbers in C, this can happen only if one of them is 0.
If b0 + b1α + b2α

2 = 0, then α is the root of a nonzero polynomial of degree less
than three, which contradicts the fact that f(x) is irreducible. Thus, we must have
a0 + a1α + a2α

2 is zero. Hence, every nonzero element of Q[α] has an inverse in
Q[α].

To see that [Q[α] : Q] = 3, we show that {1, α, α2} forms a basis. Of course,
every element is a linear combination of these three, so all we have to do is show
that

a0 + a1α+ a2α
2 = 0

implies a0 = a1 = a2 = 0. But, if the coefficients are not all zero, then we
have α as a root of a nonzero polynomial of degree less than three, which again
contradicts the irreducibility of f(x). Hence, {1, α, α2} forms a basis of Q[α], and
hence [Q[α] : Q] = 3. �

Exercise 14.16. Suppose α is a root of a polynomial f(x) which is irreducible
over Q and has degree n. Let

Q[α] = {a0 + a1α+ ...+ an−1α
n−1 : ai ∈ Q}.

Show that Q[α] is a field, and that [Q[α] : Q] = n.

Exercise 14.17 ( (Eisenstein’s Criterion)). Suppose f(x) = anx
n + ... + a0 is a

polynomial with coefficients in Z. Suppose there exists a prime p such that p does
not divide an, p divides ak for all k 6= n, and p2 does not divide a0. Prove that
f(x) is irreducible over Q.
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14.3. The Field of Definition for a Construction 259

Exercise 14.18. Use Eisenstein’s criterion and the substitution x = u+ 1 to show
that the polynomial

f(x) = xp−1 + xp−2 + ...+ x+ 1

is irreducible over Q for any prime p.

14.3. The Field of Definition for a Construction

To construct a point P , we start with two points P0 = 0 and P1 = 1. We then
construct some lines and/or circles, and construct a point P2 at the intersection
of two of these. As we proceed through our construction, we create a sequence of
points P3, P4, ... and so on, until we construct Pn = P . We call the sequence
P = {P0, P1, ..., Pn} a construction for P . Let Q[P] be the smallest field which
contains P. We call Q[P] the field of definition for the construction P.

The main result of this section is the following:

Theorem 14.19. Let P = {P0, ..., Pn} be a construction. Then

[Q[P] : Q] = 2r

for some integer r ≤ n.

We will prove this using a sequence of lemmas. First, for a field K ⊂ C, let us
define

K = {z = x− iy : z = x+ iy ∈ K}.
Lemma 14.20. Suppose K = K. Let R, S, T , and U be points in K. Let P be
the intersection of the line RS and the line TU . Then P is in K.

Proof. Let R = R1 + iR2, etc. Since K = K, we know R1 − iR2 ∈ K. Thus,

R1 =
R+R

2
and R2 =

R−R
2

are both in K. If R1 6= S1, then the line RS is given

by

y =
S2 −R2

S1 −R1
(x−R1) +R2 = m1x+ b1,

where both m1 and b1 are in K. Similarly, the line TU is given by y = m2x + b2,
where both m2 and b2 are in K. We solve for the point of intersection:

m1x+ b1 = m2x+ b2

x =
b2 − b1
m1 −m2

,

so x ∈ K. Since x = P1, and P2 = m1P1 + b1 ∈ K, we have P ∈ K, as desired.

The case when R1 = S1 is treated in a similar way. �

Exercise 14.21. Let K be a subfield of C. Suppose D ∈ K and
√
D /∈ K. Let

K[
√
D] = {a+ b

√
D : a, b ∈ K}.

Show that K[
√
D] is a field and that [K[

√
D] : K] = 2.

Lemma 14.22. Suppose K = K. Let R, S, T , and U be points in K. Let P and
Q be the points of intersection of the line RS and the circle CT (|TU |). Then there

exists a D such that both P and Q are in K[
√
D]. Furthermore, K[

√
D] = K[

√
D].
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Proof. The equation of the circle CT (|TU |) is

(x− T1)2 + (y − T2)2 = (T1 − U1)2 + (T2 − U2)2.

Let the line have the equation y = mx+ b where m, b ∈ K, as in the previous proof
(assuming R1 6= S1). Plugging this into the above equation of the circle, we get a
quadratic equation in x, which again has coefficients in K, say

Ax2 +Bx+ C = 0.

Let D = B2 − 4AC be the discriminant of the quadratic. Then the roots are

x =
−B ±

√
D

2A
∈ K[

√
D].

These roots are P1 and Q1. Plugging these values into y = mx+ b, we get P2 and
Q2, which are both in K[

√
D]. Thus, P and Q are in K[

√
D], as desired.

Again, the case when R1 = S1 can be treated in a similar fashion.

Now, suppose a+ b
√
D ∈ K[

√
D]. Then

a+ b
√
D = a+ b

√
D.

Note that D is real. Thus,
√
D =

√
D, and a+ b

√
D ∈ K[

√
D]. Hence, K[

√
D] =

K[
√
D]. �

Lemma 14.23. Suppose K = K. Let R, S, T , and U be points in K. Let P
and Q be the points of intersection (if there are any) of the two circles CR(|RS|)
and CT (|TU |). Then there exists a D such that both P and Q are in K[

√
D].

Furthermore, K[
√
D] = K[

√
D].

Proof. The equation of the two circles are

(x−R1)2 + (y −R2)2 = (R1 − S1)2 + (R2 − S2)2

(x− T1)2 + (y − T2)2 = (T1 − U1)2 + (T2 − U2)2.

Subtracting, we get the equation of a line with coefficients in K. Thus, the inter-
section of these two circles is the same as the intersection of a circle and a line,
which we covered in the previous case. �

We are now ready to prove our main result.

Proof of Theorem 14.19. For a construction P = {P0, P1, ..., Pn}, let Pk =
{P0, ..., Pk}. We proceed using induction on the following statement:

Q[Pk] = Q[Pk] and [Q[Pk] : Q] = 2rk where rk ≤ k.

For the base case, note that Q[P1] = Q, that Q = Q, and that [Q[P1] : Q] = 1.

Now, assume the statement is true for k. If the point Pk+1 ∈ Q[Pk], then we
are finished. Otherwise, the point Pk+1 is a point of intersection of either a line
and a circle, or of two circles, where this line and/or circle(s) are constructed using

points in Q[Pk]. Thus, by the previous lemmas, Pk+1 ∈ Q[Pk][
√
D] for some real

D. Hence, [Q[Pk][
√
D] : Q[Pk]] = 2. Clearly, Q[Pk] ⊂ Q[Pk+1] ⊂ Q[Pk][

√
D].

But, by Theorem 14.11, there cannot be any fields between these two. Hence, since
Pk+1 /∈ Q[Pk], we have Q[Pk+1] = Q[Pk][

√
D]. Thus, Q[Pk+1] = Q[Pk+1], and

[Q[Pk+1] : Q] = 2rk+1 = 2rk+1 , so rk+1 = rk + 1 ≤ k + 1. �
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Corollary 14.24. Suppose α satisfies a polynomial f(x) of degree n which is irre-
ducible over Q, and suppose n has an odd prime factor. Then α is not constructible.

Proof. Suppose α is constructible. Then there exists a construction P such that
α ∈ Q[P]. Hence, Q[α] ⊂ Q[P]. Thus, by Theorem 14.11, [Q[α] : Q] divides 2r for
some integer r. But by Exercise 14.16, [Q[α] : Q] = n. Hence n divides 2r, which
is not possible, since n has an odd prime factor. �

Remark 14.25. The converse of Corollary 14.24 is not true. It is possible to find
a number α that is the root of a polynomial of degree four which is irreducible over
Q, but for which there is no field K such that Q ⊂ K ⊂ Q[α] and [Q[α] : K] = [K :
Q] = 2. Such an α is not constructible.

14.4. The Regular 7-gon

We can now prove that the regular 7-gon is not constructible, as well as the impos-
sibility of doubling a square or trisecting an arbitrary angle.

Theorem 14.26. We cannot construct the regular 7-gon.

Proof. The proof is very similar to the proof that the regular pentagon is con-
structible. Suppose we can construct the regular 7-gon. Then we can construct the
point ω = ei2π/7. But

ω7 = ei2π = 1,

so

ω7 − 1 = 0

(ω − 1)(ω6 + ω5 + ω4 + ω3 + ω2 + ω + 1) = 0.

Since ω 6= 1, the latter factor must be zero. Let

x = ω + ω−1.

Then

x2 = ω2 + 2 + ω−2

x3 = ω3 + 3ω + 3ω−1 + ω−3.

Thus,

x3 + x2 − 2x− 1 = 0.

This polynomial is irreducible (see Exercise 14.15), so [Q[x] : Q] = 3. Thus, x is
not constructible, and hence ω is not constructible. �

Exercise 14.27. Prove that it is impossible to double the cube.

Exercise 14.28. Prove that it is impossible to construct the regular 9-gon. Con-
clude that it is impossible to trisect 60◦, and hence, impossible to trisect an arbitrary
angle.

Exercise 14.29. Prove that the pr-gon is not constructible for any odd prime p
and r ≥ 2.
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Exercise 14.30. Let p be a prime, and let ω = e2πi/p. By Exercise 14.18, we know
that ω is the root of an irreducible polynomial of degree p − 1. Thus, the regular
p-gon is constructible only if p− 1 = 2r for some r. Suppose r is composite. Show
that 2r + 1 is not a prime. Conclude that the regular p-gon is constructible only if

p = 22k + 1

for some integer k.

Exercise 14.31. In 1882, Lindemann proved that π is transcendental. That is, π
is not the root of any polynomial. Use this to prove Q[π] is an infinite dimensional
vector space over Q. Conclude that it is impossible to square the circle.

14.5. The Regular 17-gon

In 1796, at the age of eighteen, Gauss showed that the regular 17-gon is con-
structible. Thirty-five years later, Évariste Galois developed the revolutionary the-
ory which bears his name. Galois theory is a generalization of the tools used by
Abel to prove that it is impossible to solve an arbitrary quintic using radicals, and
the tools used by Gauss to decide which regular polygons are not constructible. We
will, in this section, use this problem to very briefly introduce the reader to Galois
theory.

By Exercise 14.30, we know that the 17-gon might be constructible, since the
field Q[ω] where ω = e2πi/17 has degree 16, which is a power of 2. To show that it
is constructible, it is enough to find fields K1, K2, and K3 such that Q[ω] ⊃ K1 ⊃
K2 ⊃ K3 ⊃ Q and [Q[ω] : K1] = [K3 : K2] = [K2 : K3] = [K3 : Q] = 2. We will
find these fields using Galois theory.

Exercise 14.32. Suppose K and L are fields, and that K ⊂ L ⊂ C. Suppose also
that [L : K] = 2. Show that there exists an element D ∈ K such that L = K[

√
D].

We call a map σ a homomorphism (of fields) if σ maps the elements of a field
K into a field L and if for all a and b ∈ K, we have

σ(a+ b) = σ(a) + σ(b)

σ(ab) = σ(a)σ(b).

That is, σ preserves the additive and multiplicative structure of the field.

We call σ an isomorphism if σ is a homomorphism and it is invertible. We say
the two fields K and L are isomorphic.

If L = K, and σ is an isomorphism, then we call σ an automorphism of K.

Exercise 14.33. Suppose K is a field which contains Q. Suppose σ is an auto-
morphism of K. Show that σ(x) = x for all x ∈ Q.

Suppose α is a root of an irreducible polynomial f(x) with coefficients in a field
K. As we saw in Exercise 14.15, the structure of the field K[α] depends only on
the polynomial f(x), and not on which root α is chosen. Hence, if α and β are two
roots of an irreducible polynomial f(x), then the map σ from K[α] to K[β] defined
by

σ(a0 + a1α+ ...+ an−1α
n−1) = a0 + a1β + ...+ an−1β

n−1
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is an isomorphism. In particular, if β ∈ K[α], then σ is an automorphism.

Exercise 14.34. Suppose α is a root of an irreducible polynomial f(x) over Q.
Suppose σ is an isomorphism which sends Q[α] to some field K ⊂ C. Show that
σ(α) is a root of f(x). Conclude that K = Q[β] for some root β of f(x).

Exercise 14.35. Suppose α is a root of an irreducible polynomial f(x), and sup-
pose both σ and τ are automorphisms on Q[α]. Show that σ(α) = τ(α) if and only
if σ = τ . Conclude that there are at most n automorphisms of Q[α] where n is the
degree of f(x).

The regular 17-gon is constructible if and only if ω = e2πi/17 is a constructible
number. We know ω satisfies an irreducible polynomial f(x) of degree 16 (by
Exercise 14.18). We also know

ω17 − 1 = (ω − 1)f(ω) = 0.

Consider the number ωk = e2πik/17 for k = 1, 2, ..., 16. Note that

f(ωk)(ωk − 1) = (ωk)17 − 1 = ω17k − 1 = 0.

Since ωk 6= 1, we must have f(ωk) = 0. Thus, the sixteen roots of f(x) are
{ω, ω2, ..., ω16}, all of which are in Q[ω]. Consider the automorphism σ where
σ(ω) = ω3. Since σ is an automorphism of Q[ω], the map σ2 defined by σ(σ(ω)) =
σ(ω3) = ω9 = ω−8 is also an automorphism of Q[ω]. Similarly, the maps σ0, σ1,
σ2, ..., are all automorphisms of Q[ω], and the image of ω under each of these maps
are respectively,

ω, ω3, ω−8, ω−7, ω−4, ω5, ω−2, ω−6, ω−1, ω−3, ω8, ω7, ω4, ω−5, ω2, ω6, ω, ....

Thus, σ16 is the identity, and the set G = {σ0, σ, σ2, ..., σ15} is the full set of
automorphisms of Q[ω]. This set is in fact a group, and is called the Galois group
for Q[ω] over Q.

Exercise 14.36. Check that G is a group.

The group G has the following subgroups:

G1 = {σ0, σ8}
G2 = {σ0, σ4, σ8, σ12}
G3 = {σ0, σ2, σ4, σ6, σ8, σ10, σ12, σ14}.

It also has the subgroups G0 = {σ0} and G4 = G. We now prove a special case of
an important result in Galois theory:

Theorem 14.37. Let Q[ω] and G be as they are defined above. Let Gj be a subgroup
of G. Let

Kj = {a ∈ Q[ω] : σ(a) = a for all σ ∈ Gj}.
Then Kj is a field.

We call Kj the fixed field for the group Gj .
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Proof. Since Kj is a subset of a field Q[ω], we need only show that Kj is closed
under addition, multiplication, subtraction, and division.

Note that, for any x ∈ Q and any automorphism σ, we have σ(x) = x. In
particular, σ(−1) = −1.

Let σ ∈ Gj , and a, b ∈ Kj . Then

σ(a+ b) = σ(a) + σ(b) = a+ b

σ(a− b) = σ(a) + σ(−1)σ(b) = a− b
σ(ab) = σ(a)σ(b) = ab.

Finally,

a = σ(a) = σ((a/b)b) = σ(a/b)σ(b) = σ(a/b)b,

so σ(a/b) = a/b. Thus, Kj is a field. �

Remark 14.38. Note that we nowhere used that Gj is a group. This result is in
fact true for any set S ⊂ G. However, the fixed field for S is the same as the fixed
field for the smallest group which contains S, so we may as well just talk about the
fixed field for subgroups.

We now have five fields: K0 = Q[ω], K1, K2, K3, and K4 = Q. Note that
if Gj ≤ Gk (read ‘Gj is a subgroup of Gk’), then Kj ⊃ Kk. This is clear, since
anything fixed by Gk must be fixed by Gj , so every element of Kk is in Kj . We
therefore have

Q = K4 ⊂ K3 ⊂ K2 ⊂ K1 ⊂ K0 = Q[ω].

