Exam 2

Math 353
Summer Term I, 2021
Name: \qquad
Friday, June 11, 2021
Time Limit: 75 Minutes

This exam contains 6 pages (including this cover page) and 5 questions. The total number of points on this exam is 60 . While this is a closed book, closed notes exam, you are allowed to use your one page review sheet, front and back, written on an 8.5×11 inch physical piece of paper in your own handwriting. While your review sheet must have been created with 20th century technology, you may take this exam on a tablet if you like, or on paper.

Show all of your work (on the backs of pages, if necessary) and circle your answers. If you do not completely solve a problem, explain what you do understand about it. If you would like to guess about a problem, clearly say so. This will maximize your partial credit. No collaboration on this exam is allowed. Good luck!

Grade Table (for teacher use only)

Question	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
Total:	60	

1. (12 points) Consider the differential equation

$$
y^{\prime \prime}(t)+y(t)=\delta(t-\pi)-\delta(t-3 \pi)
$$

with initial conditions $y(0)=0$ and $y^{\prime}(0)=0$.
(a) Compute the Laplace transform of both sides of the equation and solve for $Y(s)$.

$$
\begin{aligned}
s^{2} y(s)+Y(s) & =e^{-\pi s}-e^{-3 \pi s} \\
y(s) & =\frac{e^{-\pi s}-e^{-3 \pi s}}{s^{2}+1}
\end{aligned}
$$

(b) Compute $y(t)$ as the inverse Laplace transform of $Y(s)$.

$$
\begin{aligned}
y(t) & =u_{\pi}(t) \sin (t-\pi)-u_{3 \pi}(t) \sin (t-3 \pi) \\
& =\left(u_{\pi}(t)-u_{3 \pi}(t)\right) \sin (t-\pi)
\end{aligned}
$$

(c) Plot $y(t)$ for $0 \leq t \leq 4 \pi$ and describe the behavior of $y(t)$ for large t.

$$
y(t) \equiv 0 \quad \text { for } t \geqslant 3 \pi \text {. }
$$

2. (12 points) Consider the harmonic function u defined in the unit disk $x^{2}+y^{2} \leq 1$ with boundary conditions $u=f(\theta)$ on the unit circle, where $f(\theta)=\sin (2 \theta)$, and θ is the usual polar coordinate.
Recall that harmonic functions satisfy $u_{x x}+u_{y y}=0$ in $x y$ coordinates and $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0$ in polar coordinates.
(a) Compute $u(r, \theta)$ in the unit disk in polar coordinates.

$$
\begin{gathered}
u(r, \theta)=R(r) \Theta(\theta) \\
R^{\prime \prime \Theta}+\frac{1}{r} R^{\prime} \Theta+\frac{1}{r^{2}} R \Theta^{\prime \prime}=0 \\
\underbrace{r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}+\underbrace{\frac{\Theta^{\prime \prime}}{\Theta}}_{-n^{2}}=0}_{n^{2}} \\
\Theta^{\prime \prime}+n^{2} \Theta=0 \longrightarrow \Theta(\theta)=c_{1} \cos (n \theta)+c_{2} \sin (n \theta) \\
r^{2} R^{\prime \prime}+r R^{\prime}-n^{2} R=0 \rightarrow R(r)= \begin{cases}c_{1} r^{n}+c_{2} r^{-n}, n \geqslant 1 & \text { by section } 5.4 \\
c_{1}+c_{2} \ln (r), n=0 & \text { (Euler's equation) }\end{cases}
\end{gathered}
$$

Hence, we can match the given boundary conditions with

$$
u(r, \theta)=r^{2} \sin (2 \theta)
$$

(b) Using the fact that $x=r \cos (\theta)$ and $y=r \sin (\theta)$, express u as a function of x and y.

$$
\begin{aligned}
u & =r^{2} \cdot 2 \sin \theta \cos \theta \\
& =2(r \cos \theta)(r \sin \theta) \\
& =2 x y
\end{aligned}
$$

(c) Verify that this function $u(x, y)$ is harmonic by computing $u_{x x}+u_{y y}$. What is the value of u when $x=1 / 10$ and $y=3 / 10$?

