Exam 1

Math 353
Summer Term 1
Name: \qquad
May 27, 2022
Time Limit: 75 Minutes

This exam contains 6 pages (including this cover page) and 5 questions. The total number of points on this exam is 60 . While this is a closed book, closed notes exam, you are allowed to use your one page review sheet, front and back, written on an 8.5×11 inch physical piece of paper in your own handwriting. While your review sheet must have been created with 20th century technology, you may take this exam on a tablet if you like, or on paper.

Show all of your work (on the backs of pages, if necessary) and circle your answers. If you do not completely solve a problem, explain what you do understand about it. If you would like to guess about a problem, clearly say so. This will maximize your partial credit. No collaboration on this exam is allowed. Good luck!

Grade Table (for teacher use only)

Question	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
Total:	60	

1. (12 points) (a) Find the general solution to the differential equation

$$
\left(4 t^{2}+t^{4}\right) \frac{d y}{d t}+2 t^{3} y=4 t^{3}
$$

(b) Find a solution where $y=1$ when $t=1$.
2. (12 points) (a) Find an integrating factor (function of x) for the differential equation

$$
\left(3 x^{3} y+x^{2} y^{2}\right)+\left(x^{4}+x^{3} y\right) \frac{d y}{d x}=0
$$

that makes the differential equation exact.
(b) Find the general solution of the differential equation.
(c) Find the solution which has $y=1$ when $x=1$.
3. (12 points) (a) Find the general solution to the homogeneous differential equation

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0 \quad, x>0 .
$$

(b) Find a particular solution to the differential equation

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=x^{5} \quad, x>0
$$

(c) Find the general solution to the differential equation

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=x^{5} \quad, x>0
$$

4. (12 points) For this problem you may use the formulas in Table 6.2.1 that you copied into your review sheet, or work the problems directly. Compute the Laplace transform $F(s)$ of each of the following functions.
(a) $f(t)=e^{3 t}$
(b) $f(t)=t^{2} e^{3 t}$
(c)

$$
f(t)= \begin{cases}e^{3 t} & \text { for } 0 \leq t \leq 4 \\ e^{4 t} & \text { for } t>4\end{cases}
$$

5. (12 points) A swinging door (that can open both to the inside and the outside) has both a spring and a dampener on it to control how well the door shuts. Define the angle of the swinging door at time t to be $\theta(t)$, where $\theta=0$ corresponds to a shut door, $\theta>0$ is opening to the outside, and $\theta<0$ is opening to the inside.

Suppose that the dynamics of the swinging door are controlled by

$$
\theta^{\prime \prime}(t)=-9 \theta(t)-2 k \theta^{\prime}(t)
$$

In the above equation, the 4 represents the strength of the spring and the k represents the strength of the dampener (which resists motion in both directions).
Find the general solution to the above differential equation when
(a) $\mathrm{k}=3$
(b) $\mathrm{k}=4$
(c) $\mathrm{k}=5$
(d) Of the three values of k listed above, which yields the most "optimally damped" swinging door, defined to be the case where the door may never hit the door jam at $\theta=0$ (if we insert one) but otherwise has a general solution that closes as quickly as possible (meaning that for very large $t, \theta(t)$ is as small as possible)?