Furthermore, these five fields are distinct. To see that K1 6= K0, consider the
element ω ∈ Q[ω]. This element is not in K1 since σ8(ω) = ω−1 6= ω. To see that
K2 6= K1, consider x = ω + ω−1. Since σ8(x) = σ8(ω + ω−1) = ω−1 + ω = x, this
element is in K1. But, σ4(x) = σ4(ω + ω−1) = ω4 + ω−4 6= x, so x /∈ K2. To see
that K3 6= K2, consider the element y = ω+ω−1 +ω4 +ω−4, and to show Q 6= K3,
consider the element z = ω + ω−1 + ω4 + ω−4 + ω8 + ω−8 + ω2 + ω−2.

Since none of these fields are equal, we have [Kj : Kj+1] ≥ 2. However, since
[K0 : K4] = 16, we get [Kj : Kj+1] = 2, as desired. Hence, the regular 17-gon is
constructible.

This argument also gives us a way to construct the fields K1, K2, and K3. We
do so in the following set of exercises.

Exercise 14.39. Let

z = ω + ω2 + ω4 + ω8 + ω−1 + ω−2 + ω−4 + ω−8 =
∑
τ∈G3

τ(ω).

Show that

z2 + z − 4 = 0.

Hence, K3 = Q[z] = Q[
√

17].

Exercise 14.40. Let

y = ω + ω4 + ω−1 + ω−4 =
∑
τ∈G2

τ(ω).
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Show that
y2 − zy − 1 = 0.

Find a D ∈ K3 such that K2 = K3[
√
D].

Exercise 14.41. Let
x = ω + ω−1 =

∑
τ∈G1

τ(ω).

Show that
2x2 − 2yx+ (yz − z + y − 3) = 0.

Find a D ∈ K2 such that K1 = K2[
√
D].
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Chapter 15

Modern Research in Geometry

A false but often said opinion is that geometry is dead. This false perception most
probably arises because we label modern results in geometry as being part of the
fields of differential geometry, algebraic geometry, arithmetic geometry, or Diophan-
tine geometry. In this chapter, we investigate a few ideas in modern geometry. The
topics I have chosen are a reflection of my background, which is in number theory.
Hence, these topics are for the most part in algebraic, arithmetic, and Diophantine
geometry. There are many texts in geometry which slowly drift into differential
geometry, so I do not feel too guilty for leaving the subject out.

15.1. Pythagorean Triples

Diophantine geometry is an intersection of geometry and number theory. Though
the subject is very active in modern research, its roots are among the ancient Greeks,
most notably Diophantus of Alexandria (ca. 250 A.D.) after whom the subject is
named. The problem of finding Pythagorean triples is a classical example of a
Diophantine problem which arises in geometry.

A Pythagorean triple is an integer triple (a, b, c) such that

a2 + b2 = c2.

We are probably all familiar with the examples (3, 4, 5) and (5, 12, 13). There are
in fact an infinite number of Pythagorean triples, as we will show in this section.
This result may be derived via a number of algebraic manipulations and repeated
observations that certain numbers are squares, but in this section, we will take a
more geometric approach. Our main tool is stereographic projection, which was
introduced in Chapter 6.

Note that if (a, b, c) is a Pythagorean triple, then (a/c, b/c) is a point on the
circle

x2 + y2 = 1.

Let us consider the line through (0, 1) and a point (t, 0) on the x-axis. This line
intersects the circle at two points – at (0, 1) and (say) at (x, y) (see Figure 1).

267
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(x,y)

(t,0)

(0,1)

Figure 1.

Comparing slopes, we get
y − 1

x
=
−1

t
so

x = t(1− y).

Since (x, y) is a point on the circle, this gives

t2(y − 1)2 + y2 − 1 = 0

(y − 1)(t2(y − 1) + (y + 1)) = 0.

The solution y = 1 gives the North Pole, so we are interested in the other solution,
which is given by

y(t2 + 1) + (1− t2) = 0

y =
t2 − 1

t2 + 1

x = t

(
1− t2 − 1

t2 + 1

)
=

2t

t2 + 1
.

Thus, in terms of t, the points on the circle are
(

2t
t2+1 ,

t2−1
t2+1

)
. Note that if t is

rational, then so are x and y, and if x and y are rational, then so is t. Now, let us
write t = p/q. Then

(x, y) =

(
2pq

p2 + q2
,
p2 − q2

p2 + q2

)
.

If p > q ≥ 0 are relatively prime, positive, and of different parity, then

(a, b, c) = (2pq, p2 − q2, p2 + q2).
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This gives us all Pythagorean triples with a even. Those with a odd are given by
the pairs (p, q) both odd, and (a, b, c) = (pq, (p2− q2)/2, (p2 + q2)/2). One can also
get those with a odd by finding the solutions with a even and switching a and b.

One advantage of this method is that it works for all quadratic curves.

Though there are infinitely many integer solutions to the Pythagorean equation,
there are no integer solutions to the equation

an + bn = cn

with abc 6= 0 and n ≥ 3. This result is known as Fermat’s Last Theorem, and
was recently solved by Andrew Wiles (1995). Fermat first made the conjecture in a
famous marginal note, in which he claimed to have a proof, but that the margin was
too small to include it there. The book was his copy of Arithmetica by Diophantus.
Fermat is only credited with proving this result for n = 4. Euler had the main
ideas that lead to a solution for n = 3. Before Wiles’ result, we knew it was correct
for all n ≤ 4000000[Ros97].

Exercise 15.1. Use stereographic projection to find the integer solutions to

a2 − 2b2 = c2.

Exercise 15.2. Show that there are no integer solutions to

a2 + b2 = 3c2.

Exercise 15.3. Let ∆ABC be a right angle triangle with sides of integer length.
Prove that the inradius r and the exradii ra, rb, and rc are all integers.

Exercise 15.4. In general, stereographic projection will not work on cubics or
curves of higher degree. (This is a fundamental concept in algebraic geometry.) An
exception is the curve

y2 = x3 − x2.

Apply stereographic projection to this curve using the point (0, 0) and the line
x = 1.

Exercise 15.5. How many solutions are there to the equation

x2 + y2 = z2

in P2(Fq)?

Exercise 15.6. In this text, we have developed another method of generating
Pythagorean triples. Recall that the map

φ =

[
1 −i
−i 1

]
sends the Poincaré upper half plane to the Poincaré disc. In particular, it sends the
real line to the unit circle. Show that φ sends rational numbers to rational points
on the unit circle, and vise versa. Use this to derive a formula for Pythagorean
triples.
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15.2. Bezout’s Theorem

Bezout’s theorem is a fundamental theorem in algebraic geometry. Though we will
not prove it, we will show that it is a generalization of the Fundamental Theorem of
Algebra, and use it to give an alternate proof of Pascal’s theorem, thereby showing
its connection to both geometry and algebra.

Theorem 15.7 (Bezout’s Theorem). Let f(X0, X1, X2) = 0 and g(X0, X1, X2) =
0 be two homogeneous polynomials of degree m and n which define two curves
in P2(C). If these two curves do not have a component in common (that is, if
gcd(f, g) = 1), then they intersect in exactly mn points (counting multiplicity).

A special case of this theorem is the Fundamental Theorem of Algebra.

Theorem 15.8 (The Fundamental Theorem of Algebra). A polynomial f(x) of
degree n has exactly n roots over C (counting multiplicity). That is, f(x) factors
into linear terms.

Proof. (That is, when thought of as a corollary of Bezout’s theorem.) For one of
the curves, let us take

X1X
n−1
2 −Xn

2 f(X0/X2) = 0.

If we set (X0, X1, X2) = (x, y, 1), then this is just the curve y = f(x). The other
curve we take is

X1 = 0,

which describes the x-axis. By Bezout’s theorem, these two curves intersect n times,
counting multiplicity. But this is just the number of times f intersects the x-axis,
which is the number of zeros of f . Note that there is no point of intersection at
infinity. �

The consequence of Bezout’s theorem which will be of most interest to us is
the Cayley-Bacharach theorem (in the cubic case). Let f(x, y, z) be a homogeneous
polynomial of degree three. We call the curve defined by f(x, y, z) = 0 a cubic
curve.

Theorem 15.9 (Cubic Cayley-Bacharach Theorem). Let f and g be two cubic
curves in P2(C) which intersect in exactly nine points P1,...,P9 (that is, they do
not have a component in common). If h is another cubic curve which goes through
P1,...,P8, then it also goes through P9.

Proof. Let

~V(x, y, z) = (x3, y3, z3, x2y, x2z, y2x, y2z, z2x, z2y, xyz).

Then, the equation of a general cubic curve has the form

~a · ~V(x, y, z) = 0.

In particular, we can write f = ~a · ~V(x, y, z) and g = ~b · ~V(x, y, z) for some ten-

dimensional vectors ~a and ~b. Let M be the matrix with coefficients Mij , where Mij

is the jth component of ~V(Pi). Then, since f(Pi) = g(Pi) = 0 for all i, we know

M~a = M~b = 0.
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Since ~a and ~b are distinct, we therefore know that M has a kernel that is at least

two dimensional, and hence, M has rank of at most eight. Thus, the vectors ~V(Pi)
for i = 1, ..., 9 are dependent.

Suppose that the vectors ~V(Pi) for i = 1, ..., 8 are also dependent. Then there

exists a point Pi such that ~V(Pi) can be written as a linear combination of the

other seven ~V(Pj). Without loss of generality, we may assume that i = 8. Then,
we can write

~V(P8) = r1
~V(P1) + ...+ r7

~V(P7).

Let ~c represent a cubic curve which goes through P1, ..., P7. Then

~c · ~V(Pi) = 0, i = 1, ..., 7,

and hence

~c · ~V(P8) = r1~c · ~V(P1) + ...+ r7~c · ~V(P7) = 0.

That is, the curve goes through P8 too.

We will now show that there exists a cubic curve which goes through P1, ..., P7

but does not go through P8. To see this, first note that no four of these points lie on
a line, for if they did, then there would be a line which intersects the cubic f in four
points. By Bezout’s theorem, that means the line is a component of f . Similarly,
the line is a component of g, so f and g have a component in common. Thus,
there must exist two points, say P2 and P3, such that P8 is on neither P1P2 nor
P1P3. Consider the degenerate cubic curve which consists of the line P1P2 and the
quadratic through the points P3, ..., P7 (by Exercise 15.11, there exists a quadratic
through any five points). If P8 does not lie on this quadratic, then we are finished. If
it does lie on this quadratic, then consider the cubic which consists of the line P1P3

and the quadratic through P2, P4, ..., P7. If P8 does not lie on this quadratic, then
we are finished. If it does lie on this quadratic, then we have found two quadratics
which intersect in the five points P4, ..., P8, so by Bezout’s theorem, they must be
the same quadratic. But then we have seven points, P2, ..., P8, which lie on this
quadratic. That is, the cubic f and this quadratic intersect in seven points, so
the quadratic is a component of f . Similarly, the quadratic is a component of g,
and we have a contradiction. Thus, there must exist a cubic which passes through

P1, ..., P7 but not P8. Hence, the vectors ~V(Pi) for i = 1, ..., 8 must be independent.

On the other hand, the vectors ~V(Pi) for i = 1, ..., 9 are dependent, so we must
be able to write

~V(P9) = r1
~V(P1) + ...+ r8

~V(P8),

and arguing as before, any cubic that goes through P1, ..., P8 must also go through
P9. �

Note that Pascal’s theorem is a corollary of the Cayley-Bacharach theorem.

Corollary 15.10 (Pascal’s Theorem). Let ABCDEF be a hexagon inscribed in a
conic C. Let R be the intersection of the opposite sides AB and DE; let S be the
intersection of the opposite sides BC and EF ; and let T be the intersection of the
opposite sides CD and FA. Then the points R, S, and T are collinear.

AMS Open Math Notes: Works in Progress; Reference # OMN:202006.110830; Last Revised: 2020-07-11 09:32:23



272 15. Modern Research in Geometry

Proof. The line AB can be described with a polynomial of degree one. Let us call
this polynomial FAB . Let us choose our two polynomials of degree three to be

f = FABFCDFEF

g = FBCFDEFFA.

These two degree three polynomials intersect at the points A, B, C, D, E, F , R,
S, and T . The conic C can be described by a degree two polynomial FC . Let h be
the degree three polynomial

h = FCFRS .

Then h intersects eight of the nine points of intersection, so it must also go through
the ninth point, namely T . If T lies on C, then f and FC intersect in seven points,
which contradicts Bezout’s theorem, so T must lie on RS, as desired. �

Exercise 15.11. Show that, given any five points P1, ..., P5, there exists a quadratic
that goes through all five points.

Exercise 15.12. Suppose two homogeneous degree two polynomials f and g in
P2(C) intersect in exactly four points P1, P2, P3, and P4. Suppose another degree
two polynomial h goes through P1, P2, and P3. Prove that h goes through P4.

15.3. Elliptic Curves

An elliptic curve is a cubic curve together with a group structure. It is not at
all obvious that a cubic curve should include any sort of group structure, and
this section is devoted primarily to describing the group. The study of elliptic
curves has evolved into a very important branch of mathematics. The intent of
this section is to merely give a taste of the subject. Two excellent undergraduate
texts on the subject are the books A Friendly Introduction to Number Theory by
J. H. Silverman [Sil97] and Rational Points on Elliptic Curves by J. H. Silverman
and J. Tate [ST92].

Let E be a cubic curve in P2(C). That is, let E be the curve described by a
homogeneous polynomial of degree three. Let P and Q be two points on E. By
Bezout’s theorem, the line PQ and E intersect in exactly three points, namely P ,
Q, and another point R. Let us define a binary operation on E by

P ∗Q = R,

where P , Q, and R are collinear. If P = Q, then we take the tangent line to E at
P . This line intersects E at P with multiplicity two or three, and in either case,
there exists a unique third point of intersection, so the operation is well defined.
Note that if P ∗Q = R, then P ∗R = Q and Q ∗R = P .

Now, let us fix a point O on E. We define an addition on E by

(15.1) P +Q = (P ∗Q) ∗O.
See Figure 2.

Theorem 15.13. The set of points on the curve E together with the addition
defined in (15.1) form a commutative group.1

1See Appendix A for a reminder of the definition of a group.
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P

Q

P *Q

O

P+Q

Figure 2. The elliptic curve y2 = x3−4x+4 (or, in homogeneous coordinates,
y2z = x3 − 4xz2 + 4z3). The addition of the point P = [1, 1] and Q = [2, 2] is

illustrated, using the zero element O = [0, 2]. The result is P +Q = [6, 4].

Proof. To show that this forms a group, we must show it satisfies the following
properties.

(1) Associativity: (P +Q) +R = P + (Q+R)

(2) Commutativity: P +Q = Q+ P

(3) There exists an element 0 such that P + 0 = P for all P .

(4) For every P , there exists an element −P such that P + (−P ) = 0.

The first property is the difficult one to establish, so let us first dispense with the
others.

It is clear that P ∗Q = Q ∗ P , so P +Q = Q+ P .

The zero element is the point O. To see this, let R = P ∗O. That is, R is the
point so that P , O, and R are collinear. Then R∗O = P , so P +O = (P ∗O)∗O =
R ∗O = P .
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Let the tangent at O intersect E again at O′. That is, let O′ = O ∗ O. Then,
−P = P ∗O′. To see this, note that P ∗ (−P ) = O′, so

P + (−P ) = (P ∗ (−P )) ∗O = O′ ∗O = O.

