Exam 1
Math 353
Summer Term I, 2021
Name: Solutions

Friday, May 28, 2021
Time Limit: 75 Minutes

This exam contains 7 pages (including this cover page) and 6 questions. The total number of points on this exam is 72 . While this is a closed book, closed notes exam, you are allowed to use your one page review sheet, front and back, written on an 8.5×11 inch physical piece of paper in your own handwriting. While your review sheet must have been created with 20th century technology, you may take this exam on a tablet if you like, or on paper.

Show all of your work (on the backs of pages, if necessary) and circle your answers. If you do not completely solve a problem, explain what you do understand about it. If you would like to guess about a problem, clearly say so. This will maximize your partial credit. No collaboration on this exam is allowed. Good luck!

Grade Table (for teacher use only)

Question	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
6	12	
Total:	72	

1. (12 points) Consider the differential equation where

$$
y^{\prime}+\frac{2}{t} y=\frac{6 \cos (2 t)}{t^{2}}
$$

(a) Sketch the slope field for this differential equation.
(b) Solve this differential equation for $t \geq \pi$ with initial condition $y(\pi)=5$.

$$
\begin{aligned}
\text { Multiply by } t^{2}: \quad t^{2} y^{\prime}+2 t y & =6 \cos (2 t) \\
\left(t^{2} y\right)^{\prime} & =6 \cos (2 t) \\
t^{2} y & =3 \sin (2 t)+c \\
\text { General Solution: } y & =\frac{3 \sin (2 t)+c}{t^{2}} \\
y(\pi)=5 \Rightarrow y & =\frac{3 \sin (2 t)+5 \pi^{2}}{t^{2}}
\end{aligned}
$$

2. (12 points) Consider the differential equation where

$$
\frac{d y}{d t}=(y-1)(3-y)(5-y)
$$

(a) Sketch the slope field for this differential equation.

(b) If $y(0)=4$, what is the behavior of $y(t)$ as t goes to infinity?

$$
\lim _{t \rightarrow \infty} y(t)=3
$$

(c) If $y(0)=2$, what is the behavior of $y(t)$ as t goes to infinity?

$$
\lim _{t \rightarrow \infty} y(t)=3
$$

3. (12 points) A swinging door (that can open both to the inside and the outside) has both a spring and a dampener on it to control how well the door shuts. Define the angle of the swinging door at time t to be $\theta(t)$, where $\theta=0$ corresponds to a shut door, $\theta>0$ is opening to the outside, and $\theta<0$ is opening to the inside.

$$
\begin{aligned}
& \theta^{\prime \prime}+2 k \theta^{\prime}+4 \theta=0 \\
& r^{2}+2 k \cdot r+4=0
\end{aligned}
$$

$$
\theta^{\prime \prime}(t)=-4 \theta(t)-2 k \theta^{\prime}(t) . \quad r=\frac{-2 k \pm \sqrt{4 k^{2}-16}}{2}=-k \pm \sqrt{k^{2}-4}
$$

In the above equation, the 4 represents the strength of the spring and the k represents the strength of the dampener (which resists motion in both directions).
Find the general solution to the above differential equation when

(b) $k=2 \quad r=-2$
door closes
fastest

$$
\theta(t)=e^{-\frac{2 t}{=}}\left(c_{1}+c_{2} t\right)
$$

door slams every
time

$$
\text { (c) } k=1 \quad r=-1 \pm i \sqrt{3}
$$

(d) Which of the above solutions represents an "optimally damped" swinging door, defined to be the case where the door may never hit the door jam at $\theta=0$ (if we insert one) but otherwise has a general solution that closes as quickly as possible (meaning that for very large $t, \theta(t)$ is as small as possible)?
Since $2>3-\sqrt{5}$
part (b) closes

4. (12 points) (a) Find the general solution to the equation $y^{\prime \prime}-5 y^{\prime}+6 y=0$.

$$
y=c_{1} e^{2 t}+c_{2} e^{3 t}
$$

$$
\begin{aligned}
r^{2}-5 r+6 & =0 \\
(r-2)(r-3) & =0 \\
r & =2,3
\end{aligned}
$$

(b) Using the method of undetermined coefficients, find the general solution to the differential equation $y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}$.