$$
\begin{aligned}
&(2 x y)_{x x}+(2 x y)_{y y}=0+0=0 \\
& u(x, y)=2 x y=2\left(\frac{1}{10}\right)\left(\frac{3}{10}\right)=\frac{6}{100}=\frac{3}{50} \\
&\text { (or } 0.06)
\end{aligned}
$$

3. (12 points) Suppose a metal rod represented by the interval $0 \leq x \leq 1$ has an initial temperature of $u(x)=\sin \left(\frac{3 \pi x}{2}\right)$ at $t=0$. Suppose that $u(x, t)$ satisfies the heat equation

$$
L=1 \quad u_{t}=u_{x x}
$$

for $t \geq 0$, with boundary conditions $u(0, t)=0$ (left end being kept at a temperature of zero) and $u_{x}(L, t)=0$ (right end well insulated).
(a) Compute the temperature $u(x, t)$ of the metal rod for $t \geq 0$.

$$
\left.\begin{array}{rl}
u(x, t)=x(x) T(t) \rightarrow & \frac{T^{\prime}(t)}{T}=\frac{x^{\prime \prime \prime}(x)}{x}=-\lambda \\
X^{\prime \prime}(x)+\lambda x=0 \rightarrow & X(x)=\sin \left(\frac{3 \pi}{2} x\right) \\
& \text { satisfies this with } \lambda=\left(\frac{3 \pi}{2}\right)^{2}
\end{array} \quad \begin{array}{rl}
T^{\prime}(t)=-\frac{9 \pi^{2}}{4} T \rightarrow T(t)=c \cdot e^{-\frac{9 \pi^{2}}{4} t} \rightarrow \\
u(x, t)=e^{-\frac{9 \pi^{2}}{4} t} \sin \left(\frac{3 \pi}{2} x\right) \quad \text { solves } u_{t}=u_{x x}
\end{array}\right\}
$$

(b) What is the temperature of the metal rod at $x=1$ when $t=10$?

$$
u(1,10)=-e^{-\frac{45 \pi^{2}}{2}}
$$

4. (12 points) Let

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x)
$$

where

$$
a_{n}=2 \int_{0}^{1} x^{3} \cos (n \pi x) d x=\int_{-1}^{1}|X|^{3} \cos (n \pi x) d x
$$

$$
\text { Hence, } f(x)=|x|^{3} \text { for }-1 \leq x \leq 1 \text { and has }
$$

period 2.
(a) Is $f(x)$ an even function, an odd function, or neither? Even function, since it is the sum of cosines, which are even.
(b) What is the period of $f(x)$?

(c) Graph $f(x)$ for $-3 \leq x \leq 3$.

(d) What is $f(-5 / 2)$?

$$
\left.f(-5 / 2)=f\left(-\frac{5}{2}+2\right)=f\left(-\frac{1}{2}\right)=\left\lvert\,-\frac{1}{2}\right.\right)^{3}=\frac{1}{8}
$$

5. (12 points) In this problem, you are NOT ALLOWED to use any sines or cosines. That would just make the problem harder anyway. In this problem, $-\infty<x<\infty$.
Consider the wave function $u(x, t)$ which is the sum of a left and right traveling wave:

$$
u(x, t)=h(x+a t)+k(x-a t)
$$

(a) Compute $u_{t t}$ and $u_{x x}$ in terms of h and k. Verify that $u(x, t)$ satisfies the wave equation $u_{t t}=a^{2} u_{x x} . \quad u_{t}(x, t)=a h^{\prime}(x+a t)-a k^{\prime}(x-a t)$

$$
u_{t t}=a^{2} u_{x x}
$$

$u_{t t}(x, t)=a^{2} h^{\prime \prime}(x+a t)+a^{2} k^{\prime \prime}(x-a t)$

$$
u_{x}(x, t)=h^{\prime}(x+a t)+k^{\prime}(x-a t)
$$

$$
u_{x x}(x, t)=h^{\prime \prime}(x+a t)+k^{\prime \prime}(x-a t)
$$

(b) Compute $u(x, 0)$ and $u_{t}(x, 0)$ in terms of the single variable functions h and k.

$$
u(x, t)=\frac{1}{2}[f(x+a t)+f(x-a t)]+\frac{1}{2 a} \int_{x-a t}^{x+a t} g(s) d s
$$