Finally, let us prove associativity. Let S = P ∗ Q, T = O ∗ S, X = T ∗ R,
U = Q ∗R, V = O ∗ U , and Y = V ∗ P . Then,

(P +Q) +R = ((P ∗Q) ∗O) +R = (((P ∗Q) ∗O) ∗R) ∗O
= ((S ∗O) ∗R) ∗O = (T ∗R) ∗O = X ∗O,

and

P + (Q+R) = P + ((Q ∗R) ∗O) = (P ∗ ((Q ∗R) ∗O)) ∗O
= (P ∗ (U ∗O)) ∗O = (P ∗ V ) ∗O = Y ∗O.

Thus, we must show X = Y . Consider the cubic C1 which is the union of the three
lines PQ, TR, and UV . Then C1 intersects E at P , Q, P ∗Q = S, T , R, T ∗R = X,
U , V , and U ∗ V = O. Consider also the cubic C2 which is the union of the three
lines QR, ST , and V P , which intersects the cubic E at Q, R, Q ∗ R = U , S, T ,
S ∗ T = O, V , P , and V ∗ P = Y . Thus, the cubic C2 intersects at eight of the
nine points of intersection between the cubics E and C1. By the Cayley-Bacharach
theorem, it must therefore go through the ninth point. That is, we must have
Y = X, as desired. �

By making a change of basis, it is possible to write any cubic curve in the form

y2z = x3 + axz2 + bz3.

If z = 0, then x = 0, so y = 1. Thus, by setting z = 1, we get the equation

y2 = x3 + ax+ b,

which represents every point on E except the point at infinity (the solution with
z = 0). This is the standard form for an elliptic curve. We usually choose the
zero element O to be the point at infinity. Lines through O are vertical lines. The
point O at infinity has the nice property that it is a point of inflection. That is,
O ∗O = O.

If we think of x as being a function of t, and let y = x′, the derivative of x with
respect to t, then the equation

(x′)2 = x3 + ax+ b

is a differential equation whose solution is

t =

∫
dx√

x3 + ax+ b
,

which is (in general2) an elliptic integral. That is, this integral is related to the
problem of finding the arclength of an ellipse. Thus, an elliptic curve does after all
have something to do with an ellipse. The solution x(t) to this differential equation
is known as the Weirstrass ℘-function, which is often introduced in courses in
complex analysis. The Weirstrass ℘-function, when thought of as a function over

2The integral is an elliptic integral if the curve is nonsingular. We will not define what it means
to be singular or nonsingular, but point out that the elliptic curve in Exercise 15.4 is singular with the
singularity (0, 0). This is why stereographic projection through this point works.
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complex values, is a doubly periodic function. Since the elliptic curve is defined
in P2(C), it is a surface, if thought of as a real object (in the same way that the
complex line C can be thought of as a real plane). The Weirstrass ℘-function gives
us a covering of the elliptic curve. Since it is doubly periodic, an elliptic curve is
topologically a torus.

Exercise 15.14. Let E be defined by y2 = x3 + ax+ b, and suppose that a, b ∈ Q.
We say a point P on E is a rational point if it has rational components. Suppose
P and Q are two rational points on E. Show that P +Q is a rational point. Thus,
the subset of rational points on E forms a subgroup of E. We call this subgroup
E(Q).

Exercise 15.15. Suppose O is a point of inflection, so that O ∗O = O. Show that
P has the property that

P + P + P = O

if and only if P is a point of inflection. Show that if P and Q are points of inflection,
then so is P +Q.

Exercise 15.16. Let E be defined by the equation y2 = x3 + ax + b. Show that
the point at infinity is a point of inflection. (We can do this by first writing this
equation is projective coordinates and then setting y = 1. Now, the point at infinity
is the point (x, z) = (0, 0). Show that this point is a point of inflection.)

Exercise 15.17. Let E be defined by the equation y2 = x3 + ax + b. Show that
E has exactly nine points of inflection, counting the point at infinity. Conclude
that there exist nine noncollinear points in P2(C) such that a line through any
two points goes through a third. Why does this not contradict Sylvester’s problem
(Exercise 11.19)?

Exercise 15.18. Show that if P is on the line through the point (0, 1, 0) and the
point (a, 0, 1), then P = (a, y, 1) for some y. That is, the lines through (0, 1, 0) are
vertical lines.

Exercise 15.19. Let E be described by the equation y2 = x3 + ax+ b. Let O be
the point at infinity. Find a formula for P + Q if P and Q are distinct points on
E. Find another formula for P + P .

Exercise 15.20 (*). Let E be a degenerate elliptic curve consisting of a line and
a circle that are disjoint. Let O be a point on the circle. Show that if P and Q are
on the circle, then P +Q is on the circle. Describe the group action on this circle.

Exercise 15.21 (*). Let E be the cubic y2 = x3 − x2. We saw in Exercise 15.4
that we can stereographically project the points on E to the line x = 1. Let (1, s)
and (1, t) be two points on this line. Let them project to P and Q on E. Find
P +Q and project this point back to the line. What do we get?

Exercise 15.22 (**). Consider the curve C defined by

(15.2) y2 = x4 + a.

Fermat noted that if we set y = x2 + bx+ c and plug this into Equation 15.2, then
the x4 terms cancel, leaving us with a cubic. Thus, a quadratic of this form and the
curve C intersect in exactly three points (Why does this not contradict Bezout’s
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theorem?). Thus, we can define a ∗ operation on this curve. That is, given two
points P and Q on C, find b and c so that the quadratic goes through P and Q, and
let this quadratic intersect C again at R. Define P ∗ Q = R. As with the elliptic
curve, choose a distinguished point O on C and define P +Q = (P ∗Q) ∗O. Show
that the points of the curve C and this operation + form a group.

15.4. A Mixture of Cevians

This section is inspired by a very nice article “My Favorite Elliptic Curve: A Tale
of Two Types of Triangles”, by Richard Guy [Guy95].

F E

D C B

A

Figure 3.

In this article, he asks the question: What are the integer triples (a, b, c) such
that the triangle ∆ABC with sides a, b, and c has the property that the median
from A, the angle bisector at B, and the altitude from C are coincident, as in
Figure 3?

Let D be the midpoint of BC, let E be the point where the angle bisector of
B intersects AC, and let F be the base of the altitude at C. By Ceva’s theorem,
this median, angle bisector, and altitude are concurrent if and only if

|BD|
|DC|

|CE|
|EA|

|AF |
|FB| = 1.

We know |BD| = |DC| = a/2,
|CE|
|EA| =

a

c
(by the angle bisector theorem), |AF | =

b cosA, and |FB| = a cosB. Thus, we must have

1 =
a/2

a/2

a

c

b cosA

a cosB

b cosA = c cosB.

Using the Law of Cosines, we get

b2 + c2 − a2

2c
=
a2 + c2 − b2

2a
.

If we set

y =
2b

a+ c
, x =

2c

a+ c
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and

(15.3) y2 = x3 − 4x+ 4,

then we get the same equation. Thus, every triangle with this peculiar property and
integer sides (a, b, c) generates a rational solution to the elliptic curve in Equation
15.3. The opposite, though, is not true. It is clear that the smallest triangle
with this property is the equilateral triangle with sides (1, 1, 1). If we further
demand that the sides have coprime lengths, then the next smallest triangles with
this property are the triangles with sides (a, b, c) = (12, 13, 15), (35, 277, 308), and
(26598, 26447, 3193). The solutions grow very rapidly. Guy discovered these by
investigating the rational solutions on the elliptic curve.

Exercise 15.23. For the elliptic curve in Equation 15.3, find a formula for adding
two distinct points P and Q if we choose the zero O to be the point at infinity.
Find a formula to find P + P .

Exercise 15.24 (*). Let P = (0,−2). We write nP for the point generated by
adding P to itself n times. (So, for example, 3P = P +P +P .) Let O be the point
at infinity for the elliptic curve in Equation 15.3. Find the smallest n > 2 such that
nP generates a triangle with this peculiar property. [A]

15.5. A Challenge for Fermat

The use of somewhat obscure geometric problems as a source for number theoretic
problems (such as the one in the last section) is not new. Frenicle de Bessy, a
contemporary of Fermat, was strangely obsessed with finding Pythagorean triples
with interesting properties. One such problem which was posed of Fermat was to
find a right angle triangle such that both the hypotenuse and sum of the other two
sides are perfect squares.

The problem can be solved using a variation of the chord and tangent method.
Let ∆ABC be a right angle triangle with sides a < b and both a+ b and c perfect
squares. Let us divide through by a+ b to get a triangle with rational sides whose
hypotenuse is a square and whose other two sides sum to 1. Let

c

a+ b
= x2,

and choose y so that the other two sides are

1− y
2

=
a

a+ b
and

1 + y

2
=

b

a+ b
.

Plugging these into the Pythagorean theorem, we get the curve C defined by the
equation

(15.4) C : y2 = 2x4 − 1.

This has the obvious solution (1, 1), which gives a degenerate triangle. However,
we can use this solution to find more solutions. Note that if we plug the equation

C ′ : y = ax2 + bx+ c
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into Equation 15.4, then we get a quartic in x which has four solutions. For each x,
there is one value of y, so we get four points of intersection.3 If three of these points
of intersection are rational, then the fourth point must also be rational. Since the
quadratic C ′ has three degrees of freedom, we can make it intersect C at the point
(1, 1) with multiplicity three, so that the fourth point of intersection is rational.
We do this by setting the equations and their first and second derivatives equal at
x = 1. Using implicit differentiation, we get

2yy′ = 8x3

y′ =
4x3

y

y′′ =
12x2y − 4x3y′

y2
.

Thus, at x = 1, we get y(1) = 1, y′(1) = 4, and y′′(1) = −4, so we set

C ′ : y = 1 + 4(x− 1)− 2(x− 1)2 = −2x2 + 8x− 5.

The intersection of this curve with C gives

(−2x2 + 8x− 5)2 = 2x4 − 1

0 = −x4 + 16x3 − 42x2 + 40x− 13

= −(x− 1)3(x− 13).

So, we get the solution (13,−239). This point does not generate a triangle, so we
look for more solutions. We can do the same trick again. This time, we choose
C ′ so that it has a root at x = 1 with multiplicity two and goes through another
rational point. If we choose the third root to be 13, then the fourth root must be 1
again, so instead, we note that Equation 15.4 is symmetric in x, so we choose the
third root to be −13 and discover that the fourth root is x = − 1525

1343 . We repeat

the process, and the next solution we find has x = 2165017
2372159 . This gives the triangle

∆ABC with sides of

a = 1061652293520 b = 4565486027761

c = 4687298610289.

It is truly remarkable that Fermat discovered this solution. He even claimed
(in a less famous marginal note) that it is the smallest such solution. This was later
verified by Lagrange in 1777.

Exercise 15.25 (**). In the same letter in which Frenicle posed the above question,
he also asked for a right angle triangle with integer sides, a > b, and such that
(a− b)2 − 2b2 is a perfect square. Find one such triangle. [A]

3If we homogenize these equations, we get a degree 2 curve and a degree 4 curve, which by Bezout’s
theorem, should intersect in eight points. The other four points of intersection are at infinity, where
C has a singularity. In general, we should not be able to develop a ‘chord and tangent’ method on a
degree four curve. We can do it in this case because C has a singularity.
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15.6. The Euler Characteristic in Algebraic Geometry

Using stereographic projection, we can view the real plane as being topologically
equivalent to a punctured sphere. The complex projective line P1(C) can be thought
of as the real plane together with a point at infinity and so is topologically equivalent
to a sphere. In fact, every curve C ∈ P2(C) defined by a homogeneous polynomial
is topologically equivalent to a (possibly punctured) compact surface, such as a
sphere (a zero-holed surface), a torus (a one-holed surface), or a g-holed surface.
The Euler characteristic χC of the curve C is given by

χC = 2(1− g).

There are many properties about curves in P2(Q) which depend on the Euler char-
acteristic of the curve when thought of as being in P2(C). In this context, we
usually refer to the value g, called the genus of the curve, rather than the Euler
characteristic of the curve.

For example, in Section 15.1, we saw that there exists a map (x(t), y(t)) from
the rationals Q to the set of rational points on the circle Γ described by x2 +y2 = 1,
not including the point (0, 1). Furthermore, the functions x(t) and y(t) are rational
functions (that is, quotients of polynomials). We say that Q and Γ are birational. In
general, we say a curve C in Q2 is birational to Q if there exists a map (x(t), y(t))
from all but finitely many points in Q to all but finitely many points in C such
that x(t) and y(t) are rational functions. The surprising fact is that a curve C
is birational to Q if and only if the genus of C is zero. Think about this for a
moment. We have described a property of C when defined over the rationals in
terms of the geometry of the curve when described over C. This is a fundamental
tenet of algebraic geometry – the idea that we can infer algebraic information from
the geometry.

Let us describe another such property. Let P be a point in P2(Q). By clearing
denominators, we can write

P = (P0, P1, P2)

with Pi ∈ Z and relatively prime Pi. Furthermore, this expression is unique, up to
sign. We can therefore define

H(P ) = max{|P0|, |P1|, |P2|},
which we call the height of P .

Given a curve C described by a polynomial f with rational coefficients, let us
consider the quantity

NC(T ) = #{P ∈ C : H(P ) < T}.
It turns out that the behavior of this quantity NC(T ) can be characterized by the
genus of C. If g = 0 and C contains at least one rational point, then there exists an
integer d and a constant c > 0 such that

lim
T→∞

NC(T )

T 2/d
= c.

We say that NC(T ) grows asymptotically like cT 2/d. The integer d is the degree
of the rational functions in the rational bijection with Q. If the genus g = 1 and
C contains infinitely many points, then NC(T ) grows asymptotically like ln(T )r/2,
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where r is an integer. If g ≥ 2, then C contains only finitely many rational points.
This last result, formerly Mordell’s conjecture, was proved by Faltings in 1983.

15.7. Lattice Point Problems

Question: Given a disc D of radius r, how many integer points are inside D? For
large r, we can make a fairly accurate estimate.

Let
N(r) = #{(a, b) ∈ Z2 : (a, b) ∈ D}.

We can think of each integer point as representing a 1× 1 tile. Since the area
of the disc is πr2, the circle touches at least πr2 tiles. Suppose the circle intersects
a particular tile, but that the integer point represented by that tile is not in the
circle. Then, the integer point is at most a distance of

√
2/2 away from the circle.

Similarly, if an integer point is inside D but the tile it represents is not entirely
within D, then that point is at most

√
2/2 units away from the boundary of D.

Thus,

π(r −
√

2/2)2 ≤ N(r) ≤ π(r +
√

2/2)2.

Said another way,
N(r) = πr2 +R(r),

where R(r) is a function such that

|R(r)| < 2π
√

2r + 1.

Let us now ask a similar question in hyperbolic geometry. Consider, for exam-
ple, the tiling in Figure 8, which is a tiling with six ‘squares’ to a vertex. Let Λ be
the lattice which consists of the set of points at the center of each ‘square.’ Let D
be a disc of (hyperbolic) radius r. Let

N(r) = #{P ∈ Λ : P ∈ D}.
What is the behavior of N(r)? The area of the disc is 4π sinh2(r/2) (see Exer-
cise 7.106), and the area of each tile is 8π/3 (Exercise 8.7), so we expect an answer
of

N(r) =
3er

8
+R(r),

where the remainder R(r) is not too large. If we try the same argument as we
used in the Euclidean case, we find a bound on R(r) that is of the same order
of magnitude as the circumference, which is π sinh(r/2) cosh(r/2). But for large
r, this is approximately 4πer, which is the same order of magnitude as the main
term. No geometric argument has been discovered which gives a better bound on
the remainder term R(r). However, there are analytic methods. Patterson [Pat75]
has shown

|R(r)| < ce3r/4,

for some constant c.