Guess : $y=A e^{t}$

$$
\begin{array}{rlrl}
A e^{t}-5 A e^{t}+6 A e^{t} & =2 e^{t} \longleftarrow y^{\prime} & =A e^{t} \\
A-5 A+6 A & =2 & y^{\prime \prime} & =A e^{t} \\
2 A & =2 & \\
A & =1 & \\
y=c_{1} e^{2 t}+C_{2} e^{3 t}+e^{t}
\end{array}
$$

$y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}$.

$$
\left.\begin{array}{rl}
y= & -e^{2 t} \cdot \int^{t} \frac{e^{3 s} \cdot 2 e^{s s}}{e^{5 s}} d s \\
& +e^{3 t} \cdot \int^{t} \frac{e^{2 s} \cdot 2 e^{s}}{e^{5 s}} d s
\end{array} \quad \leftarrow \begin{array}{l}
\text { By } y \text { Th m. } \\
3 \cdot 6 \cdot 1
\end{array}\right] \left\lvert\, \begin{aligned}
& y_{1}=e^{2 t} \\
& y_{1}^{\prime}=2 e^{2 t} \\
& W=e^{2 t} \cdot 3 e^{3 t}-e^{3 t} \cdot 2 e^{2 t} \\
& y_{2}^{\prime}=3 e^{3 t} \\
& W=e^{5 t}
\end{aligned}\right.
$$

$$
\begin{aligned}
y & =-e^{2 t} \int^{t} 2 e^{-s} d s+e^{3 t} \int^{t} 2 e^{-2 s} d s \\
& =-e^{2 t}\left(-2 e^{-t}-c_{1}\right)+e^{3 t}\left(-e^{2 t}+c_{2}\right) \\
& =e^{t}+c_{1} e^{2 t}+c_{2} e^{3 t}
\end{aligned}
$$

5. (12 points)

$$
\begin{aligned}
0 & =\left(s^{2} y-3 s+3\right)-2(s y-3)+5 y \\
& =\left(s^{2}-2 s+5\right) y-3 s+9 \\
y & =\frac{3 s-9}{s^{2}-2 s+5}=\frac{3(s-1)-3 \cdot 2}{(s-1)^{2}+2^{2}} \\
y(t) & =3 e^{t} \cos (2 t)-3 e^{t} \sin (2 t)
\end{aligned}
$$

6. (12 points) The goal of this problem is to find the general solution to the differential equation $t y^{\prime \prime}-2 y^{\prime}+9 t^{5} y=0$, where y is a function of t.
(a) Using the chain rule from single variable calculus, convert this to a differential equa-

$$
\begin{aligned}
& \text { sion where } y \text { is a function of } x \text {, where } x=t^{3} \text {. } \\
& \frac{d y}{d t}=\frac{d x}{d t} \cdot \frac{d y}{d x}=3 x^{2 / 3} \frac{d y}{d x} \\
& x=t^{3} ; t=x^{1 / 3} \\
& \frac{d x}{d t}=3 t^{2}=3 x^{2 / 3} \\
& \frac{d^{2} y}{d t^{2}}=\frac{d}{d t}\left(\frac{d y}{d t}\right)=\frac{d x}{d t} \cdot \frac{d}{d x}\left(\frac{d y}{d t}\right) \\
& =3 x^{2 / 3} \frac{d}{d x}\left(3 x^{2 / 3} \frac{d y}{d x}\right)=3 x^{2 / 3}\left(3 x^{2 / 3} \frac{d y}{d x^{2}}+2 x^{-1 / 3} \frac{d y}{d x}\right) \\
& =9 x^{4 / 3} \cdot \frac{d^{2} y}{d x^{2}}+6 x^{1 / 3} \frac{d y}{d x} \quad \text { Plug this into } \\
& \frac{=9 x}{0=x^{1 / 3}\left[9 x^{4 / 3} \frac{d^{2} z}{d x^{2}}+6 x^{1 / 3} \frac{d y}{d x}\right]-2 \cdot 3 x^{2 / 3} \frac{d y}{d x}+9 x^{5 / 3} y} \\
& =9 x^{5 / 3}\left(\frac{d^{2} y}{d x^{2}}+y\right) \Rightarrow \quad \frac{d^{2} y}{d x^{2}}+y=0 \quad(x \neq 0)
\end{aligned}
$$

(b) Find the general solution to the differential equation for $y(x)$ you derived in part (a).

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

(c) What is the general solution to the original differential equation for $y(t)$?

$$
y=C_{1} \cos \left(t^{3}\right)+c_{2} \sin \left(t^{3}\right)
$$