Exercise 15.26 (**). The pseudosphere V+ given by x2 + y2− z2 = −1 and z > 0
contains a lot of integer points. How many integer points are there with z < T?
More precisely, if we define

N(T ) = #{(x, y, z) ∈ Z3 : x2 + y2 − z2 = −1, 0 < z < T},
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then what is the asymptotic behavior of N(T )? [H]

Exercise 15.27 (**). Let

N~a(T ) = #{(x, y, z) ∈ Z3 : x2 + y2 − z2 = −1, 0 < ~a ◦ ~x < T}.
What conditions must be satisfied by ~a to make N~a(T ) finite for all T? What is
the asymptotic behavior of N~a(T )?

15.8. Fractals and the Apollonian Packing Problem

In this section, we consider a couple of very odd looking regions. The first region is
called Serpinski’s carpet and appears in Figure 4. We construct this region by first
taking a square of side s and dividing it into nine smaller squares. We remove the
center square, and repeat this process for the remaining eight squares. We continue
this process indefinitely.

Figure 4. Serpinski’s carpet.

Let us suppose that the area of this figure is given by M(s). Every area formula
has the property that

M(λs) = λ2M(s).
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Thus, if we triple the length of s, then we get a figure with 9 times the area of the
original. On the other hand, we can construct the same figure with side of length
3s by reproducing the original 8 times. We therefore get

9M(s) = 8M(s),

from which we conclude that M(s) = 0. Serpinski’s carpet has no area. That is,
it is not two dimensional. We therefore feel compelled to conclude that it must be
one dimensional, but then M(λs) = λM(s), so we get

3M(s) = 8M(s).

This raises the interesting question: Are there dimensions between 1 and 2? Suppose
there are, and that this carpet is d dimensional. Then we must have

M(λs) = λdM(s),

where M(s) 6= 0 if s 6= 0. By setting λ = 3, we get

3dM(s) = 8M(s)

d =
ln 8

ln 3
≈ 1.893.

We say that Serpinski’s Carpet has a fractal dimension of d = ln 8/ ln 3.

Not all fractals are so nicely self-similar. For example, consider the Apollonian
packing (see Figure 5). This is a packing of a disc using smaller discs. We begin
with a disc and in it we remove two discs which are mutually tangent and tangent to
the original circle. In this new figure, there are two curvilinear triangles – triangles
whose sides are arcs of circles. In each of these two curvilinear triangular regions,
we remove the unique incircle. We now have six curvilinear triangles left. In each
of these, we again remove the incircles. We continue this process indefinitely. The
region which is left is a fractal region which unfortunately has no nice self-similarity
to exploit.

Let the radii of these circles be {r1, r2, ...}, and consider the function

(15.5) f(s) =

∞∑
i=1

rsi .

It is clear that this function converges for s = 2, diverges for s = 0, and where it is
defined, it is a decreasing function. We therefore know there exists an α such that
f(s) converges for all s > α and diverges for all s < α. Boyd [Boy73] has shown
that α is the fractal dimension of this set, and that

1.300197 < α < 1.314534.

Though we have no intention of showing how α is calculated, we note that to
do so, we must be able to calculate the radii ri. This can be done using a very nice
geometrical result due to Descartes. Recall first that the curvature of a circle with
radius r is the quantity t = 1/r. Let us further adopt the convention that, in a
configuration of three mutually tangent circles (as in Figure 6), if one circle bounds
the other two, then the curvature of that circle is given a negative sign. With this
convention, we have:
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Figure 5. The Apollonian packing.

Theorem 15.28 (Descartes’ Circle Theorem). Suppose four circles with curvature
t1, t2 and t3 and t4 are mutually tangent. Then

2
(
t21 + t22 + t23 + t24

)
= (t1 + t2 + t3 + t4)

2
.

We begin with a lemma:

Lemma 15.29. Let A, B, and C be the centers of three mutually tangent circles
with curvature ta, tb, and tc, respectively. If the three circles are externally tangent,
then the points of tangency are on the sides of ∆ABC and are where the incircle
touches the sides. If the circles centered at B and C are inside the circle centered
at A, then we take the curvature ta to be negative; the points of tangency are on the
sides of ∆ABC and are where the excircle centered at Ia intersect the sides. Let τ
be the curvature of the incircle or excircle, depending on the case. Then, in both
cases, we have

τ2 = tbtc + tatc + tatb.
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CB

A

s−b

s−a

s−cI

A

B

C

s− b

s− c

Ia

Figure 6.

Proof. We leave as an exercise the proof that the incircle touches the sides of
∆ABC at the points of tangency of the circles.

Let us first consider the externally tangent case, as in Figure 6. By Exer-
cise 1.116,

ta =
1

s− a, tb =
1

s− b and tc =
1

s− c .
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Thus,

τ2 =
1

r2
=

s2

|∆ABC|2 =
s2

s(s− a)(s− b)(s− c)

= tatbtcs = tatbtc

(
1

ta
+

1

tb
+

1

tc

)
= tbtc + tatc + tatb.

In the case when the circles centered at B and C are inside the circle centered
at A (that is, when ta < 0), we get

ta = −1

s
, tb =

1

s− c and tc =
1

s− b ,

so

τ2 =
1

ra

2

=
(s− a)2

|∆ABC|2 =
(s− a)2

s(s− a)(s− b)(s− c)

= −tatbtc(s− a) = tatbtc

(
1

ta
+

1

tb
+

1

tc

)
= tbtc + tatc + tatb. �

Proof of Theorem 15.28. The four circles give four combinations of three mu-
tually tangent circles and therefore generate four new circles with curvatures τ1,
τ2, τ3, and τ4, where the circle with curvature τ1 is generated by the circles with
curvature t2, t3, and t4, etc. (see Figure 7).

Note that the four new circles all intersect the original circles perpendicularly
and at the points of tangency, so we get a new configuration of four mutually
tangent circles. By Lemma 15.29, we get

τ2
1 = t3t4 + t2t4 + t2t3

τ2
2 = t3t4 + t1t4 + t1t3

τ2
3 = t2t4 + t1t4 + t1t2

τ2
4 = t2t3 + t1t3 + t1t2,

and summing, we get

τ2
1 + τ2

2 + τ2
3 + τ2

4 = 2t1t2 + 2t1t3 + 2t1t4 + 2t2t3 + 2t2t4 + 2t3t4

4∑
k=1

τ2
k +

4∑
k=1

t2k =

(
4∑
k=1

tk

)2

.(15.6)

Thus, all we need to show is that
∑
t2k =

∑
τ2
k . Reversing the roles of the four

original circles and the four generated circles, we get

4∑
k=1

(τ2
k + t2k) =

(
4∑
k=1

τk

)2

.
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Figure 7.

Hence (
4∑
k=1

τk

)2

=

(
4∑
k=1

tk

)2

4∑
k=1

τk = ±
4∑
k=1

tk.

Note that if t1 < 0, then t2, t3, and t4 are each positive and larger than |t1|. Thus,∑
tk > 0, and similarly,

∑
τk > 0, so

4∑
k=1

τk =

4∑
k=1

tk.

Now, consider

(t1 + t2 + t3 + t4)(t1 + t2 + t3 − t4) = (t1 + t2 + t3)2 − t24
= t21 + t22 + t23 + 2t1t2 + 2t1t3 + 2t2t3 − t24
= t21 + t22 + t23 + 2τ2

4 − t24.
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Let us also substitute expressions in terms of the τk’s for the t2k’s to get

(t1 + t2 + t3 + t4)(t1 + t2 + t3 − t4) = (τ3τ4 + τ2τ4 + τ2τ3)

+ (τ3τ4 + τ1τ4 + τ1τ3)

+ (τ2τ4 + τ1τ4 + τ1τ2)

− (τ2τ3 + τ1τ3 + τ1τ2) + 2τ2
4

= 2τ4(τ1 + τ2 + τ3 + τ4)

t1 + t2 + t3 − t4 = 2τ4.

In particular,
(t1 + t2 + t3 − t4)2 = 4τ2

4 ,

and similarly,

(t1 + t2 − t3 + t4)2 = 4τ2
3

(t1 − t2 + t3 + t4)2 = 4τ2
2

(−t1 + t2 + t3 + t4)2 = 4τ2
1 .

Summing, we get

4(t21 + t22 + t23 + t24) = 4(τ2
1 + τ2

2 + τ2
3 + τ2

4 ),

and substituting into Equation 15.6, we get the desired result. �

Exercise 15.30. Suppose three mutually externally tangent circles are centered
at A, B, and C. Prove that the incircle of ∆ABC touches the sides of ∆ABC at
the points of tangency of the original three circles.

Exercise 15.31. Prove that f(s) in Equation 15.5 converges at s = 2, and that
where it converges, f(s) is a decreasing function.

Exercise 15.32 (*). Describe how to construct (using a straightedge and compass)
the incircle of a curvilinear triangle formed by three mutually tangent circles. [H]

Exercise 15.33 (**). Suppose four mutually tangent circles in the complex plane
have curvatures t1, t2, t3, and t4, and centers P1, P2, P3, and P4, where the centers
are expressed as complex numbers. Prove that

2
(
(t1P1)2 + (t2P2)2 + (t3P3)2 + (t4P4)2

)
= (t1P1 + t2P2 + t3P3 + t4P4)2.

Exercise 15.34 ( (The Serpinski Gasket)). The Serpinski gasket is created in
a fashion similar to the construction of the Serpinski carpet. We begin with an
equilateral triangle and remove the triangle whose vertices are the midpoints of the
sides of the original triangle. In the remaining three triangles, we again remove a
triangle, and we continue this process indefinitely. The first few steps are shown in
Figure 8. What is the fractal dimension of the Serpinski gasket?

Exercise 15.35 ( (The Koch Snowflake)). The Koch snowflake is produced by
beginning with an equilateral triangle. We remove the middle third of each side,
and replace it with two sides of an equilateral triangle (facing out). We repeat the
procedure on the twelve new segments and continue the process indefinitely. The
first few steps are shown in Figure 8. What is the dimension of the Koch snowflake?
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Figure 8. The Serpinski gasket and the Koch snowflake.

Figure 9. The Koch snowflake was featured in the logo for the ’91 Interna-

tional Mathematical Olympiad.

Exercise 15.36 ( (The Cantor Set)). To construct the Cantor set, we remove the
middle third (1/3, 2/3) of the segment [0, 1] on the real line. We remove the middle
thirds of the remaining two segments and continue this process indefinitely. What
is the dimension of the Cantor set?

Exercise 15.37 ( (The Menger Sponge)). To construct the Menger
sponge, we take a cube, and on each face we bore out the middle square. We
repeat this process indefinitely. The first few steps are shown in Figure 10. What
is the dimension of the Menger sponge?

15.9. Sphere Packing

Let us begin with a two-dimensional problem. How should we place unit discs in
the plane so that they do not overlap and so that the greatest proportion of the
plane is covered? One might think of trying an experiment: Take a handful of soda
straws and wrap a rubber band around them. What we get is the beehive packing
shown in Figure 11.
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Figure 10. The Menger sponge.

The density δ of a packing of a finite region R is the ratio of the area covered
by the discs to the area of the region. The density of a packing of the entire plane
is found by first taking a circle of radius r, finding the density δ(r) of the packing
given by the intersection of the circle with the packing of the plane, and then finding
the limit of δ(r) as r goes to infinity. If a packing of the plane has the structure of
a tiling (like the beehive packing), then its density is just the ratio of the area of
the disc in each tile to the area of each tile.

For the beehive packing where each disc has radius one, the the sides of the
hexagonal tiles have length s = 2√

3
. Hence, the density δ of the beehive packing of

the plane is

δ =
π

2
√

3
.

Let us now ask, Is this the best packing? That is, is it possible to find a packing of
the Euclidean plane with density δ > π

2
√

3
? The answer is no – the optimal packing

is the beehive packing. This was shown by Axel Thue in 1890. The proof is not
too difficult (see [Hal00]).

In contrast, the three-dimensional version of this question is very difficult. Let
us begin with an obvious packing, the cannonball packing, shown in Figure 12. We
begin with a triangular arrangement of cannonballs, n balls to a side, and on top
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Figure 11.

Figure 12. The cannonball packing with n = 3.

of that, stack another triangular arrangement with n − 1 balls on each side. We
continue until we have a tetrahedral arrangement. If the radius of each cannonball
is one, then this cannonball stack gives us a packing of a tetrahedron with side

s = 2n+ 3
√

2− 2.

The volume of a tetrahedron with side s is

V =
s3

6
√

2
.

The number of cannon balls on the bottom layer is

n+ (n− 1) + ...+ 1 =
(n+ 1)n

2
,
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so the total number of cannonballs is
n∑
k=1

k2 + k

2
=

1

2

(
(n+ 1)(2n+ 1)n

6
+

(n+ 1)n

2

)
=
n3 + 3n2 + 2n

6
.

Thus, the density of this packing is

δ =
(n3 + 3n2 + 2n)4π

18

6
√

2

(2n+ 3
√

2− 2)3
.

As n approaches infinity, we get a packing of Euclidean three-space with density

δ =
π
√

2

6
.

In 1611, Kepler asserted that no other packing has a greater density. His assertion
has since become known as the Kepler conjecture and has remained unsolved for
almost four centuries. A partial result was found by Gauss, who showed that

δ = π
√

2
6 is best possible if the packing has the structure of a tiling (like the

cannonball packing). A general solution was recently proposed by Thomas Hales
but is still under scrutiny by the mathematical community.

The question of finding optimal sphere packings in finite geometries might
sound like just another academic exercise, but is, in fact, of relevance to modern
telecommunications. When we transmit information, whether through a digital fax
or phone, between ground control and robots on Mars, or between a memory chip
and a computer processor, there is the possibility that the message will be garbled.
We can guard against this by transmitting information using an error correcting
code, a code which will detect and correct flipped digits in small blocks. Though
the subject of error correcting codes is usually thought of as a topic in modern
algebra, it has a geometric interpretation. Such a code can be thought of as a
sphere packing in a finite geometry.

Consider a geometry with 2n points, represented by (Z/2Z)n. In this geometry,
we will say two points P and Q are a distance k apart if their representations in
(Z/2Z)n differ in k places. This distance is called the Hamming distance. Consider
a packing of this space with spheres of radius r > 1 where r is not an integer.
For example, suppose we have a packing with radius r = 3/2. Let {P1, ..., PN}
be the set of centers of this packing. These points are the allowable messages and
might be thought of as letters. Suppose that a message Q is received and that Q is
not one of these letters. We immediately know that an error has occurred during
transmission, but do we know what the original letter was? If we assume that at
most one digit was flipped, then this Q differs from the intended letter Pk by only
one digit. That is, Q still lies within the sphere centered at Pk, so all we have to
do is figure out which sphere it lies in, and we will know the intended letter. By
doing so, we have corrected the error.

In a geometry with 2n points, there are n points a Hamming distance 1 away
from any fixed point. Thus, each sphere contains n + 1 points, so the number of
spheres (or letters) N in any packing is at most

2n

n+ 1
.
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If this packing has density one, then n+ 1 divides 2n, so

n+ 1 = 2k

for some integer k.

For example, with k = 2, we get n = 3 and there are at most two letters. It is
in fact possible for N to equal 2, since the choice of 000 and 111 for letters works.
Hence, when we send a message using this code, we repeat each digit three times. If
we receive a message which includes a block of three digits which are not all equal,
then we correct the message by choosing the digit which appears twice.

For k = 3, we get n = 7 and at most 24 = 16 letters. It is again possible to pack
in 16 spheres, and a choice of centers appears in Table 1. This code was developed
in 1950 by Richard Hamming of Bell Labs.

0000000 1111111 0001111 1110000
1000110 0111001 1100011 0011100
0100101 1011010 1010101 0101010
0010011 1101100 1001001 0110110

Table 1. The sixteen letters of a seven-digit error correcting code.

The first four digits of these sixteen points are distinct, so uniquely identify
the letter. We therefore often think of the first four digits as the information, while
the last three digits are thought of as check digits. Note that the code corrects
single-digit errors in the check digits too, and not just in the first four digits.

Let us compare these two codes. In order to communicate four digits of in-
formation, we must send twelve digits with the first code, but only seven digits
are required with the second code. Both codes will properly correct a single-digit
error. The first code is capable of correcting up to four flipped digits (in a twelve-
digit block), but if we are unlucky, as few as two flipped digits can be corrected
improperly. The second code will never properly correct two flipped digits. Thus,
the first code has a slight error correcting advantage, but the second code is much
more efficient. Extrapolating, it is not hard to imagine that longer codes are also of
interest, particularly for applications where errors can happen, but are very rare.

Exercise 15.38. Derive the formula for the volume of a tetrahedron with side s.

Exercise 15.39. Prove that the smallest tetrahedron which contains a ball of
radius 1 has sides of length 3

√
2. Conclude that the smallest tetrahedron which

can hold a cannonball stack with n balls of radius 1 per side is a tetrahedron with
sides of length s = 2n− 2 + 3

√
2.

Exercise 15.40. Suppose we stack cannonballs begining with a square layer with
n2 balls. If we let n go to infinity, we get a packing of three-space. What is the
density of this packing? [A]

Exercise 15.41. Suppose we tile the Euclidean plane with squares, and in each
square, we inscribe a circle. What is the density of this packing?

Exercise 15.42. Prove that the density of a packing of the plane (or of three-space)
which has the structure of a tiling is the same as the density of each tile.
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Exercise 15.43. In our calculation of the density of the cannonball packing, we
used tetrahedra instead of spheres. Justify our calculation.

Exercise 15.44. Suppose we have a tiling of hyperbolic geometry with n-gons, m
per vertex. Inside each polygon, we can inscribe a circle, thereby giving a packing
of the hyperbolic plane. What is the density of this packing? [A]

Exercise 15.45. Show that the Hamming distance between any two points in
Table 1 is either three, four, or seven. Conclude that the spheres of radius 3/2
about each point do not intersect. [H]

Exercise 15.46. What is the maximum possible density of packings with spheres
of radius 3/2 in geometries with 2n points for every n ≤ 10? For n = 3 and
7, the density is 1. In these two cases, the rate of information per transmission
is 1/3 ≈ 33% and 4/7 ≈ 57%, respectively. What is this rate for each n ≤ 10,
assuming the maximum possible density is obtainable?

Exercise 15.47 (*). We have been working in base two because it is the natural
base for computers. What is the smallest n ≥ 2 such that there exists a packing of
(Z/3Z)n with spheres of radius 3/2 and density one. Find a set of centers which
gives such a packing. [A]

Exercise 15.48 (**). The DNA code is in base four. There is evidence that there
are many natural strategies to prevent genetic mutations. Research the literature
for evidence that using error correcting codes is one such strategy.
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Chapter 16

A Selective Time Line of
Mathematics

This is a selective time line of mathematicians who have been featured in this text
or whose work is well known and is included for the sake of reference.

16.1. The Ancient Greeks

Pythagoras (ca. 572 – 500 B.C.) is usually credited with proving the Pythago-
rean theorem in Euclidean geometry (page 8). There are versions of the Pythago-
rean theorem in both spherical (page 151) and hyperbolic (page 187) geometry.

Plato (ca. 427 – 347 B.C.) is best known for his work the Republic. In this
work, he asserts that the value of mathematics is how it trains the mind, and that
its practical utility is of minor importance. Though the Platonic solids are named
after him, this is because of his assertion that the particles of the four elements
of fire, air, Earth, and water are, respectively, tetrahedrons, octahedrons, cubes,
and icosahedrons. The dodecahedron represents the universe. The geometry of
these solids was already known to the Pythagoreans and was fully developed by
Theaetetus. Plato is also attributed with the compass and straightedge rules of
construction.

Euclid (ca. 300 B.C.) wrote the Elements, a thirteen volume set on mathematics.
Euclid’s influence on modern mathematics is astounding. Even today, there are
many professors who require that their students read at least part of the Elements.

Archimedes (287 – 212 B.C.) wrote Psammites (Sand-reckoner) as mentioned
in Chapter 2. He devised a way of trisecting an arbitrary angle using a compass
and notched straightedge (page 74). Archimedes also found bounds on π; summed
geometric series (both finite and infinite); found formulas for the sum of integers and
squares; and in his work, there is a strong hint of integral calculus (and to a lesser
extent, differential calculus). He is probably best known for his water pump (the
Archimedean screw); his machines of war, which were used to defend Syracuse (in
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Sicily) in the Second Punic War; and his discovery that a floating body displaces its
weight in water. He is said to have made this last discovery while floating in a bath,
after which he dashed through the streets naked, exclaiming “Eureka, eureka” (“I
have found it, I have found it”). Archimedes was a contemporary of Eratosthenes
of Cyrene (on the Red Sea) and often communicated with him. Archimedes died at
the hands of a Roman soldier during the fall of Syracuse. It is said that Archimedes
requested that his tombstone include a diagram of a sphere inscribed in a cylinder,
in reference to his proof that the ratio of these two objects is 2/3.

Apollonius of Perga (ca. 262 – 190 B.C.) is featured in this text in Exercise
1.119, and in the Apollonian packing problem in Section 15.8. Apollonius is best
known for his work on conic sections.

Hipparchus (ca. 161 – 126 B.C.) developed a table of chords (essentially a table
of sines).

Menelaus (ca. 100 A.D.) proved Menelaus’ theorem in both the plane (page 48)
and the sphere (page 192). He could also find the distance between cities, given (in
modern language) their longitude and latitude. That is, he could solve a type of
spherical triangle.

Ptolemy (ca. 100 – 170 A.D.) proved Ptolemy’s theorem (page 46), which gives
the angle sum formulas for (in modern language) sines and cosines. He used these
to refine the table of chords. He used his tables to solve triangle problems in
the plane using essentially the Law of Sines or Law of Cosines. He also used
Menelaus’ theorem on the sphere to prove the beginnings of spherical trigonometry,
our Theorems 10.6 and 10.7.

Diophantus of Alexandria (ca. 250 A.D.) wrote Arithmetica, a thirteen book
set on algebra. Fermat wrote his famous marginal note in his copy of Arithmetica.
Diophantine equations and Diophantine geometry are named after Diophantus.

Heron of Alexandria (3rd century A.D.?) is best known for Heron’s Formula
(page 35), though the result dates back to Archimedes. He also invented a number
of mechanical contrivances, including a rudimentary steam turbine. It is not clear
when Heron lived. Some place him after Ptolemy and before Pappus, but others
place him as early as 100 B.C.

Pappus (end of the 3rd century A.D.) proved Pappus’ theorem, which was
introduced in Chapter 4 and proved in Chapter 11 (page 203). His work is also
featured in Exercises 1.9 and 7.24. Pappus also developed the focus-directrix and
eccentricity definitions of conics.

Proclus (410 – 485 A.D.) wrote detailed commentaries on many of the works of
the ancient Greeks, referring to and often quoting from works of antiquity which
have since been lost. He is responsible for the preservation of much of the ancient
Greek history of mathematics.
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16.2. The Fifth Century A.D. to the Fifteenth Century A.D.

Brahmagupta (ca. 598 – 665) proved a version of Heron’s formula for cyclic
quadrilaterals (page 48).

Arabic Influence. We owe much to the developments of the Arabs, particularly
in algebra. Our number system is Arabic, and the words ‘algebra’ and ‘algorithm’
have Arabic roots. Much of our knowledge of the works of the ancient Greeks
is through Arabic translations. For example, Ptolemy’s work, simply called The
Mathematical Collection, is usually referred to as the Almagest (from ‘al magest’
meaning ‘the majestic’), which is the title the Arabs gave it.

Al-Biruni (973 – 1055) proved the Law of Sines in spherical geometry. By
repeatedly using this result, Al-Biruni was able to solve more problems than we
might at first think possible. His work was valued in the Muslim religion because
of the importance of knowing the direction of Mecca.

Omar Khayyám (1048 – 1131), a poet, took up the challenge of trying to prove
Euclid’s fifth axiom from the first four. His work, through the writings of either
Nasir Eddin al-Tusi (1201 – 1274) or his son, is probably the source of Saccheri’s
work. He also showed how to solve cubic equations in the fashion of Exercise 3.61.

Leonardo de Pisa, (1170 – 1240), better known as Fibonacci, wrote in Latin
but was trained by and frequently visited Muslim scholars. He is best known for
the Fibonacci sequence {1, 1, 2, 3, 5, 8, 13, ...}, where each term is the sum of the
previous two.

16.3. The Renaissance to the Present

René Descartes (1596 – 1650) is credited with the invention of the Cartesian
coordinate system. His circle theorem is featured in Theorem 15.28 on page 283.
He is perhaps best known as a philosopher, and for the phrase “Cogito ergo sum”
(“I think, therefore I am”).

Gérard Desargues (1591 – 1661), influenced by the study of perspective by the
painters of the Renaissance, began the development of projective geometry. He is
best known for Desargues’ theorem (pages 83 and 204).

Pierre de Fermat (1601 – 1665) is best known for ‘Fermat’s Last Theorem’
(page 269), a conjecture only recently proved by Andrew Wiles. A taste of Fermat’s
extraordinary work is featured in Section 15.5.

Blaise Pascal (1623 – 1662) proved Pascal’s theorem (page 205) when he was
sixteen. He is also well known for Pascal’s triangle, the triangular array of binomial
coefficients. Pascal’s triangle already appeared in a text by Jordanus de Nemore,
ca. 1220, and much earlier in both Chinese and Arabic works.

Isaac Newton (1642 – 1727) and Leibniz are credited with independently in-
venting calculus. Newton is also credited with the concept of gravity.
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Gottfried Wilhelm Leibniz (1646 – 1716) and Newton are credited with in-
dependently inventing calculus. Leibniz’ notations for derivatives and integrals are
still in use today.

Giovanni Ceva (1647 – 1736) proved Ceva’s theorem (page 50).

Girolamo Saccheri (1667 – 1733) investigated the Saccheri quadrilateral (Fig-
ure 3, page 106), and by assuming the angles A and D are acute, he derived many
‘strange’ results but was unable to come to a contradiction.

Abraham DeMoivre (1667 – 1754) proved DeMoivre’s theorem (pages 68, 71):

cosnθ + i sinnθ = (cos θ + i sin θ)n.

In this text, we express this result in the form

(16.1) eiθ = cos θ + i sin θ,

which is a formulation due to Euler.

Robert Simson (1687 – 1768) wrote a popular updated version of Euclid’s
elements which includes an attempt to fix Euclid’s axioms. He is honored with the
name of the Simson line (page 45), which was proved by William Wallace almost
thirty years after his death.

Leonhard Euler (1707 – 1783) discovered the Euler line (page 40), and the
Euler characteristic for polyhedra and surfaces (featured in Sections 5.3 and 15.6).
He formulated Euler’s formula, the identity in Equation 16.1, by noting that both
sides satisfy the same differential equation (see Exercise 3.38). Euler was very
prolific and published more than 1000 papers in mathematics (only Paul Erdös has
published more).

Jean-Robert Argand (1768 – 1822) and Caspar Wessel (1745 – 1818)
independently developed the geometric interpretation of complex numbers.

Karl Friedrich Gauss (1777 – 1855) was one of the most influential mathe-
maticians of all time. He claimed in a letter to János Bolyai that he had already
discovered hyperbolic geometry. Though Gauss had a habit of not publishing his
‘unpolished’ results, of his work on this subject he wrote that his intention was “not
to allow it to become known during my lifetime.” Gauss was apparently afraid that
the scientific community was not ready to understand this work. Despite Gauss’
many achievements, he seemed to be most proud of his discovery (at a young age)
that the regular 17-gon is constructible (see page 79 and Section 14.5) and requested
that the figure be inscribed on his tombstone. He also proved that it is impossible
to trisect an arbitrary angle and claimed that it is impossible to construct a regular
p-gon for a prime p that is not a Fermat prime (see page 73).

Charles-Julien Brianchon (1785 – 1864) proved Brianchon’s theorem (page
212).

Jean-Victor Poncelet (1788 – 1867) discovered duality in projective geometry.

Augustin Louis Cauchy (1789 – 1857) refined the definition of a limit. In
particular, his definition of a Cauchy sequence (page 172) allows one to define the
convergence of a limit without a priori knowledge of the existence of the limit.
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We use it to axiomatically define the real numbers. This can also be done using
Dedekind cuts, an idea which has its roots in Euclid’s theory of proportions.

Nikolai Ivanovich Lobachevsky (1792 – 1856) is also sometimes credited with
discovering hyperbolic geometry. He developed hyperbolic trigonometry.

Michel Chasles (1793-1880) discovered the cross ratio in projective geometry.

Franz Taurinus (1794 – 1874) experimented with the consequences of substitut-
ing ik for the radius r in formulas in spherical geometry. He called this log-spherical
geometry. His work influenced Lobachevsky.

Karl Georg Christian von Staudt (1798 – 1867) developed a geometrically
defined addition and multiplication on lines in the affine plane. Assuming Desar-
gues’ theorem (or using a set of axioms which imply Desargues’ theorem), Hilbert
showed that the algebra defined by von Staudt is a division ring (see Chapter 13).

Karl Feuerbach (1800 – 1834) proved Feuerbach’s theorem (page 43).

Niels Henrik Abel (1802 – 1829) proved that it is impossible to solve an arbi-
trary quintic with radicals. Abelian groups are so named in his honor.

János Bolyai (1802 – 1860) wrote to Gauss about his discovery of hyperbolic
geometry.

Évariste Galois (1811 – 1832) invented Galois theory, with which one can prove
that it is impossible to trisect an arbitrary angle, square the circle (given Linde-
mann’s result), double the cube, or solve an arbitrary quintic with radicals. Galois
died in a duel at the age of 20.

Georg Bernhard Riemann (1826 – 1866) proved that all complex analytic
functions preserve angles (except at a finite number of points). We saw this for
fractional linear transformations. Riemann expanded on the idea of a geometry
both in dimension and in type. The simplest idea is to consider surfaces in three
dimensions and restrict the arclength differential to this surface. We did this for the
sphere in Section 12.1. The study of such geometries is called Riemann geometry.

Eugenio Beltrami (1835 – 1900) developed the Beltrami-Klein model of hyper-
bolic geometry (page 229). Klein made this model more acceptable to the mathe-
matical community by developing a distance function on it.

Moritz Pasch (1843 – 1930) renewed the investigation of the axiomatic foun-
dations of geometry. He recognized the need for axioms of betweeness. Pasch’s
theorem appears on page 176.

Georg Cantor (1845 – 1918) invented the Cantor set (page 288). This set is
a fractal which has been used to develop numerous intuition defying examples in
analysis.

Felix Klein (1849 – 1925) developed the log-cross ratio definition of distance in
the Poincaré models (Section 7.11), and a notion of distance in the Beltrami-Klein
model (page 229).
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Ferdinand Lindemann (1852 – 1939) proved that π is transcendental, thereby
completing the proof that it is impossible to square the circle.

Hendrik Antoon Lorentz (1853 – 1928) is most famous for his work on the
theory of the electron. He developed Lorentz space (see Chapter 12), a version of
R3 in which hyperbolic geometry is naturally imbedded.

Jules Henri Poincaré (1854 – 1912) developed the Poincaré disc and upper
half plane models of hyperbolic geometry (Chapter 7). Poincaré is often thought
of as the father of modern topology.

David Hilbert (1862 – 1943) developed an axiomatic foundation for geometry,
fixing the holes in Euclid’s set of axioms. Some of his remarkable work in this area is
featured in Chapter 13. Hilbert made significant contributions to many other areas
of mathematics and is considered by some to be the most influential mathematician
of the twentieth century.

Hermann Minkowski (1864 – 1909) developed Minkowski space-time, a four-
dimensional model of Lorentz space in which he unified space and time (see Chapter
12). His work on this model influenced the work of his student Albert Einstein.
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Appendix A

Quick Reviews

A.1. 2× 2 Matrices

A two by two matrix has the general form

γ =

[
a b
c d

]
,

where the entries a, b, c, and d are usually numbers, real or complex, but may also
be functions. The determinant of γ is

det γ = det

[
a b
c d

]
= ad− bc.

We multiply matrices as follows:[
a b
c d

] [
r s
t u

]
=

[
ar + bt as+ bu
cr + dt cs+ du

]
.

Matrix multiplication is associative (that is, (αβ)γ = α(βγ)), but it is not commu-
tative (that is, except for unusual cases, αβ 6= βα). Note that for two matrices α
and β, det(αβ) = det(α) det(β).

The identity is

I =

[
1 0
0 1

]
,

and for any matrix γ, Iγ = γI = γ.

We say a matrix γ is invertible if there exists a matrix γ−1 such that

γγ−1 = γ−1γ = I.

The matrix γ−1 is called the inverse of γ. A matrix γ is invertible if and only if
det γ 6= 0. For 2× 2 matrices,

γ−1 =

[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.
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A.2. Vector Geometry

Let ~u = (u1, u2, u3) and ~v = (v1, v2, v3) be vectors in R3. The length ||~u|| of ~u is
the distance from the origin (0, 0, 0) to the point (u1, u2, u3), which is

||~u|| =
√
u2

1 + u2
2 + u2

3.

The dot product of ~u and ~v is

~u · ~v = u1v1 + u2v2 + u3v3

= ||~u||||~v|| cos θ,

where θ is the angle between ~u and ~v.

The cross product of ~u and ~v is

~u× ~v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

This vector ~u × ~v is perpendicular to both ~u and ~v, and points in a direction
according to the right-hand rule. The length of ~u× ~v is

||~u× ~v|| = ||~u||||~v|| sin θ.
Note also that

~v × ~u = −~u× ~v.

A.3. Groups

A group G is a set of objects together with an operation ∗, and with the following
properties: For all elements a, b, and c in G, we have

(1) Associativity:

(a ∗ b) ∗ c = a ∗ (b ∗ c).
(2) The existence of an identity: There exists an element 1 such that for any

a ∈ G,

a ∗ 1 = 1 ∗ a = a.

(3) The existence of inverses: There exists an element a−1 such that

a ∗ a−1 = a−1 ∗ a = 1.

In the above, we have represented the operation as a multiplication. We also
often represent the operation as an addition, in which case the properties are

(1) Associativity:

(a+ b) + c = a+ (b+ c).

(2) The existence of an identity: There exists an element 0 such that for all a ∈ G,

a+ 0 = 0 + a = a.

(3) The existence of inverses: There exists an element −a such that

a+ (−a) = (−a) + a = 0.

However, we use the addition notation only if the group is commutative. That is,
only if the group satisfies the following additional property:
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(4) Commutativity:
a+ b = b+ a.

Examples of groups include the integers under addition; the positive ratio-
nals under multiplication; the complex numbers without 0 under multiplication;
GL2(R); and SL2(Z). The set of polynomials with coefficients in the rationals
or reals under addition forms a group. The set of rational polynomials (that is,
quotients of polynomials), not including the zero polynomial, together with multi-
plication, form a group. And of course, the set of isometries in Euclidean geometry
under composition forms a (noncommutative) group.

A.4. Modular Arithmetic

Let n ≥ 2 be an integer. We say that two integers a and b are equivalent modulo n
if their difference a− b is divisible by n. We write

a ≡ b (mod n).

For any integer a, we can use the division algorithm to find integers q and r (the
quotient and remainder) such that

a = qn+ r

and 0 ≤ r < n. Thus, a ≡ r (mod n). Hence, modulo n, every integer can be
represented by an element of {0, ..., n − 1}. We define addition and multiplication
on this set via the addition and multiplication in the integers. That is, we say

a+ b ≡ c (mod n)

if n divides c− a− b, and we similarly say

ab ≡ c (mod n)

if n divides c− ab.
We call the set {0, ..., n − 1} together with its algebra the integers modulo n,

and we denote it with Z/nZ.

The operations of addition and multiplication modulo n satisfy several familiar
properties. They are both closed (i.e., for any a and b ∈ {0, ..., n − 1}, there exist
both c and d ∈ {0, ..., n − 1} such that a + b ≡ c (mod n) and ab ≡ d (mod n));
they are both associative and commutative; multiplication distributes over addition;
there exist additive and multiplicative identities (0 and 1, respectively); and for any
a ∈ {0, ..., n− 1}, there exists an additive inverse, namely the element n− a which
satisfies a+ (n− a) ≡ 0 (mod n). Multiplicative inverses do not always exist. For
example, in Z/6Z, the element 2 does not have a multiplicative inverse, since there
does not exist a b such that 2b ≡ 1 (mod 6). Arithmetic modulo a prime number
p is of particular interest because for any a 6= 0 in {0, ..., p − 1}, there exists an
element b such that ab ≡ 1 (mod p). That is, modulo a prime p, multiplicative
inverses exist for all nonzero elements. Thus, the integers modulo a prime p form
a field.
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Appendix B

Hints, Answers, and Solutions

B.1. Hints to Selected Problems

Exercise 1.8. Show that triangle ∆ABB′ is congruent to ∆C ′BC. What is the
length |C ′D| in relation to ∆CBC ′?

Exercise 1.33. The proof requires Axiom 5.

Exercise 1.76. Let P ′ be another point on Γ and let P ′B intersect Γ′ at Q′. Show
∆PQA ∼ ∆P ′Q′A. Now choose P ′ in a convenient location.

Exercise 1.77. Show that ∆PBA ∼ ∆PCD. Let P ′ be another point, which
generates the points C ′ and D′. Show that ∆PAD ∼ ∆P ′AD′.

Exercise 1.83. Start with the statement of the theorem and then decide where to
place the circle.

Exercise 1.88. Not all exercises use the subject of the current section.

Exercise 1.113. Draw a triangle for which the quantity a− b cosC is negative.

Exercise 1.117. Use Exercise 1.115

Exercise 1.125. Consider the altitudes.

Exercise 1.138. Where is the centroid G?

Exercise 1.147. Look for a cyclic quadrilateral.

Exercise 1.158. What does the extended Law of Sines say for ∆AY Z?

Exercise 1.169. Use Exercise 1.71.

Exercise 1.174. Use Exercise 1.173.

Exercise 3.61. Draw a circle centered at (a, b) which goes through (0, 0). Where
does this circle intersect the parabola?

Exercise 3.65. See the section titled “Nicomedes” in Chapter VII of [?].
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Exercise 4.40. Look at ∆BB′T and ∆CC ′S.

Exercise 5.34. The surface area of a sphere is the derivative of the volume with
respect to r. Why?

Exercise 6.7. Show that at least one of the altitudes intersects the opposite side.
Suppose AD is an altitude with D on BC. Show that the sum of angles in ∆ADB
is 180◦.

Exercise 6.9. Stack congruent rectangles to show that arbitrarily tall rectangles
exist. Given a point P and a line l, let Q be the point on l so that PQ is perpen-
dicular to l. Align a congruent rectangle so that l is one of its sides, Q is one of
its vertices, and P is on one of its sides. Use Exercise 6.6 to construct a rectangle
with P as a vertex and two vertices on l. Use Exercise 6.8.

Exercise 6.13. Suppose they do. Find a triangle whose angles sum to more than
180◦.

Exercise 7.58. Use Exercise 7.51.

Exercise 7.62. Exercises 7.52, 7.60, and 7.61 are useful.

Exercise 7.99. Write x+ iy = φ−1(reiθ). Conjugate to get x− iy and subtract to
get 2iy. Do not bother expanding the denominator. Differentiate both expressions
to get dx ± idy. Multiply them together to get dx2 + dy2. Divide by y2. The
denominators of both expressions should cancel.

Exercise 7.101. Reflections are improper isometries and are their own inverses.

Exercise 7.107. In Euclidean geometry, the circumference of a circle is the deriv-
ative of the area. Why?

Exercise 7.128. Skip ahead to Section 10.5 on Heron’s formula on the sphere.

Exercise 9.16. First, define same orientation for two triangles ∆ABC and ∆ABC ′.

Exercise 9.22. This is more of a sketch of the proof than a hint, but there are
still a lot of details to be filled in. (1) Prove that there exist points R and S such
that the intersection of CP (r) with the ray PR is inside CQ(s), and the intersection
with the ray PS is outside CQ(s). (2) Define a sequence of points Tn (in the fashion
of the proof of Exercise 9.21) on the line segment RS. For each Tn, the line PTn
intersects the circle CP (r) at, say, Un. Decide whether Rn = Tn or Sn = Tn based
on whether Un is inside or outside CQ(s). (3) Use completeness of the reals to argue
that the sequence {Tn} converges to a point T on RS. (4) Let PT intersect CP (r)
at U . Show |QU | = s.

Exercise 9.39. If l1 and l3 intersect, then let P be that point of intersection. What
is the line through P which is parallel to l2?

Exercise 9.45. Draw the diagonal AC and use ASA.

Exercise 10.3. Think of a circle on the sphere as a surface of revolution. Dig up
that dusty calculus text.

Exercise 10.31. Write cos ∆ = cos(∆1 + ∆2) where ∆1 and ∆2 are the areas of
right angle triangles.
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Exercise 12.14. Suppose T is a matrix with positive determinant, and suppose
vectors ~u, ~v, and ~w obey the right-hand rule. Then the vectors T~u, T~v, and T ~w
also obey the right-hand rule.

Exercise 12.19. Use Exercises 12.10 and 12.11.

Exercise 12.22. Let C = (0, 0, 1), A = (sinh b, 0, cosh b), and B =
(0, sinh a, cosh b).

Exercise 12.24. Begin with ~a = (0, 0, 1). What are the images of planes and lines
under linear transformations?

Exercise 13.7. Do the equations x+ y = 0 and 2x+ 2y = 0 define the same line?

Exercise 13.20. See Theorem 11.8.

Exercise 13.28. There are two.

Exercise 13.33. Since n > 2, one can show that there are at least four parallel
directions. Pick two intersecting lines to create a coordinate system. Use these to
define the rows and columns. Pick two different intersecting lines, neither of which
are parallel to the original two, to define a different coordinate system. Label points
in this system with regiment and rank. Prove the desired result.

Exercise 13.38. To show Axiom 1, one must find a line through Pi and Pj . Con-
sider the number i − j. For Axiom 5h, pick a point P not in p = p(A,B,C). For
any point Q ∈ p, show that there exists a point Q′ which is not in p and is on the
line PQ. Conclude that G has at least twice as many points as p. Use Exercise
13.35.

Exercise 15.26. Show that the set of integer points on V+ is the orbit of the point
(0, 0, 1) under the action of the subgroup OJ(Z). Show that the integer points
on V+ form a lattice. Project onto the Poincaré disc D to find the fundamental
domain.

Exercise 15.32. Find the ‘altitudes’ of the triangle. To find altitudes, we must
find a circle which is perpendicular to two other circles. Note that such a circle has
its center on the radical axis (see Exercise 1.94).

Exercise 15.45. Note that for every point P on the list, there is a complementary
point P ′ a Hamming distance of seven away. That is, for every point P on the
list, there is a point P ′ on the list which differs from P in every digit. Show that
if a point Q is a distance k away from P , then Q is 7 − k away from P ′. This
observation significantly reduces the amount of checking required.

B.2. Answers to Selected Problems

Exercise 1.53. The angle ∠ADC is equal to 60◦.

Exercise 1.54. The diameter is 15.

Exercise 1.73. The length |AD| is 5.

Exercise 1.79. The length |PD| is
8

3
.
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Exercise 1.81. The length of |DE| is
45

13
.

Exercise 1.84. The radius of the circle is 4.

Exercise 1.85. The area |∆ABD| is
24

5
.

Exercise 1.98. The length |BG| is 2
√

2.

Exercise 1.100. The side c has length
√

5.

Exercise 1.108. The area of the quadrilateral is 6 + 4
√

21.

Exercise 1.110. The area of the incircle is
8π

3
.

Exercise 1.111. The area of ∆ABC is 15
4

√
7.

Exercise 1.112. The length |AC| is
√

13− 6
√

2.

Exercise 1.138. The length |BC| is equal to 28.

Exercise 1.152. The third side has length c = 5
√

7+3
√

39
4 .

Exercise 3.42. The polynomial f(x) = x3 + x2 − 2x− 1 satisfies the conditions.

Exercise 5.35. The hyper-volume of the interior of a hyper-sphere of radius r in

five dimensions is 8π2r5

15 .

Exercise 7.63. The triangle ∆ABC is an equilateral triangle, and γ is rotation by
120◦ about the center of ∆ABC.

Exercise 7.78. The isometry is γ =

[
1 −2
1 0

]
. This map is a rotation about the

point z =
1 + i

√
7

2
.

Exercise 7.101. The set of reflections in D is the set of all maps γ(−z) with

γ =

[
a b
b a

]
and b ∈ R.

Exercise 7.102. The area element in D is dA =
4rdrdθ

(1− r2)2
.

Exercise 7.103. The distance formula in D is the same as in H. That is, |PQ| =
| ln(P,Q;M,N)|.
Exercise 7.128. Let triangle ∆ABC have sides a, b, and c, semiperimeter s =
a+b+c

2 , and area ∆ = |∆ABC|. Then

1− cos ∆ =
4 sinh s sinh(s− a) sinh(s− b) sinh(s− c)

(1 + cosh a)(1 + cosh b)(1 + cosh c)
.

Exercise 8.10. The value of a is
√

2 +
√

3.

Exercise 8.14. One of the vertices is at A = i(
√

6−
√

2)/2.

Exercise 9.9. We say P is inside ∠BAC if P and C are on the same side of AB,
and P and B are on the same side of AC.
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Exercise 9.16. In the following, we define when two nondegenerate triangles ∆ABC
and ∆A′B′C ′ have the same orientation. If two triangles have the same orientation,

let us write ∆ABC
o∼ ∆A′B′C ′. We define the relation

o∼ to have the following
properties:

(1) ∆ABC
o∼ ∆BCA and ∆ABC

o∼ ∆CAB

(2) ∆ABC
o∼ ∆ABC ′ if C and C ′ are on the same side of AB. If C and C ′ are

on opposite sides, then ∆ABC
o∼ ∆BAC ′.

(3) The relation
o∼ is transitive. That is, if ∆ABC

o∼ ∆A′B′C ′ and ∆A′B′C ′
o∼

∆A′′B′′C ′′, then ∆ABC
o∼ ∆A′′B′′C ′′.

Note that Properties 1 and 2 are both transitive, so Property 3 does not con-

tradict them. Hence,
o∼ is well defined. Note that

o∼ is symmetric. That is, if

∆ABC
o∼ ∆A′B′C ′, then ∆A′B′C ′

o∼ ∆ABC. Thus, by symmetry, transitivity,

and property 1, we get ∆ABC
o∼ ∆ABC, so

o∼ is reflexive too. Hence,
o∼ is an

equivalence relation.

Given any two nondegenerate triangles ∆ABC and ∆A′B′C ′, either ∆ABC
o∼

∆A′B′C ′ or ∆ABC
o∼ ∆A′C ′B′. To see this, note that we can replace the vertices

one at a time. That is, if C ′ is not on AB, then we can conclude that either

∆ABC
o∼ ∆ABC ′ or ∆ABC

o∼ ∆BAC ′. If C ′ is on AB, then one of A′ or B′ is
not on AB, since ∆A′B′C ′ is not degenerate. Say that A′ is not on AB. Then either

∆ABC
o∼ ∆ABA′ or ∆ABC

o∼ ∆BAA′. We repeat this step, replacing another of
the vertices A or B with one of the vertices A′, B′, or C ′. After two more steps,

and using Property 1, we have either ∆ABC
o∼ ∆A′B′C ′ or ∆ABC

o∼ ∆B′A′C ′.

Thus, given some reference triangle ∆PQR, every triangle ∆ABC has the same
orientation as ∆PQR or ∆QPR, so there are at most two equivalence classes. The
problem now is to show there are at least two equivalence classes ....

Exercise 10.8. The corresponding result in Euclidean geometry is the statement
cosA = sin(π/2−A).

Exercise 10.31. For small triangles, this formula approximates ∆ = 1
2ha (‘the

area is one half base times height’).

Exercise 10.35. Each edge has length π/5.

Exercise 11.18. A rotation is a proper isometry which fixes a point. A translation
is a proper isometry which fixes a line. Note that the identity is both a trans-
lation and a rotation. What we usually think of as rotations and translations in
Euclidean geometry are still rotations and translations using this new definition. In
hyperbolic geometry, rotations are still rotations, and hyperbolic translations are
still translations, but parabolic translations fit neither definition. This is consistent
with our discussion in Section 7.15, where we noticed that parabolic translations
behave a little like rotations too. In elliptic geometry, every triangle is oriented the
same way, so all isometries are proper. A rotation is also a translation and vice
versa, since rotations about a point P fix the polar of P , and translations which fix
a line p also fix the pole of p.
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Exercise 11.32. The excenter has areal coordinates

Ia =

( −a
b+ c− a,

b

b+ c− a,
c

b+ c− a

)
.

Exercise 12.10. The matrix representation of Rθ is

Rθ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

.
Exercise 12.23. Polar coordinates. Given a point Q = (0, 0, 1), the point P (φ, θ)
is a distance φ away from Q and makes an angle θ with a chosen axis. In Euclidean
geometry, we usually denote φ with r. The model of Euclidean geometry which fits
best as an analogue is the plane z = 1 parameterized by

P (φ, θ) = (φ cos θ, φ sin θ, 1).

Note that the linear approximation of sinφ and sinhφ at zero is just φ, and the
linear approximation of cosφ and coshφ at zero is just 1.

Exercise 15.24. The point 5P generates the triangle (35, 277, 308).

Exercise 15.25. The smallest such triangle has a = 1517, b = 156, and c = 1525.

Exercise 15.40. The density is π
√

2
6 , the same as for the tetrahedral cannonball

packing.

Exercise 15.44. The density is

δ =
2

π

cos(π/m)− sin(π/n))

1− 2
n − 2

m

(π/n)

sin(π/n)
.

Exercise 15.47. The smallest such n is n = 4. See Table 1 for a list of centers.

0000 1011 2022
0112 0221 1120
1202 2101 2210

Table 1.

B.3. Solutions to Selected Problems

Exercise 1.47. Let us break this into several parts.

Part I: Show that a diameter which bisects a proper chord is perpendicular to it.
Let the chord be AB with midpoint C. Let O be the center of the circle. Draw the
radii OA and OB, as in Figure 1. Then, |OA| = |OB| since they are both radii,
and |AC| = |BC|, since C is the midpoint. Thus, by SSS,

∆OCA ≡ ∆OCB.

In particular,

∠OCA = ∠OCB.
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CA

O

B

Figure 1.

But these two angles sum to 180◦, since ∠ACB = 180◦. Thus, OC is perpendicular
to AB. Since all diameters go through the center O, the diameter through C
includes the segment OC, and so is perpendicular to AB.

Part II: The perpendicular bisector of a chord goes through the center O.

Let C be the midpoint of AB. Draw the diameter through C. By Part I, we
know OC is perpendicular to AB. Thus, OC is a perpendicular bisector of AB,
and since perpendicular bisectors are unique, it is the perpendicular bisector. Thus,
the perpendicular bisector goes through O.

Part III: A diameter which is perpendicular to a chord must bisect the chord.

Let this diameter intersect the chord at D. Let C be the midpoint of AB. Draw
the diameter through C. Consider the triangle ∆OCD. By Part I, ∠OCD = 90◦.
We are given ∠ODC = 90◦. Thus, ∠COD = 0◦. That is, O, C, and D are collinear.
But C and D both lie on a line perpendicular to OD. Thus, since C and D both
lie on two distinct lines, they must be the same point. Thus, this diameter OD
bisects the chord. �

Exercise 1.51. By the Star Trek lemma, ∠ABC is half of the angular measure of
the arc it subtends. Thus, the arc AB subtends is 180◦. That is, it is half a circle.
Hence, the segment AB is a diameter. �

Exercise 1.58. Draw the chordAB′ in Figure 2. By the Star Trek lemma, ∠PAB′ =
γ

2
,

A′

B ′

A

P
B

O

γ/2

β/2
α 

Figure 2.
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and ∠AB′B =
β

2
. Thus, since the exterior angle of a triangle is the sum of the other

two interior angles, we get

α+
γ

2
=
β

2

α =
β − γ

2
. �

Exercise 1.60. See Lemma 11.6. �

Exercise 1.83. In this problem, we are asked to use a particular result to prove a
theorem. Our solution should therefore start with a statement of the theorem we
are proving.

Theorem (The Pythagorean Theorem). Suppose ∆ABC is a right angle triangle
with ∠ACB = 90◦. Then

a2 + b2 = c2.

To use the tangential version of power of the point, we first wonder where there
might be a natural place to put a right angle. We recall that the tangent to a
circle is perpendicular to the radius, so let us draw the triangle centered at B and
through C (see Figure 3). This is the way our proof begins.

Q

Q ′

B

AC

Figure 3.

Proof. In the right angle triangle ∆ABC, draw the circle centered at B and passing
through C. Since the angle at C is a right angle and BC is a radius, we know AC
is tangent to the circle. Hence, we can apply the tangential case of power of the
point to the point A, which gives

|AC|2 = |AQ||AQ′|,
where Q and Q′ are the points of intersection of the line AB with the circle. But
|AC| = b, |AQ| = c− a, and |AQ′| = c+ a. Thus, we get

b2 = (c− a)(c+ a)

= c2 − a2

a2 + b2 = c2. �
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Exercise 1.114. Let O be the center of Γ. Note that the figure is symmetric about
the line AO. Thus, the angle bisector of ∠BAC goes through O (see Figure 4).
Let it intersect Γ at the points I and Ia (which we will show are the incenter
and excenter). Note that ∠CBA subtends the arc BC, so the arc BC measures
2∠CBA. Since I is the midpoint of this arc, ∠IBA = 1

2∠CBA. That is, I is at
the intersection of two angle bisectors, so is the incenter.

Γ 

O

I

Ia

C

B

A

Figure 4.

Similarly, the exterior angle at C subtends the other arc BC, and Ia bisects
that arc, so the ray BIa bisects the exterior angle at B. Hence, since Ia is also on
the angle bisector of A, we know it is one of the excenters, as desired. �

Exercise 1.117. Recall,

|∆ABC| = rs = ra(s− a) = rb(s− b) = rc(s− c).
For simplicity, let us use ∆ for the area of ∆ABC. Then,

r =
∆

s
, ra =

∆

s− a, etc.

Hence,

rrarbrc =
∆4

s(s− a)(s− b)(s− c) .

But, from Heron’s formula,

∆2 = s(s− a)(s− b)(s− c),
so

rrarbrc =
∆4

∆2
= ∆2. �

Exercise 1.126. Consider the two triangles ∆ABD and ∆AEC, as suggested.
Note that ∠ABD = ∠AEC, since they subtend the same arc. Also, ∠ADB =
∠ACE = 90◦. This is because AD is the altitude of ∆ABC and AE is a diameter.
Thus,

∆ABD ∼ ∆AEC.
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Hence,

|AD|
|AC| =

|AB|
|AE|

|AD| = bc

2R
.

Thus,

|∆ABC| = 1

2
a

(
bc

2R

)
=
abc

4R
.

Using the other hint, we note that

|AD| = c sinB = c

(
b

2R

)
=

bc

2R
,

and proceed as before. �

Exercise 1.156. Consider Figure 5. Let ∠AOP = α and ∠BOA = β, so that

F

G

H

E

DC

B

A

PO

β 
α 

Figure 5.

∠BOP = α+ β. Let BF be perpendicular to OP , and let BE be perpendicular to
OA. Let EC be perpendicular to OP and let EG be perpendicular to BF . Note
that ∠EBF = α. To see this, consider the circle with diameter OB. Since the
angles at both C and E are right angles, we know they are both on the circle. In
particular, ∠EBF = ∠EOF = α, since they both subtend the same arc.

We could also have noted that ∠OHF = ∠BHE, and since ∠BEH = ∠HFO =
90◦, we get ∆OHF ∼ ∆BHE. In particular, ∠EBH = ∠HOF
= α.

Now,

|FC| = |GE| = |BE| sinα = sinβ sinα

and

|OC| = |OE| cosα = cosβ cosα.

Thus,

cos(α+ β) = |OC| = |OF | − |CF | = cosβ cosα− sinβ sinα.
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Similarly,

|BG| = |BE| cosα = sinβ cosα

and

|GF | = |EC| = |OE| sinα = cosβ sinα.

Hence

sin(α+ β) = |BC| = |BG|+ |GC| = sinβ cosα+ cosβ sinα. �

Exercise 2.6. The triangle formed by Syene, Alexandria, and the sun is a long
narrow one. We exaggerate that triangle in Figure 6.

A A′

BD C

Figure 6.

In this diagram, Alexandria is labeled A, Syene is B, the center of the sun is
C, and the center of the Earth is D. The exterior angle at A of ∆ADC is 7.2◦.
Therefore,

∠ADC + ∠ACD = 7.2◦.

Rather than find ∠ADC, let us find an upper bound on it. To do this, we create a
right angle triangle ∆A′BC with |A′B| = 787 km. Then

0 < ∠ACD < ∠A′CB,

since |A′B| equals the arclength of the arc AB. But

∠A′CB = arctan

( |A′B|
|BC|

)
= arctan

(
787

150,000,000

)
= .0003◦.

We now know the assumption is safe, since the difference between the measured
7.2◦ and the angle ∠ADC = 7.1997 is less than the implied accuracy of 7.2◦. Using
this figure, we get the circumference of the Earth is 39,352 km, instead of 39,350
km.

Note that we used |BC| = 150,000,000 km, when we should have used |DC| =
150,000,000 km. The length |DB| is approximately 6000 km, which is insignificant
compared to |DC|, so this won’t change our numbers. But I hear you thinking –
isn’t this a circular argument? How do we know what the radius of the Earth is,
if that’s what we’re trying to calculate? Note that the question only asked us to
evaluate Eratosthenes’ assumption. It did not ask whether one can come up with
a calculation which avoids that assumption. �
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Exercise 2.7. If the Earth is flat, then we get a triangle ∆ABC with Alexandria
at A, Syene at B, and the sun at C (see Figure 7). The angle ∠ACB = 7.2◦, and
|AB| = 787 km, so

tan(7.2◦) =
|AB|
|BC| =

787 km

|BC| .

Thus, |BC| = 6230 km. �

C

A B
SyeneAlexandria

sun

7.2
❜

Figure 7.

Exercise 3.51. The regular 9-gon is constructible if and only if we can construct
the length cos(2π/9). So let us set ω = e2πi/9 = cos(2π/9) + i sin(2π/9). Then,
ω9 = 1, so

0 = ω9 − 1

= (ω3 − 1)(ω6 + ω3 + 1).

We note that the roots of x3 − 1 are 1 and e±2π/3, so ω3 − 1 6= 0, and hence ω is a
root of

f(x) = x6 + x3 + 1.

Let c = ω + ω−1 = 2 cos(2π/9). Then

c3 = ω3 + 3ω + 3ω−1 + ω−3,

so
c3 − 3c+ 1 = ω3 + 1 + ω−3 = ω−3f(ω) = 0.

Thus, c is the largest positive root of

g(x) = x3 − 3x+ 1.

To show that c is not constructible using Theorem 3.48, we must show that g(x) is
irreducible over the rationals. If g(x) is reducible, then it factors into a linear and
a quadratic rational polynomial, or into three linear factors. In either case, g(x)
has a linear factor, so has a rational root. By the rational root theorem, the only
possible rational roots of g(x) are ±1. Since neither is a root, g(x) cannot have any
linear factors, so is irreducible. Since its degree is three, which is not a power of
two, we know c is not constructible. �
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Exercise 3.61. Following the hint, the circle centered at (a, b) that goes through
(0, 0) has the equation

(x− a)2 + (y − b)2 = a2 + b2.

It is clear that we can construct such a circle if the lengths a and b are constructible.
We find where this circle intersects the given parabola by substituting x2 for y, to
get

x4 − (2b− 1)x2 − 2ax = 0.

We knew this would have the solution x = 0 since we chose the circle so that it
would go through the point (0, 0), which is a point on the parabola. After we factor
out x, we get the cubic

x3 − (2b− 1)x− 2a = 0.

To construct the regular 7-gon, we must be able to construct a length w where w
is a root of

w3 + w2 − 2w − 1 = 0

(see Exercise 3.42). We can get rid of the w2 term by using a trick similar to
completing the square: We make the substitution w = u− 1/3. We therefore get

(u− 1/3)3 + (u− 1/3)2 − 2(u− 1/3)− 1 = 0,

and after simplifying, we have

u3 − 7

3
u− 7

27
= 0.

We therefore choose a = 7
54 and b = 5

3 . These are both constructible numbers,
so we can construct the circle centered at (a, b) which goes through (0, 0). We
drop a perpendicular from one of the other points of intersection to the x-axis (the
line through the two given points) to find the point a distance u away from the
origin. We subtract 1/3 from u to get w, from which we can construct the regular
7-gon. �

Exercise 6.5. Let the quadrilateral be ABCD. It looks as if all we have to do
is point out that the sum of the angles in ∆ABC and ∆BCD are both less than
180◦, and the sum of the angles in the quadrilateral ABCD is the sum of these,
but it is possible that the points A and D are on the same side of the diagonal BC.
However, in this case, either A is inside ∆BCD or D is inside ∆ABC. In either
case, the points B and C are on opposite sides of the diagonal AD, and the above
argument works. �

Exercise 6.8. Without loss of generality, we may assume l enters the quadrilateral
ABCD. It therefore must intersect either BC or CD, since if it exits through either
other side, we would have a contradiction to the first axiom. If it intersects BC, then
we are finished, so suppose it intersects DC at E. Note that the sum of the angles in
∆ADE is 180◦, for if it were smaller, then the sum of the angles in the quadrilateral
ABCE would be larger than 360◦, which contradicts Exercise 6.5. Now reproduce
a congruent quadrilateral A1B1C1D1 with the same orientation and with A1 = D
and B1 = C, as in Figure 8. Let EF1 be perpendicular to CD with F1 on C1D1.
If l intersects CC1 then we are finished, so suppose l intersects C1D1 at E1. Then
|EF1| = |DD1| = |AD| (by Exercise 6.6), ∠E1EC1 = 180◦−90◦−∠DEA = ∠DAE,
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A

l

B C

D

E

D1

F1

E1

C1

D2

F2

E2

C2

Figure 8.

and ∠EF1E1 = 90◦ = ∠ADE (by Exercise 6.6). Thus, ∆ADE ≡ ∆EF1E1, so
|D1E1| = 2|DE|. We can continue this indefinitely, to get |DkEk| = (k + 1)|DE|.
For some k, we have (k + 1)|DE| > |DC|, so l must eventually intersect the line
BC. �

Exercise 7.48. Let us first find the images of these points:[
2 1
1 1

]
i =

2i+ 1

i+ 1
=

(2i+ 1)

(1 + i)

(1− i)
(1− i) =

2i+ 1 + 2− i
2

=
3 + i

2
.[

2 1
1 1

]
(−1 + i) =

−2 + 2i+ 1

−1 + i+ 1
= 2 + i[

2 1
1 1

]
(1 + i) =

2 + 2i+ 1

1 + i+ 1
=

(3 + 2i)(2− i)
5

=
8 + i

5
.

The rest of the solution is Figure 9. �

210−1

Figure 9.
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Exercise 7.50. The images of P and Q are[
1 2
−1 2

]
(2 + 4i) =

2 + 4i+ 2

−2− 4i+ 2
=

4 + 4i

−4i
= i− 1.[

1 2
−1 2

](
6 + 4i

3

)
=

6 + 4i+ 6

−6− 4i+ 6
=

12 + 4i

−4i
= 3i− 1.

To find the distance between P and Q, we can either note that −1 + i and −1 + 3i
lie on a vertical line and hence

|PQ| = |γPγQ| = | ln(3/1)| = ln 3,

or we can note that both P = 2 + 4i and Q = 2 + (4/3)i lie on a vertical line, so
we can calculate |PQ| directly:

|PQ| =
∣∣∣∣ln( 4

4/3

)∣∣∣∣ = ln 3. �

Exercise 7.60. We solve

(z, 1; 0,∞) = (w, 1;−i, i)

z =
w + i

w − i
/ i+ 1

1− i
=

(
(1− i)
(1− i)

(1 + i)

(1− i)

)(
w + i

w − 1

)
=
−2i

2

(
w + i

w − i

)
=

w + i

iw + 1

=

[
1 i
i 1

]
w[

1 −i
−i 1

]
z = w.

Thus, the fractional linear transformation is given by

[
1 −i
−i 1

]
. Since the line

through 0, 1, and ∞ is the real line, we know that the real line goes through the
line or circle that goes through the points 1, i, and −i. This is the unit circle.
Note that i is sent to 0, so the upper half plane H is sent to the interior of the
unit disk. Since fractional linear transformations preserve angles, a line or half
circle perpendicular to the real axis is sent to a diameter or arc of a circle which
is perpendicular to the unit circle and is inside the unit disk. This is the ‘crutch’
introduced in Chapter 6. �

Exercise 7.74. We know the image of only two points, so we must first find the
image of a third. The (Poincaré) line through 2i and ∞ goes through 0 too, so we
seek the image of 0. This will be the other end of the Poincaré line through −1 and
3i, which is a half circle centered at x, where the Euclidean distance from x to −1
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is the same as from x to 3i. That is,

(x+ 1)2 = 32 + x2

x2 + 2x+ 1 = x2 + 9

x = 4.

Thus the radius of the half circle is 5, and the other end of the Poincaré line through
−1 and 3i is at 4 + 5 = 9. We can now solve for the map γ:

(z, 2i;∞, 0) = (w, 3i;−1, 9)

z −∞
z − 0

/2i−∞
2i− 0

=
w + 1

w − 9

/3i+ 1

3i− 9

2i

z
=

(
w + 1

w − 9

)(
3i(1 + 3i)

1 + 3i

)
2(w − 9)

3(w + 1)
= z[

2 −18
3 3

]
w = z

w =

[
3 18
−3 2

]
z.

Thus, γ =

[
3 18
−3 2

]
. It has real entries, and positive determinant, so it is an

isometry and is in GL2(R). It sends 2i to 3i and ∞ to −1, as desired. �

Exercise 7.77. We must first find the image of a third point under this isometry.
The line through 1 + i and 1 also goes through ∞. The image of this line must be
a line. So, we seek the other endpoint of the line through 2 and 1 + i. This is the
half circle centered at 1, and so the other endpoint is 0. Thus, we must solve

(z, 1 + i; 1,∞) = (w, 1 + i; 2, 0)

z − 1

i
=
w − 2

w

/−1 + i

1 + i

z − 1

i
= −i

(
w − 2

w

)
[
1 −1
0 1

]
z =

[
1 −2
1 0

]
w

w =

[
0 2
−1 1

] [
1 −1
0 1

]
z

=

[
0 2
−1 2

]
z.

Since the determinant of this matrix is positive, it is an isometry of H. By con-
struction, it fixes 1 + i and sends 1 to 2. �

Exercise 7.92. Let P = 12 + 5i and Q = 5 + 12i. To find |PQ|, we must fist find
the endpoints of the Poincaré line through P and Q. In particular, we must find
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the real value x so that the Euclidean distance from P to x is the same as from Q
to x. Thus, we solve

(12− x)2 + 52 = (5− x)2 + 122.

This is satisfied by x = 0. Then, the Euclidean distance from 0 to P is 13. Thus,

|PQ| = | ln(12 + 5i, 5 + 12i; 13,−13)|

=

∣∣∣∣ln(12 + 5i− 13

12 + 5i+ 13

/5 + 12i− 13

5 + 12i+ 13

)∣∣∣∣
=

∣∣∣∣ln( (5i− 1)

(25 + 5i)

(18 + 12i)

(−8 + 12i)

)∣∣∣∣
=

∣∣∣∣ln( (5i− 1)6i(−3i+ 2)

−5i(5i− 1)(−4)(2− 3i)

)∣∣∣∣
= | ln(3/10)| = ln(10/3). �

Exercise 7.96. Let us solve

γA =
16 + 2i− 15

−8− i+ 10
= i

γM =
10− 9

−5 + 6
= 1

γN =
4− 3

−2 + 2
=∞.

Let us now draw both ∆AMN and its image (see Figure 10). In the original, the

A

0 1 2M

i

Figure 10.

angle at A looks like a right angle, but it may not be so easy to show. After applying
γ, it is obvious that the angle at i is π/2. Thus, the area is

|∆AMN | = π − π/2 = π/2. �

Exercise 7.99. Let

x+ iy = φ−1(reiθ) =
reiθ + i

ireiθ + 1
.
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Then

x− iy =
re−iθ − i
−ire−iθ + 1

.

Subtracting, we get

2iy =
(reiθ + i)(−ire−iθ + 1)− (re−iθ − i)(ireiθ + 1)

qq

=
2i(1− r2)

qq
,

where q = ireiθ + 1. Also,

dx+ idy =
eiθ(ireiθ + 1)− (reiθ + i)ieiθ)dr

q2

+
(ireiθ(ireiθ + 1)− (reiθ + i)(−reiθ))dθ

q2

=
2eiθdr + 2ireiθdθ

q2
.

Conjugating (which commutes with differentiation), we get

dx− idy =
2e−iθdr − 2ire−iθdθ

q2 .

Thus,

ds2 =
dx2 + dy2

y2
=

4(eiθdr + ieiθdθ)(e−iθdr − ire−iθdθ)(qq)2

q2q2(1− r2)2

=
4(dr2 + irdrdθ − irdrdθ + r2dθ2)

(1− r2)2

=
4(dr2 + r2dθ2)

(1− r2)2
. �

Exercise 7.100. We first note that[
a b

b a

] [
c d

d c

]
=

[
ac+ bd ad+ bc

bc+ ad bd+ ac

]
,

which is in Γ, so Γ is indeed a group. We next show that every element of Γ is an
isometry of D. Note that if an element in SL2(C) sends R to R, then as a fractional
linear transformation, it can be written so that it is in SL2(R), so it is an isometry
of H. Thus, any element of SL2(C) which sends D to D is an isometry of D. We

therefore check the boundary: Suppose zz = 1 and γ =

[
a b

b a

]
∈ Γ. Then

γzγz =

(
az + b

bz + a

)(
az + b

bz + a

)
=
aa+ baz + baz + bb

bb+ abz + baz + aa
= 1.
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That is, points a distance one away from zero are sent to points a distance one
away from zero. We must also check that the interior is sent to the interior. To see
this, note that

0 ≤ γ(0)γ(0) =
b

a

b

a
=
aa− 1

aa
= 1− 1

aa
< 1.

That is, the point 0 is sent to a point inside D. Note that aa− bb = 1, so aa 6= 0.
Finally, we must check that every isometry of D is in Γ. Recall that σ and τa as
a ranges over R generate the group of isometries of H. Thus, we need only check
that φσφ−1 and φτaφ

−1 are in Γ.

φσφ−1 =
1

2

[
1 −i
−i 1

] [
0 −1
1 0

] [
1 i
i 1

]
=

[
−i 0
0 i

]
∈ Γ.

φτaφ
−1 =

1

2

[
1 −i
−i 1

] [
1 a
0 1

] [
1 i
i 1

]
=

1

2

[
2 + ia a
a 2− ia

]
∈ Γ. �

Exercise 7.108. First, we note that every triangle ∆ABC can be imbedded in a
triply asymptotic triangle (see Figure 18). Thus, the incircle of ∆ABC is smaller
than the incircle of some triply asymptotic triangle. But all triply asymptotic
triangles are congruent, so the largest circle that can be inscribed in a triangle is
the incircle of a triply asymptotic triangle. Let us therefore consider the triangle
∆MNP with M = −1, N = 1, and P =∞, as in Figure 11. Since circles in H are
Euclidean circles which lie in H, it is clear that the incircle of ∆MNP is the one
depicted. By symmetry with respect to the y-axis, the segment AB is a diameter,
where A = i and B = 3i. Finally, the length of AB is ln 3. �

M=−1 N=1

A= i

B

Figure 11. See Exercise 7.108.
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Exercise 8.9. Let the angles in the equilateral triangular tiles all be θ. Since we
can tile with these with seven at each vertex, we know that

7θ = 2π.

Thus, θ = 2π/7, and the area of each tile is

π − 3(2π/7) = π/7. �

Exercise 8.15. Let a = er, so that the circumcircle of the n-gon has a radius of
hyperbolic length r. Let B be an adjacent vertex and let P be the circumcenter.
Then ∆ABP is an isosceles triangle with A = B = π/m, P = 2π/n, and with equal
sides |PA| and |PB| of length r. Let us apply the Law of Cosines for angles:

cos(π/m) = − cos(π/m) cos(2π/n) + sin(π/m) sin(2π/n) cosh r

cosh r =
cos(π/m)(1 + cos(2π/n))

sin(π/m) sin(2π/n)

=
cos(π/m)(2 cos2(π/n))

sin(π/m)2 sin(π/n) cos(π/n)

= cot(π/m) cot(π/n).

Thus,

a = er

= cosh r + sinh r

= cot(π/m) cot(π/n) +
√

cot2(π/m) cot2(π/n)− 1

=
cos(π/m) cos(π/n) +

√
cos2(π/m) cos2(π/n)− sin2(π/m) sin2(π/n)

sin(π/m) sin(π/n)
.
�

Exercise 8.21. Let A be the center of the disc. Let B and C be adjacent vertices
of the square centered at A. Let D be the center of the triangle with edge BC.
Then the area of each fish is the same as the area of ABDC. Clearly, A = π/2
and D = 2π/3. We need six quadrilaterals congruent to ABDC to tile around the
point B, so B = C = π/3. Thus, the area of the quadrilateral ABDC is

2π − π/2− 2π/3− 2(π/3) = π/6. �

Exercise 9.8. Since l intersects ∆ABC, it must intersect one of the sides, say AB.
Thus, A and B are on opposite sides of l. The point C is on one of these sides, say
the same side as B. Then l does not intersect BC, yet because ‘same side’ is an
equivalence, A and C cannot be on the same side, so l intersects AC too. Thus, l
intersects exactly two of the sides of ∆ABC. �

Exercise 9.15. Choose points B′ and C ′ on the lines AB and AC, respectively,
and such that A is between B and B′, and also between C and C ′ (see Figure 12).
Suppose the segment BC ′ and the line l intersect at Q. Since ∆ABC is not de-
generate, we know Q 6= A. By Exercise 9.12, Q is inside ∠BAC ′, and hence, by
Exercise 9.13, not inside ∠BAC or ∠B′AC ′. But, by Exercises 9.11 and 9.14, every
point on the line l = AP is either inside ∠BAC, inside ∠B′AC ′, or is A. Thus, the
point Q cannot exist. That is, B and C ′ are on the same side of the line l. Since
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C ′ and C are on opposite sides of l, we get that B and C are on opposite sides of
l. Hence, the line l intersects the segment BC. �

Exercise 10.35. Since there are two pentagons and two triangles at each vertex
and the sum of the angles at each vertex is 2π, one angle in the triangle and one
angle in the pentagon sum to π. That is, opposite edges at a vertex form a straight
line. Thus, there exists a sequence of edges which form a great circle. We count
how many edges there are along a great circle (see page 94), and find that there
are ten. Thus, each edge has length

s =
2π

10
=
π

5
. �

Exercise 10.36. By Exercise 10.35, the sides of each triangle have length π/5. Let
each angle be θ. Then, by the Law of Cosines for sides, we get

cos(π/5) = cos2(π/5) + sin2(π/5) cos θ.

Note that

cos(π/5) =
1 +
√

5

4
,

so we get

1 +
√

5

4
=

3 +
√

5

8
+

5−
√

5

8
cos θ

cos θ =
2 + 2

√
5− 3−

√
5

5−
√

5

=
−1 +

√
5√

5(
√

5− 1)
=

1√
5
.

Thus, the area A of each of the 20 triangles is

A = 3θ − π = 3 arccos(1/
√

5)− π,
and the percentage of the sphere covered by triangles is

20A

4π
=

15 arccos(1/
√

5)

π
− 5 ≈ 28.62%. �

A

B

B ′

C ′

C

P

Figure 12.
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Exercise 12.8. Since
x2 + y2 − z2 = −1,

we have

2xdx+ 2ydy − 2zdz = 0

dz =
1

z
(xdx+ ydy).

We plug this into the formula for ds2 to get

ds2 =
1

z2

(
z2dx2 + z2dy2 − (xdx+ ydy)2

)
=

1

z2

(
(z2 − x2)dx2 + (z2 − y2)dy2 − 2xydxdy

)
=

1

z2

(
(y2 + 1)dx2 + (x2 + 1)dy2 − 2xydxdy

)
=

1

z2

(
dx2 + dy2 + (y2dx2 − 2xydxdy + x2dy2)

)
=

1

z2

(
dx2 + dy2 + (ydx− xdy)2

)
. �

Exercise 13.31. Pick a line l and a point P not on l. For any point Q 6= P , the
line PQ intersects l (by Axiom 4p) at, say, Q′. Thus, every point Q 6= P lies on
some line which intersects l. Furthermore, this line is unique (by Axiom 1). There
are n points on l, so there are n such lines. Each line contains n points, one of
which is P . Hence, there are n(n− 1) + 1 = n2 − n+ 1 points in G. �

Exercise 13.34. Suppose this geometry has m points. Pick a point P . Every
line through P contains three points and no two points are on two different lines
through P , so there must be exactly m−1

2 lines through P . Note that this means
m is odd. Suppose a line l does not include P . Since l has three points, there are
exactly three lines through P which intersect l. Since there are at least two lines
through P which do not intersect l, there must be at least five lines through P .
Thus,

m− 1

2
≥ 5.

Hence, m ≥ 11. Finally, let us count the total number of lines. There are m points,
and m−1

2 lines going through each point. Since every line contains 3 points, we have

counted each line three times. Thus, there are m(m−1)
6 lines. In particular, m 6= 2

(mod 3), so m 6= 11. Hence, m ≥ 13. �
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